Dust Emission from Gobi under Different Dust Content Conditions: A Wind Tunnel Study atop the Mogao Grottoes
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Experimental Methods
2.3. Data Processing
3. Results
3.1. Relationship between and for Gobi with Different Dust Contents
3.2. Relationship between F and Gobi Dust Content (C)
4. Discussion
5. Conclusions
- (1)
- Wind force is the primary dynamic mechanism responsible for dust emission. The vertical dust flux F increases as a power function with the increasing under C of 27.3–47.3%. In addition, the power exponents range from 2.21 to 2.63, which increase with the surface dust content increase, resulting in the comparable n-value of the Gobi with the sand surface.
- (2)
- The surface dust content is an important factor in determining dust emission intensity. Under the same wind speed conditions, F increases exponentially with increases in surface dust content, and the vertical dust flux is significantly enhanced when the surface dust content reaches approximately 37%.
- (3)
- In near-surface conditions, friction velocity is more heavily weighed to the PM10 concentration than the surface dust content, according to the multiple regression analysis. In addition, with the increasing elevation, the weight coefficient of the friction velocity gradually increases.
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zhang, W.; Tan, L.; Zhang, G.; Qiu, F.; Zhan, H. Aeolian processes over gravel beds: Field wind tunnel simulation and its application atop the Mogao Grottoes, China. Aeolian Res. 2014, 15, 335–344. [Google Scholar] [CrossRef]
- Zhang, Z.C.; Pan, K.J.; Liang, A.M.; Dong, Z.B.; Li, X.C. Progress on Process and Mechanism of Sand and Dust Emission on Gobi. Adv. Earth Sci. 2019, 34, 891–900. (In Chinese) [Google Scholar] [CrossRef]
- Wang, X.; Xia, D.; Wang, T.; Xue, X.; Li, J. Dust sources in arid and semiarid China and southern Mongolia: Impacts of geomorphological setting and surface materials. Geomorphology 2008, 97, 583–600. [Google Scholar] [CrossRef]
- Zhang, Z.; Dong, Z.; Li, J.; Qian, G.; Jiang, C. Implications of surface properties for dust emission from gravel deserts (gobis) in the Hexi Corridor. Geoderma 2016, 268, 69–77. [Google Scholar] [CrossRef]
- Kok, J.F.; Parteli, E.J.R.; Michaels, T.I.; Karam, D.B. The physics of wind-blown sand and dust. Rep. Prog. Phys. 2012, 75, 106901. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bullard, J.E.; McTainsh, G.H.; Pudmenzky, C. Aeolian abrasion and modes of fine particle production from natural red dune sands: An experimental study. Sedimentology 2004, 51, 1103–1125. [Google Scholar] [CrossRef]
- Funk, R.; Reuter, H.I.; Hoffmann, C.; Engel, W.; Öttl, D. Effect of moisture on fine dust emission from tillage operations on agricultural soils. Earth Surf. Process. Landf. 2008, 33, 1851–1863. [Google Scholar] [CrossRef]
- Lin, X.; Niu, J.; Yu, X.; Berndtsson, R.; Wu, S.; Xie, S. Maize residue effects on PM2.5, PM10, and dust emission from agricultural land. Soil Tillage Res. 2021, 205, 104738. [Google Scholar] [CrossRef]
- Wang, R.-D.; Li, Q.; Zhang, C.-L.; Wang, Z.-T.; Guo, Z.-L.; Chang, C.-P.; Li, J.-F. Comparison of dust emission ability of sand desert, gravel desert (Gobi), and farmland in northern China. Catena 2021, 201, 105215. [Google Scholar] [CrossRef]
- Wang, X.; Zhang, C. Field observations of sand flux and dust emission above a gobi desert surface. J. Soils Sediments 2021, 21, 1815–1825. [Google Scholar] [CrossRef]
- Hidy, G.; Brock, J. An assessment of the global sources of tropospheric aerosols. Proc. Second. Int. Clean Air Congr. 1971, 71, 1088–1097. [Google Scholar]
- Wang, X.; Lang, L.; Hua, T.; Wang, H.; Zhang, C.; Wang, Z. Characteristics of the Gobi desert and their significance for dust emissions in the Ala Shan Plateau (Central Asia): An experimental study. J. Arid. Environ. 2012, 81, 35–46. [Google Scholar] [CrossRef]
- Zhang, Z.; Dong, Z.; Qian, G.; Wu, G.; Cui, X. An Investigation into the Processes and Quantity of Dust Emissions over Gravel and Sand Deserts in North-Western China. Bound.-Layer Meteorol. 2017, 163, 523–535. [Google Scholar] [CrossRef]
- Gillette, D.A. On the production of soil wind erosion aerosols having the potential for long range transport. J. Rech. Atmos. 1974, 8, 735–744. [Google Scholar]
- McTainsh, G.; Lynch, A.; Burgess, R. Wind erosion in eastern Australia. Soil Res. 1990, 28, 323–339. [Google Scholar] [CrossRef]
- Shao, Y.; Raupach, M.R.; Findlater, P.A. Effect of saltation bombardment on the entrainment of dust by wind. J. Geophys. Res. Space Phys. 1993, 98, 12719–12726. [Google Scholar] [CrossRef] [Green Version]
- Gillette, D. A wind tunnel simulation of the erosion of soil: Effect of soil texture, sandblasting, wind speed, and soil consolidation on dust production. Atmos. Environ. 1978, 12, 1735–1743. [Google Scholar] [CrossRef]
- Huang, N.; Gu, Y.D. Review of the mechanism of dust emission and deposition. Adv. Earth Sci. 2009, 24, 1175–1184. (In Chinese) [Google Scholar] [CrossRef]
- Afshar-Mohajer, N.; Torkian, A. Diffuse Emissions of Particles from Iron Ore Piles by Wind Erosion. Environ. Eng. Sci. 2011, 28, 333–339. [Google Scholar] [CrossRef]
- Wang, X.; Dong, Z.; Yan, P.; Yang, Z.; Hu, Z. Surface sample collection and dust source analysis in northwestern China. Catena 2005, 59, 35–53. [Google Scholar] [CrossRef]
- Rubinstein, A.; Ben-Hur, M.; Katra, I. Dust Emission Thresholds in Loess Soil Under Different Saltation Fluxes. Appl. Sci. 2020, 10, 5949. [Google Scholar] [CrossRef]
- Shen, Y.; Zhang, C.; Wang, R.; Wang, X.; Cen, S.; Li, Q. Spatial heterogeneity of surface sediment grain size and aeolian activity in the gobi desert region of northwest China. Catena 2020, 188, 104469. [Google Scholar] [CrossRef]
- Tan, L.H. Aeolian Sand/Dust Flux over Near-Surface Gobi: A Case Study Atop the Mogao Grottoes. Ph.D. Thesis, University of Chinese Academy of Sciences, Beijing, China, 2015. (In Chinese). [Google Scholar]
- Zhang, N.; Kang, Y.Q. Investigation and study of background values of natural atmospheric dustfall in Gansu Province. Gansu Environ. Study Monit. 1999, 12, 69–73. (In Chinese) [Google Scholar]
- Tan, L.; Zhang, W.; Qu, J.; Zhang, K.; An, Z.; Wang, X. Aeolian sand transport over gobi with different gravel coverages under limited sand supply: A mobile wind tunnel investigation. Aeolian Res. 2013, 11, 67–74. [Google Scholar] [CrossRef]
- Karman, T.V. Mechanische Ahnlichkeit und Turbulenz. Math.-Phys. Kl. 1930, 1930, 58–76. [Google Scholar]
- Zhang, J.; Teng, Z.; Huang, N.; Guo, L.; Shao, Y. Surface renewal as a significant mechanism for dust emission. Atmos. Chem. Phys. Discuss. 2016, 16, 15517–15528. [Google Scholar] [CrossRef] [Green Version]
- Rajot, J.L.; Alfaro, S.; Gomes, L.; Gaudichet, A. Soil crusting on sandy soils and its influence on wind erosion. Catena 2003, 53, 1–16. [Google Scholar] [CrossRef]
- Rice, M.A.; McEwan, I.K. Crust strength: A wind tunnel study of the effect of impact by saltating particles on cohesive soil surfaces. Earth Surf. Process. Landf. 2001, 26, 721–733. [Google Scholar] [CrossRef]
- Klose, M.; Gill, T.E.; Etyemezian, V.; Nikolich, G.; Zadeh, Z.G.; Webb, N.; Van Pelt, R.S. Dust emission from crusted surfaces: Insights from field measurements and modelling. Aeolian Res. 2019, 40, 1–14. [Google Scholar] [CrossRef]
- Chepil, W.; Woodruff, N. The Physics of Wind Erosion and its Control. Adv. Agron. 1963, 15, 211–302. [Google Scholar] [CrossRef]
- Bagnold, R.A. The Physics of Blown Sand and Desert Dunes; Springer: Dordrecht, The Netherlands, 1942. [Google Scholar]
- Dong, Z.B.; Qian, G.Q. A review on effect of soil moisture on wind erosion threshold velocity. Acta Pedol. Sin. 2007, 5, 934–942. (In Chinese) [Google Scholar] [CrossRef]
- Zhang, C.L.; Song, C.Q.; Wang, Z.T.; Zou, X.Y.; Wang, X.S. Review and prospect of the study on soil wind erosion process. Adv. Earth Sci. 2018, 33, 27–41. [Google Scholar] [CrossRef]
- Wang, R.D.; Li, Q.; Chang, C.P.; Guo, Z.L.; Li, J.F.; Zhang, C.L.; Zou, X.Y.; Wu, Y.S. Review of field measurement technologies in soil wind erosion. J. Desert. Res. 2019, 39, 16–32. [Google Scholar] [CrossRef]
- Shao, Y. Physics and Modelling of Wind Erosion; Springer Science & Business Media: Dordrecht, The Netherlands, 2009; pp. 145–192. [Google Scholar]
- Gillette, D.A.; Passi, R. Modeling dust emission caused by wind erosion. J. Geophys. Res. Space Phys. 1988, 93, 14233–14242. [Google Scholar] [CrossRef] [Green Version]
- Shen, Z.B.; Shen, Y.B.; Du, M.Y.; Wang, W.-F. Observational result of dust emission rate over sand surface of Gobi desert during dust storm. Plateau Meteor. 2003, 22, 545–550. (In Chinese) [Google Scholar]
- Tan, L.H.; Zhang, W.M.; Qu, J.J.; Yin, D.Y.; An, Z.S.; Bian, K. Quantitative simulation of erosion rates of Gobi, with different gravel coverages. J. Desert. Res. 2016, 36, 581–588. (In Chinese) [Google Scholar] [CrossRef]
- Stetler, L.; Saxton, K.E. Wind Erosion and PM10 Emissions from Agricultural Fields on the Columbia Plateau. Earth Surf. Process. Landf. 1996, 21, 673–685. [Google Scholar] [CrossRef]
- Songbo, C.; Chunlai, Z.; Dai, Z.H.; Xinyu, L.; Qing, L.; Yuhu, H. Characteristics of PM10 emission from farmland during a wind erosion event. J. Desert. Res. 2020, 40, 147–152. (In Chinese) [Google Scholar]
- Maurer, T.; Herrmann, L.; Stahr, K. Wind erosion characteristics of Sahelian surface types. Earth Surf. Process. Landf. 2010, 35, 1386–1401. [Google Scholar] [CrossRef]
- Webb, N.P.; Galloza, M.S.; Zobeck, T.M.; Herrick, J.E. Threshold wind velocity dynamics as a driver of aeolian sediment mass flux. Aeolian Res. 2016, 20, 45–58. [Google Scholar] [CrossRef]
- In, H.-J.; Park, S.-U. Estimation of Dust Emission Amount for a Dust Storm Event Occurred in April 1998 in China. Water Air Soil Pollut. 2003, 148, 201–221. [Google Scholar] [CrossRef]
- Mei, F.M.; Rajot, J.L.; Alfaro, S.C. Observation of dust release fluxes from Mauwusu sands and Field validation of the DEM model. Chin. Sci. Bull. 2006, 51, 1326–1332. [Google Scholar]
- Zheng, X.J.; Yue, G.W. Effect of earth surface temperature on saltation trajectories of sand particles. J. Appl. Mech. 2005, 22, 207–211. (In Chinese) [Google Scholar] [CrossRef]
- Lin, H.X.; Yue, G.W. Influence of the thermal diffusion of the sand-bed on the evolutive process of the wind-blown sand flux. Clim. Environ. Res. 2010, 15, 191–198. (In Chinese) [Google Scholar] [CrossRef]
Surface Dust Content | a | n | R2 |
---|---|---|---|
C = 27.3% | 4599.97 | 2.21 | 0.988 |
C = 32.3% | 5152.63 | 2.02 | 0.994 |
C = 37.3% | 7311.81 | 2.62 | 0.992 |
C = 42.3% | 9359.37 | 2.52 | 0.994 |
C = 47.3% | 14,372.43 | 2.63 | 0.974 |
Experimental Wind Velocities | a | b | R2 |
---|---|---|---|
10 m·s−1 | 0.028 | 1.31 | 0.978 |
12 m·s−1 | 501.19 | 1.06 | 0.944 |
15 m·s−1 | 745.54 | 1.07 | 0.973 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liang, L.; Zhang, W.; Tan, L.; Chen, S. Dust Emission from Gobi under Different Dust Content Conditions: A Wind Tunnel Study atop the Mogao Grottoes. Atmosphere 2021, 12, 1498. https://doi.org/10.3390/atmos12111498
Liang L, Zhang W, Tan L, Chen S. Dust Emission from Gobi under Different Dust Content Conditions: A Wind Tunnel Study atop the Mogao Grottoes. Atmosphere. 2021; 12(11):1498. https://doi.org/10.3390/atmos12111498
Chicago/Turabian StyleLiang, Linhao, Weimin Zhang, Lihai Tan, and Shuyi Chen. 2021. "Dust Emission from Gobi under Different Dust Content Conditions: A Wind Tunnel Study atop the Mogao Grottoes" Atmosphere 12, no. 11: 1498. https://doi.org/10.3390/atmos12111498
APA StyleLiang, L., Zhang, W., Tan, L., & Chen, S. (2021). Dust Emission from Gobi under Different Dust Content Conditions: A Wind Tunnel Study atop the Mogao Grottoes. Atmosphere, 12(11), 1498. https://doi.org/10.3390/atmos12111498