Climate Change Perception and Uptake of Climate-Smart Agriculture in Rice Production in Ebonyi State, Nigeria
Abstract
:1. Introduction
2. Methodology
2.1. Sampling and Data Collection
2.2. Data Analysis
- P1 = Perceived increased rainfall intensity (Yes = 1, No = 0)
- P2 = Perceived prolonged dry season (Yes = 1, No = 0)
- P3 = Perceived frequent floods (Yes = 1, No = 0)
- P4 = Perceived increased temperature (Yes = 1, No = 0)
- P5 = Perceived severe windstorm (Yes = 1, No = 0)
- P6 = Perceived unpredictable rainfall volume (Yes = 1, No = 0)
- P7 = Perceived late onset of rain (Yes = 1, No = 0)
- P8 = Perceived early cessation of rain (Yes = 1, No = 0)
- X1 = Education (Years spent in school)
- X2 = Age (Years)
- X3 = Household Size (Number of persons)
- X4 = Off-farm employment (Yes = 1, No = 0)
- X5 = Gender (Male = 1, Female = 0)
- X6 = Extension contact (Number of visits per year)
- X7 = Access to credit (Naira)
- X8 = Ownership of television (Yes = 1, No = 0)
- X9 = Ownership of mobile phone (Yes = 1, No = 0)
- X10 = Ownership of radio (Yes = 1, No = 0)
- X11 = Membership of farmer groups (Yes = 1, No = 0)
- X12 = Training on CC and/or rice farming (Number of times per year)
- X13 = Marital status (Married = 1, Single = 0)
- X14 = Reliance on government support (Yes = 1, No = 0)
- X15 = Farm size (Hectare)
- X16 = Income (Naira)
3. Results and Discussion
3.1. Socio-Economic Characteristics of the Farmers
3.2. Farmers’ Perception of Climate Events
3.3. Determinants of Farmers’ Perception of Climate Events
3.4. Interdependent Nature of Perceived Climate Events
3.5. Climate-Smart Agricultural Practices/Technologies in Rice Production
3.6. Constraints to Adoption of Climate-Smart Agricultural Practices in Rice Production
4. Conclusions and Recommendations
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Oriangi, G.; Albrecht, F.; Di Baldassarre, G.; Bamutaze, Y.; Mukwaya, P.I.; Ardö, J.; Pilesjö, P. Household resilience to climate change hazards in Uganda. Int. J. Clim. Chang. Strateg. Manag. 2020, 12, 59–73. [Google Scholar] [CrossRef]
- Chia, L.E.; Tiani, A.M.; Sonwa, D.J.; Perez-Teran, A.S.; Tchatchou, B. Securing well-being with the advent of climate hazards: Case of forest-dependent communities in a landscape in the Congo Basin. Int. J. Clim. Chang. Strateg. Manag. 2016, 8, 175–193. [Google Scholar] [CrossRef]
- Bates, B.C.; Kundzewicz, Z.W.; Wu, S.; Palutikof, J.P. Climate change and water. In Technical Paper of the Intergovernmental Panel on Climate Change; IPCC Secretariat: Geneva, Switzerland, 2008; p. 210. [Google Scholar]
- Arnell, N.W.; Halliday, S.J.; Battarbee, R.W.; Skeffington, R.A.; Wade, A.J. The implications of climate change for the water environment in England. Prog. Phys. Geogr. Earth Environ. 2015, 39, 93–120. [Google Scholar] [CrossRef] [Green Version]
- Mangaza, L.; Sonwa, D.J.; Batsi, G.; Ebuy, J.; Kahindo, J. Building a framework towards climate-smart agriculture in the Yangambi landscape, Democratic Republic of Congo (DRC). Int. J. Clim. Chang. Strateg. Manag. 2021, 13, 320–338. [Google Scholar] [CrossRef]
- Saalu, F.; Oriaso, S.; Gyampoh, B. Effects of a changing climate on livelihoods of forest dependent communities: Evidence from Buyangu community proximal to Kakamega tropical rain forest in Kenya. Int. J. Clim. Chang. Strateg. Manag. 2020, 12, 1–21. [Google Scholar] [CrossRef] [Green Version]
- Abu, O.; Okpe, A.E.; Abah, D.A. Effects of climate and other selected variables on rice output response in Nigeria. Niger. J. Agric. Econ. 2018, 8, 1–10. [Google Scholar]
- Seck, P.A.; Diagne, A.; Mohanty, S.; Wopereis, M.C.S. Crops that feed the world 7: Rice. Food Secur. 2012, 4, 7–24. [Google Scholar] [CrossRef]
- Macauley, H.; Ramadjita, T. Background paper. Cereal crops: Rice, Maize, Millet, Sorghum, Wheat. In An Action Plan for African Agricultural Transformation; African Development Bank: Abidjan, Côte d’Ivoire, 2015. [Google Scholar]
- Onyeneke, R.U. Does climate change adaptation lead to increased productivity of rice production? Lessons from Ebonyi State, Nigeria. Renew. Agric. Food Syst. 2021, 36, 54–68. [Google Scholar] [CrossRef]
- Tesfahun, A.A.; Chawla, A.S. Risk perceptions and adaptation strategies of smallholder farmers to climate change and variability in North Shoa zone, Ethiopia. Manag. Environ. Qual. Int. J. 2019, 31, 254–272. [Google Scholar] [CrossRef]
- Liverpool-Tasie, L.S.O.; Pummel, H.; Tambo, J.A.; Olabisi, L.S.; Osuntade, O. Perceptions and exposure to climate events along agricultural value chains: Evidence from Nigeria. J. Environ. Manag. 2020, 264, 110430. [Google Scholar] [CrossRef]
- Whitmarsh, L.; Capstick, S. Perceptions of Climate Change. In Psychology and Climate Change: Human Perceptions, Impacts, and Responses; Clayton, S., Manning, C., Eds.; Academic Press: Cambridge, MA, USA, 2018; pp. 13–33. [Google Scholar]
- Fierros-González, I.; López-Feldman, A. Farmers’ Perception of Climate Change: A Review of the Literature for Latin America. Front. Environ. Sci. 2021, 9, 205. [Google Scholar] [CrossRef]
- Van der Linden, S. The Social-Psychological Determinants of Climate Change Risk Perceptions: Towards a Comprehensive Model. J. Environ. Psychol. 2015, 41, 112–124. [Google Scholar] [CrossRef]
- Gbetibouo, G.A. Understanding Farmers’ Perception and Adaptations to Climate Change and Variability: The Case of the Limpopo Basin, South Africa; Discussion Paper 00849; International Food Policy Research Institute: Washington, DC, USA, 2009. [Google Scholar]
- Onyeneke, R.U.; Mmagu, C.J.; Aligbe, J.O. Crop farmers’ understanding of climate change and adaptation practices in southeast Nigeria. World Rev. Sci. Technol. Sustain. Dev. 2017, 13, 299–318. [Google Scholar] [CrossRef]
- Tarfa, P.Y.; Ayuba, H.K.; Onyeneke, R.U.; Idris, N.; Nwajiuba, C.A.; Igberi, C.O. Climate change perception and adaptation in Nigeria’s Guinea Savanna: Empirical evidence from farmers in Nasarawa State, Nigeria. Appl. Ecol. Environ. Res. 2019, 17, 7085–7112. [Google Scholar] [CrossRef]
- Onyeneke, R.U.; Iruo, F.A.; Ogoko, I.M. Micro-level analysis of determinants of farmers’ adaptation measures to climate change in the Niger Delta Region of Nigeria: Lessons from Bayelsa State. Niger. J. Agric. Econ. 2012, 3, 9–18. [Google Scholar]
- Nwajiuba, C.; Tambi, E.N.; Bangali, S. State of Knowledge on CSA in Africa: Case Studies from Nigeria, Cameroon and Democratic Republic of Congo; Forum for Agricultural Research in Africa: Accra, Ghana, 2015. [Google Scholar]
- Onyeneke, R.U.; Igberi, C.; Uwadoka, C.; Aligbe, J. Status of climate-smart agriculture in southeast Nigeria. GeoJournal 2018, 83, 333–346. [Google Scholar] [CrossRef]
- Federal Ministry of Environment. Third National Communication (TNC) of the Federal Republic of Nigeria: Under the United Nations Framework Convention on Climate Change (UNFCCC); Federal Ministry of Environment: Abuja, Nigeria, 2020. [Google Scholar]
- Federal Ministry of Environment. First Biennial Update Report (BUR1) of the Federal Republic of Nigeria under the United Nations Framework Convention on Climate Change (UNFCCC); Federal Ministry of Environment: Abuja, Nigeria, 2018. [Google Scholar]
- Federal Ministry of Environment. Submitted to the United Nations Framework Convention on Climate Change (UNFCCC); Nigeria’s Nationally Determined Contribution (NDC)—2021 Update; Federal Ministry of Environment: Abuja, Nigeria, 2021. [Google Scholar]
- Building Nigeria’s Response to Climate Change (BNRCC) and Federal Ministry of Environment. National Adaptation Strategy and Plan of Action on Climate Change for Nigeria (NASPA-CCN); Federal Ministry of Environment: Abuja, Nigeria, 2011. [Google Scholar]
- Khatri-Chhetri, A.; Aggarwal, P.K.; Joshi, P.K.; Vyas, S. Farmers’ prioritization of climate-smart agriculture (CSA) technologies. Agric. Syst. 2017, 151, 184–191. [Google Scholar] [CrossRef]
- Kurgat, B.K.; Lamanna, C.; Kimaro, A.; Namoi, N.; Manda, L.; Rosenstock, T.S. Adoption of climate-smart agriculture technologies in Tanzania. Front. Sustain. Food Syst. 2020, 4, 55. [Google Scholar] [CrossRef]
- Campbell, B.; Corner-Dolloff, C.; Girvetz, E.; Rosenstock, T.S. Prioritizing and evaluating climate-smart practices and services. Presented at the Global Science Conference, Montpellier, France, 16–18 March 2015. [Google Scholar]
- Tesfaye, A.; Nigussie, A.; Ambaw, G. Monitoring socioeconomic impacts of climate-smart agricultural practices at Doyogena and Basona Worena climate-smart landscapes, Ethiopia. In CGIAR Research Program on Climate Change, Agriculture and Food Security (CCAFS); CGIAR System Organization: Montpellier, France, 2021. [Google Scholar]
- Anugwa, I.Q.; Onwubuya, E.A.; Chah, J.M.; Abonyi, C.C.; Nduka, E.K. Farmers’ preferences and willingness to pay for climate-smart agricultural technologies on rice production in Nigeria. Clim. Policy 2021, 1–20. [Google Scholar] [CrossRef]
- Pickson, R.B.; He, G. Smallholder Farmers’ Perceptions, Adaptation Constraints, and Determinants of Adaptive Capacity to Climate Change in Chengdu. SAGE Open 2021, 11. [Google Scholar] [CrossRef]
- Wekesa, B.M.; Ayuya, O.I.; Lagat, J.K. Effect of climate-smart agricultural practices on household food security in smallholder production systems: Micro-level evidence from Kenya. Agric. Food Secur. 2018, 7, 80. [Google Scholar] [CrossRef] [Green Version]
- Deressa, T.; Hassan, R.; Ringler, C.; Alemu, T.; Yesuf, M. Analysis of the Determinants of Farmers’ Choice of Adaptation Methods and Perceptions of Climate Change in the Nile Basin of Ethiopia; Discussion Paper No. 798; International Food Policy Research Institute: Washington, DC, USA, 2008. [Google Scholar]
- Amadou, M.L.; Villamor, G.B.; Attua, E.M.; Traoré, S.B. Comparing farmers’ perception of climate change and variability with historical climate data in the Upper East Region of Ghana. Ghana J. Geogr. 2015, 7, 47–74. [Google Scholar]
- Asare-Nuamah, P.; Botchway, E. Comparing smallholder farmers’ climate change perception with climate data: The case of Adansi North District of Ghana. Heliyon 2019, 5, e03065. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Asrat, P.; Simane, B. Farmers’ perception of climate change and adaptation strategies in the Dabus watershed, North-West Ethiopia. Ecol. Process. 2018, 7, 7. [Google Scholar] [CrossRef] [Green Version]
- Mairura, F.K.; Musafiri, C.M.; Kiboi, M.N.; Macharia, J.M.; Ng’etich, O.K.; Shisanya, C.A.; Okeyo, J.M.; Mugendi, D.N.; Okwuosa, E.A.; Ngetich, F.K. Determinants of farmers’ perceptions of climate variability, mitigation, and adaptation strategies in the central highlands of Kenya. Weather Clim. Extrem. 2021, 34, 100374. [Google Scholar] [CrossRef]
- Mbwambo, S.G.; Mourice, S.K.; Tarimo, A.J.P. Climate change perceptions by smallholder coffee farmers in the northern and southern highlands of Tanzania. Climate 2021, 9, 90. [Google Scholar] [CrossRef]
- Greene, W.H. Econometric Analysis, 7th ed.; Prentice Hall: New York, NY, USA, 2012. [Google Scholar]
- Abegunde, V.O.; Sibanda, M.; Obi, A. Determinants of the Adoption of Climate-Smart Agricultural Practices by Small-Scale Farming Households in King Cetshwayo District Municipality, South Africa. Sustainability 2020, 12, 195. [Google Scholar] [CrossRef] [Green Version]
- Mujeyi, A.; Mudhara, M.; Mutenje, M. The impact of climate-smart agriculture on household welfare in smallholder integrated crop–livestock farming systems: Evidence from Zimbabwe. Agric. Food Secur. 2021, 10, 4. [Google Scholar] [CrossRef]
- Issahaku, G.; Abdulai, A. Adoption of climate-smart practices and its impact on farm performance and risk exposure among smallholder farmers in Ghana. Aust. J. Agric. Resour. Econ. 2020, 64, 394–420. [Google Scholar] [CrossRef] [Green Version]
- Liverpool-Tasie, L.S.O.; Sanou, A.; Tambo, J.A. Climate change adaptation among poultry farmers: Evidence from Nigeria. Clim. Chang. 2019, 157, 527–544. [Google Scholar] [CrossRef] [Green Version]
- Akrofi-Atitianti, F.; Ifejika-Speranza, C.; Bockel, L.; Asare, R. Assessing climate-smart agriculture and its determinants of practice in Ghana: A case of the cocoa production system. Land 2018, 7, 30. [Google Scholar] [CrossRef] [Green Version]
- Onyeneke, R.U.; Igberi, C.O.; Aligbe, J.O.; Iruo, F.A.; Amadi, M.U.; Iheanacho, S.C.; Osuji, E.E.; Munonye, J.; Uwadoka, C. Climate change adaptation actions by fish farmers: Evidence from the Niger Delta Region of Nigeria. Aust. J. Agric. Resour. Econ. 2020, 64, 347–375. [Google Scholar] [CrossRef]
- Onyeneke, R.U.; Nwajiuba, C.A.; Igberi, C.O.; Amadi, M.U.; Anosike, F.C.; Oko-Isu, A.; Munonye, J.; Uwadoka, C.; Adeolu, A.I. Impacts of Caregivers’ Nutrition Knowledge and Food Market Accessibility on Preschool Children’s Dietary Diversity in Remote Communities in Southeast Nigeria. Sustainability 2019, 11, 1688. [Google Scholar] [CrossRef] [Green Version]
- Liverpool-Tasie, L.S.O.; Parkhi, C.M. Climate Risk and Technology Adoption in the Midstream of Crop Value Chains: Evidence from Nigerian Maize Traders. J. Agric. Econ. 2020, 72, 158–179. [Google Scholar] [CrossRef]
- Arimi, K.S. Determinants of climate change adaptation strategies used by fish farmers in Epe Local Government Area of Lagos State, Nigeria. J. Sci. Food Agric. 2014, 94, 1470–1476. [Google Scholar] [CrossRef] [PubMed]
- Mizik, T. Climate-Smart Agriculture on Small-Scale Farms: A Systematic Literature Review. Agronomy 2021, 11, 1096. [Google Scholar] [CrossRef]
- Onyeneke, R.U. Determinants of adoption of improved technologies in rice production in Imo State, Nigeria. Afr. J. Agric. Res. 2017, 12, 888–896. [Google Scholar] [CrossRef] [Green Version]
- Xu, J.; Henry, A.; Sreenivasulu, N. Rice yield formation under high day and night temperatures—A prerequisite to ensure future food security. Plant Cell Environ. 2020, 43, 1595–1608. [Google Scholar] [CrossRef]
- Zhao, C.; Liu, B.; Piao, S.; Wang, X.; Lobell, D.B.; Huang, Y.; Huang, M.; Yao, Y.; Bassu, S.; Ciais, P.; et al. Temperature increase reduces global yields of major crops in four independent estimates. Proc. Natl. Acad. Sci. USA 2017, 114, 9326–9331. [Google Scholar] [CrossRef] [Green Version]
- Tan, B.T.; Fam, P.S.; Firdaus, R.B.R.; Tan, M.L.; Gunaratne, M.S. Impact of Climate Change on Rice Yield in Malaysia: A Panel Data Analysis. Agriculture 2021, 11, 569. [Google Scholar] [CrossRef]
- Choko, O.P.; Olabisi, L.S.; Onyeneke, R.U.; Chiemela, S.N.; Liverpool-Tasie, L.S.O.; Rivers, L. A resilience approach to community-scale climate adaptation. Sustainability 2019, 11, 3100. [Google Scholar] [CrossRef] [Green Version]
- Mo’allim, A.A.; Kamal, M.R.; Muhammed, H.H.; Mohd Soom, M.A.; Zawawi, M.; Wayayok, A.; Man, C.; Bt, H. Assessment of Nutrient Leaching in Flooded Paddy Rice Field Experiment Using Hydrus-1D. Water 2018, 10, 785. [Google Scholar] [CrossRef] [Green Version]
- Mulenga, B.P.; Wineman, A.; Sitko, N.J. Climate Trends and Farmers’ Perceptions of Climate Change in Zambia. Environ. Manag. 2017, 59, 291–306. [Google Scholar] [CrossRef] [PubMed]
- Tambo, J.A.; Abdoulaye, T. Smallholder farmers’ perceptions of and adaptations to climate change in the Nigerian savanna. Reg. Environ. Chang. 2013, 13, 375–388. [Google Scholar] [CrossRef]
- Woods, B.A.; Nielsen, H.Ø.; Pedersen, A.B.; Kristofersson, D. Farmers’ perceptions of climate change and their likely responses in Danish agriculture. Land Use Policy 2017, 65, 109–120. [Google Scholar] [CrossRef]
- Onyeneke, R.U.; Amadi, M.U.; Njoku, C.L.; Emenekwe, C.C. Empirical Trend Analysis of Climate Variability in Ebonyi State, Nigeria. Niger. Agric. J. 2020, 51, 34–46. [Google Scholar]
- Onyeneke, R.U.; Emenekwe, C.C.; Munonye, J.O.; Nwajiuba, C.A.; Uwazie, U.I.; Amadi, M.U.; Izuogu, C.U.; Njoku, C.L.; Onyeneke, L.U. Progress in climate-agricultural vulnerability assessment in Nigeria. Atmosphere 2020, 11, 190. [Google Scholar] [CrossRef] [Green Version]
- Myeni, L.; Moeletsi, M.E. Factors determining the adoption of strategies used by smallholder farmers to cope with climate variability in the Eastern Free State, South Africa. Agriculture 2020, 10, 410. [Google Scholar] [CrossRef]
- Teshome, H.; Tesfaye, K.; Dechassa, N.; Tana, T.; Huber, M. Smallholder farmers’ perceptions of climate change and adaptation practices for maize production in Eastern Ethiopia. Sustainability 2021, 13, 9622. [Google Scholar] [CrossRef]
- Onyeneke, R.U.; Nwajiuba, C.A.; Emenekwe, C.C.; Nwajiuba, A.; Onyeneke, C.J.; Ohalete, P.; Uwazie, I. Climate change adaptation in Nigerian agricultural sector: A systematic review and resilience check of adaptation measures. AIMS Agric. Food 2019, 4, 967–1006. [Google Scholar] [CrossRef]
- Etana, D.; Snelder, D.J.R.M.; van Wesenbeeck, C.F.A.; de Cock Buning, T. Trends of Climate Change and Variability in Three Agro-Ecological Settings in Central Ethiopia: Contrasts of Meteorological Data and Farmers’ Perceptions. Climate 2020, 8, 121. [Google Scholar] [CrossRef]
- Kisauzi, T.; Mangheni, M.N.; Sseguya, H.; Bashaasha, B. Gender Dimensions of Farmers’ Perceptions and Knowledge on Climate Change in Teso Sub-Region, Eastern Uganda. Afr. Crop Sci. J. 2012, 20, 275–286. [Google Scholar]
- Mahdu, O.; Ellis, A.W. Perceptions and realities of hydroclimatic change affecting Guyanese rice farming. Clim. Risk Manag. 2021, 33, 100341. [Google Scholar] [CrossRef]
- Olutegbe, N.S.; Fadairo, O.S. Correlates and determinants of climate change adaptation strategies of food crop farmers in Oke-Ogun area of South-western Nigeria. J. Agric. Ext. Rural Dev. 2016, 8, 122–129. [Google Scholar]
- Imran, M.A.; Ali, A.; Ashfaq, M.; Hassan, S.; Culas, R.; Ma, C. Impact of climate-smart agriculture (CSA) through sustainable irrigation management on Resource use efficiency: A sustainable production alternative for cotton. Land Use Policy 2019, 88, 104113. [Google Scholar] [CrossRef]
- Woznicki, S.A.; Nejadhashemi, A.P.; Parsinejad, M. Climate change and irrigation demand: Uncertainty and adaptation. J. Hydrol. Reg. Stud. 2015, 3, 247–264. [Google Scholar] [CrossRef]
- Roy, A.; Basu, S. Determinants of Livelihood Diversification Under Environmental Change in Coastal Community of Bangladesh. Asia Pac. J. Rural Dev. 2020, 30, 7–26. [Google Scholar] [CrossRef]
- Shah, A.A.; Gong, Z.; Khan, N.A.; Khan, I.; Ali, M.; Naqvi, S.A.A. Livelihood diversification in managing catastrophic risks: Evidence from flood-disaster regions of Khyber Pakhtunkhwa Province of Pakistan. Environ. Sci. Pollut. Res. Int. 2021, 28, 40844–40857. [Google Scholar] [CrossRef] [PubMed]
- Ndamani, F.; Watanabe, T. Determinants of farmers’ adaptation to climate change: A micro level analysis in Ghana. Sci. Agric. 2016, 73, 201–208. [Google Scholar] [CrossRef] [Green Version]
- Heeb, L.; Jenner, E.; Cock, M.J.W. Climate-smart pest management: Building resilience of farms and landscapes to changing pest threats. J. Pest Sci. 2019, 92, 951–969. [Google Scholar] [CrossRef]
- Ozor, N.; Madukwe, M.; Enete, A.; Amaechina, E.; Onokala, P. Barriers to Climate Change Adaptation Among Farming Households of Southern Nigeria. J. Agric. Ext. 2011, 14, 114–124. [Google Scholar] [CrossRef]
- Onyeneke, R.U. Challenges of adaptation to climate change by farmers Anambra State, Nigeria. Int. J. Biosci. Agric. Technol. 2018, 9, 1–7. [Google Scholar]
- Skendžić, S.; Zovko, M.; Živković, I.P.; Lešić, V.; Lemić, D. The Impact of Climate Change on Agricultural Insect Pests. Insects 2021, 12, 440. [Google Scholar] [CrossRef] [PubMed]
- Shokri, A.; Sabzevari, S.; Hashemi, S.A. Impacts of flood on health of Iranian population: Infectious diseases with an emphasis on parasitic infections. Parasite Epidemiol. Control 2020, 9, e00144. [Google Scholar] [CrossRef]
Variable | Mean/Percentage |
---|---|
Education (years spent in school) | 8.65 |
Age (years) | 46.06 |
Household size (number of persons) | 6.55 |
Gender (percentage of male) | 0.65 |
Extension contact (percentage of access) | 0.57 |
No of extension visits (number of visits per season) | 3.31 |
Farming experience (years) | 13.08 |
Access to credit (percentage of access) | 0.28 |
Ownership of television (percentage having television) | 0.71 |
Ownership of mobile phone (percentage having phone) | 0.91 |
Ownership of radio (percentage having radio) | 0.80 |
Ownership of car (percentage having car) | 0.19 |
Ownership of motorcycle (percentage having motor cycle) | 0.67 |
Ownership of tricycle (percentage having tricycle) | 0.08 |
Ownership of bicycle (percentage having bicycle) | 0.42 |
Membership of farmer groups (percentage of members) | 0.53 |
Workshop/training on CC and/or rice farming (percentage received training or workshop) | 0.40 |
Number of times participated in such workshops/trainings (number of times participated in a season) | 1.52 |
Rely on government support (percentage relied on government for support) | 0.11 |
Farm size (ha) | 1.47 |
Variables | Increased Rainfall Intensity | Prolonged Dry Season | Frequent Floods | Increased Temperature | Severe Windstorm | Unpredictable Rainfall Pattern and Distribution | Late Onset of Rain | Early Cessation of Rain |
---|---|---|---|---|---|---|---|---|
X1 (Education) | −0.036 (−1.53) | 0.010 (0.48) | −0.114 (−5.33) *** | 0.002 (0.09) | −0.054 (−3.13) *** | −0.009 (−0.44) | 0.042 (2.07) ** | 0.040 (2.17) ** |
X2 (Age) | 0.009 (0.74) | −0.013 (−1.23) | −0.029 (2.71) *** | 0.018 (1.29) | −0.029 (−3.26) *** | −0.013 (−1.35) | −0.023 (−2.43) ** | −0.026 (−2.77) *** |
X3 (Household size) | −0.015 (−0.47) | 0.042 (1.44) | −0.047 (−1.71) * | −0.034 (−0.97) | 0.003 (0.15) | 0.018 (0.65) | 0.078 (2.91) *** | 0.011 (0.43) |
X4 (Off-farm employment) | −0.182 (−0.79) | 0.282 (1.48) | −0.156 (−0.78) | −0.095 (−0.39) | 0.203 (1.23) | 0.017 (0.09) | 0.231 (1.30) | 0.337 (1.95) * |
X5 (Gender) | −0.015 (−0.07) | −0.379 (−1.94) * | 0.065 (0.35) | −0.418 (−1.68) * | −0.164 (−1.03) | 0.027 (0.16) | −0.134 (−0.79) | −0.088 (−0.55) |
X6 (Extension) | 0.014 (0.045) | −0.024 (−0.88) | 0.026 (0.95) | −0.050 (−1.63) | −0.028 (−1.30) | 0.037 (1.27) | −0.035 (−1.39) | −0.024 (−0.99) |
X7 (Credit) | −7.29 × 10−7 (−0.57) | 1.72 × 10−6 (1.24) | 9.95 × 10−7 (0.81) | −9.62 × 10−7 (0.67) | 0.56 × 10−6 (1.44) | 1.10 × 10−6 (0.88) | 1.04 × 10−6 (0.82) | 8.87 × 10−7 (0.69) |
X8 (Television) | −0.015 (−0.06) | −0.354 (−1.54) | −0.141 (−0.61) | 0.246 (0.95) | 0.015 (0.08) | −0.187 (−0.90) | −0.641 (−3.11) *** | −0.152 (−0.79) |
X9 (Phone) | 0.200 (0.55) | −0.963 (−2.04) | 0.098 (0.28) | −0.618 (−1.28) | −0.079 (−0.28) | −0.594 (−1.61) | −0.581 (−1.74) * | −0.156 (−0.56) |
X10 (Radio) | −0.152 (−0.56) | 0.053 (0.22) | −0.207 (−0.83) | 0.374 (1.46) | 0.116 (0.57) | 0.111 (0.52) | 0.120 (0.54) | −0.040 (−0.19) |
X11 (Farmer group) | −0.037 (−0.15) | 0.500 (2.13) ** | 0.251 (1.12) | 0.314 (1.11) | 0.010 (0.06) | 0.136 (0.65) | 0.071 (0.34) | −0.027 (−0.13) |
X12 (Workshop/Training) | 0.027 (0.52) | −0.037 (−0.76) | 0.057 (1.27) | −0.015 (−0.28) | 0.032 (0.86) | −0.013 (−0.28) | 0.034 (0.76) | 0.047 (1.04) |
X13 (Marital Status) | 0.380 (1.33) | 0.481 (1.80) * | 0.213 (0.80) | 0.081 (0.23) | 0.151 (0.63) | 0.524 (2.11) ** | 0.247 (0.90) | 0.287 (1.10) |
X14 (Government Support) | −0.042 (−0.13) | 0.299 (0.98) | −0.069 (−0.23) | 0.618 (1.41) | 0.381 (1.49) | −0.174 (−0.67) | −0.098 (−0.39) | −0.292 (−1.22) |
X15 (Farm Size) | 0.004 (0.04) | −0.005 (−0.06) | −0.108 (−1.33) | 0.051 (0.37) | −0.114 (−1.62) | 0.014 (0.18) | 0.00008 (0.01) | −0.045 (−0.60) |
X16 (Income) | 4.15 × 10−7 (0.26) | 1.51 × 10−7 (0.15) | 1.38 × 10−7 (0.12) | 9.90 × 10−7 (0.52) | 2.26 × 10−7 (0.24) | 1.56 × 10−6 (1.23) | 1.67 × 10−6 (1.48) | 3.81 × 10−7 (0.37) |
Wald chi2 (128) | 202.69 *** |
Increased Rainfall Intensity | Prolonged Dry Season | Frequent Floods | Increased Temperature | Severe Windstorm | Unpredictable Rainfall Pattern and Distribution | Late Onset of Rain | Early Cessation of Rain | |
---|---|---|---|---|---|---|---|---|
Increased rainfall intensity | 1.000 | |||||||
Prolonged dry season | 0.107 | 1.000 | ||||||
Frequent floods | 0.229 ** | 0.525 *** | 1.000 | |||||
Increased temperature | 0.320 *** | 0.183 | 0.400 *** | 1.000 | ||||
Severe windstorm | 0.391 *** | 0.317 *** | 0.478 *** | 0.377 *** | 1.000 | |||
Unpredictable rainfall pattern and distribution | 0.170 | 0.266 ** | 0.253 ** | 0.551 *** | 0.645 *** | 1.000 | ||
Late onset of rain | 0.404 *** | 0.484 *** | 0.394 *** | 0.446 *** | 0.650 *** | 0.618 *** | 1.000 | |
Early cessation of rain | 0.290 *** | 0.469 *** | 0.430 *** | 0.238 ** | 0.664 *** | 0.406 *** | 0.643 *** | 1.000 |
Climate-Smart Agricultural Strategy | Component | ||||
---|---|---|---|---|---|
Individual Climate-Smart Agricultural Strategies | Crop and Land Management Practices (PC1) | Climate-Based Services and Irrigation (PC2) | Livelihood Diversification and Soil Fertility Management (PC3) | Efficient and Effective Use of Pesticide (PC4) | Planting on the Nursery (PC5) |
Planting improved rice varieties | 0.783 ** | −0.091 | −0.181 | 0.178 | −0.102 |
Insurance | 0.009 | 0.711 ** | 0.210 | 0.249 | −0.070 |
Planting different crops | 0.418 | −0.216 | 0.502 ** | 0.337 | −0.157 |
Livelihood diversification | −0.012 | 0.146 | 0.839 ** | −0.063 | −0.109 |
Soil and water conservation techniques | 0.709 ** | 0.241 | 0.166 | −0.270 | 0.048 |
Adjusting planting and harvesting dates | 0.705 ** | 0.195 | 0.068 | 0.081 | 0.191 |
Irrigation | 0.028 | 0.731 ** | −0.167 | −0.332 | −0.093 |
Reliance on climate information and forecasts | 0.282 | 0.574 ** | −0.079 | 0.099 | 0.203 |
Planting on the nursery | 0.072 | 0.011 | 0.046 | 0.030 | 0.929 ** |
Proper application of fertilizer | −0.031 | −0.122 | 0.679 ** | −0.019 | 0.338 |
Efficient and effective use of pesticide | 0.049 | 0.084 | −0.038 | 0.875 ** | 0.041 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Onyeneke, R.U.; Amadi, M.U.; Njoku, C.L.; Osuji, E.E. Climate Change Perception and Uptake of Climate-Smart Agriculture in Rice Production in Ebonyi State, Nigeria. Atmosphere 2021, 12, 1503. https://doi.org/10.3390/atmos12111503
Onyeneke RU, Amadi MU, Njoku CL, Osuji EE. Climate Change Perception and Uptake of Climate-Smart Agriculture in Rice Production in Ebonyi State, Nigeria. Atmosphere. 2021; 12(11):1503. https://doi.org/10.3390/atmos12111503
Chicago/Turabian StyleOnyeneke, Robert Ugochukwu, Mark Umunna Amadi, Chukwudi Loveday Njoku, and Emeka Emmanuel Osuji. 2021. "Climate Change Perception and Uptake of Climate-Smart Agriculture in Rice Production in Ebonyi State, Nigeria" Atmosphere 12, no. 11: 1503. https://doi.org/10.3390/atmos12111503
APA StyleOnyeneke, R. U., Amadi, M. U., Njoku, C. L., & Osuji, E. E. (2021). Climate Change Perception and Uptake of Climate-Smart Agriculture in Rice Production in Ebonyi State, Nigeria. Atmosphere, 12(11), 1503. https://doi.org/10.3390/atmos12111503