Co-Seismic Ionospheric Disturbance with Alaska Strike-Slip Mw7.9 Earthquake on 23 January 2018 Monitored by GPS
Abstract
:1. Introduction
2. Data and Methods
2.1. Earthquake Overview
2.2. Global Positioning System (GPS) Data
2.3. Solar Geomagnetic Data
2.4. Methodology
2.4.1. Building the Hysteresis Matrix
2.4.2. Decomposing Singular Values
2.4.3. Grouping
2.4.4. Establishing Diagonal Average
2.4.5. Obtaining the Disturbance Signal
2.4.6. Eliminating Noise
3. Results
3.1. Solar-Geomagnetic Activity Analysis
3.2. Total Electron Content (TEC) Anomalies Following the Alaska Earthquake
3.3. Velocity of Co-Seismic Ionospheric Disturbance (CID)
3.4. CID Direction Caused by Strike-Slip Fault
3.5. Change of CID Amplitudes
3.6. Determining the CID Source Location
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Leonard, R.S.; Barnes, R.A. Observation of ionospheric disturbances following the Alaska earthquake. J. Geophys. Res. 1965, 70, 1250–1253. [Google Scholar] [CrossRef]
- Davies, K.; Baker, D.M. Ionospheric effects observed around the time of the Alaskan earthquake of March 28, 1964. J. Geophys. Res. 1965, 70, 2251–2253. [Google Scholar] [CrossRef]
- Yuen, P.C.; Weaver, P.F.; Suzuki, R.K. Continuous traveling coupling between seismic waves and the ionosphere evident in May 1967 Japan earthquake data. J. Geophys. Res. 1969, 74, 2256–2264. [Google Scholar] [CrossRef]
- Occhipinti, G.; Dorey, P.; Farges, T. Nostradamus: The radar that wanted to be a seismometer. J. Geophys. Res. Lett. 2010, 37, L18104. [Google Scholar] [CrossRef]
- Liu, J.Y.; Tsai, Y.B.; Chen, S.W. Giant ionospheric disturbances excited by the M9.3 Sumatra earthquake of 26 December 2004. Geophys. Res. Lett. 2006, 33, L02103. [Google Scholar] [CrossRef] [Green Version]
- Calais, E.; Minster, J.B. GPS detection of ionospheric perturbations following the January 17, 1994, Northridge earthquake. Geophys. Res. Lett. 1995, 22, 1045–1048. [Google Scholar] [CrossRef]
- Sorokin, V.M.; Chmyrev, V.M.; Yaschenko, A.K. Theoretical model of DC electric field formation in the ionosphere stimulated by seismic activity. J. Atmos. Sol. Terr. Phys. 2005, 67, 1259–1268. [Google Scholar] [CrossRef]
- Maruyama, T.; Shinagawa, H.; Yusupov, K.; Akchurin, A. Sensitivity of ionosonde detection of atmospheric disturbances induced by seismic Rayleigh waves at different latitudes. Earth Planets Space 2017, 69, 20. [Google Scholar] [CrossRef] [Green Version]
- Bilitza, D.; Altadill, D.; Truhlik, V.; Shubin, V.; Galkin, I.; Reinisch, B.; Huang, X. International Reference Ionosphere 2016: From ionospheric climate to real-time weather predictions. Space Weather. 2017, 15, 418–429. [Google Scholar] [CrossRef]
- Yasyukevich, Y.V.; Zakharov, V.I.; Kunitsyn, V.E.; Voeikov, S.V. The Response of the Ionosphere to the Tohoku-Oki Earthquake of March 11, 2011 as Estimated by Different GPS-Based Methods. Geomagn. Aeron. 2015, 55, 108–117. [Google Scholar] [CrossRef]
- Astafyeva, E.; Heki, K.; Kiryushkin, V.; Afraimovich, E.; Shalimov, S. Two-mode long-distance propagation of coseismic ionosphere disturbances. J. Geophys. Res. Space 2009, 114, A10307. [Google Scholar] [CrossRef] [Green Version]
- Artru, J.; Lognonné, P.; Blanc, E. Normal modes modelling of post-seismic ionospheric oscillations. Geophys. Res. Lett. 2001, 28, 697–700. [Google Scholar] [CrossRef] [Green Version]
- Otsuka, Y.; Kotake, N.; Tsugawa, T.; Shiokawa, K.; Ogawa, T.; Komolmis, T. GPS detection of total electron content variations over Indonesia and Thailand following the 26 December 2004 earthquake. Earth Planets Space 2006, 58, 159–165. [Google Scholar] [CrossRef] [Green Version]
- Heki, K.; Ping, J. Directivity and apparent velocity of the coseismic ionospheric disturbances observed with a dense GPS array. Earth Planet. Sci. Lett. 2005, 236, 845–855. [Google Scholar] [CrossRef] [Green Version]
- Shi, K.; Liu, X.; Guo, J.; Liu, L.; You, X.; Wang, F. Pre-earthquake and coseismic ionosphere disturbances of the Mw6.6 Lushan Earthquake in 20 April 2013 monitored by CMONOC. Atmos. Basel. 2019, 10, 216. [Google Scholar]
- Liu, J.Y.; Tsai, Y.B.; Ma, K.F. Ionospheric GPS total electron content (TEC) disturbances triggered by the 26 December 2004 Indian Ocean tsunami. J. Geophys. Res. Space 2006, 111, A05303. [Google Scholar] [CrossRef] [Green Version]
- Garcia, R.; Crespon, F.; Ducic, V.; Lognonné, P. Three-dimensional ionospheric tomography of post-seismic perturbations produced by the Denali earthquake from GPS data. Geophys. J. Int. 2005, 163, 1049–1064. [Google Scholar] [CrossRef]
- Guo, J.; Li, W.; Yu, H.; Liu, Z.; Zhao, C.; Kong, Q. Impending ionospheric anomaly preceding the Iquique Mw8.2 earthquake in Chile on 2014 April 1. Geophys. J. Int. 2015, 203, 1461–1470. [Google Scholar] [CrossRef]
- Liu, J.Y.; Tsai, H.F.; Lin, C.H.; Kamogawa, M.; Chen, Y.I.; Huang, B.S.; Yu, S.B.; Yeh, Y.H. Coseismic ionospheric disturbances triggered by the Chi-Chi earthquake. J. Geophys. Res. Space 2010, 115, A08303. [Google Scholar] [CrossRef]
- Cahyadi, M.N.; Heki, K. Ionospheric disturbances of the 2007 Bengkulu and the 2005 Nias Earthquakes, Sumatra, observed with a regional GPS network. J. Geophys. Res. 2013, 118, 1777–1787. [Google Scholar] [CrossRef]
- Occhipinti, G.; Lognonné, P.; Kherani, E.A. Three-dimensional waveform modeling of ionospheric signature induced by the 2004 Sumatra tsunami. Geophys. Res. Lett. 2006, 33, L20104. [Google Scholar] [CrossRef] [Green Version]
- Ram, S.T.; Sunil, P.S.; Kumar, M.R.; Su, S.Y.; Tsai, L.C.; Liu, C.H. Coseismic traveling ionospheric disturbances during the Mw7.8 Gorkha, Nepal, earthquake on 25 April2015 from ground and space borne observations. J. Geophys. Res. Space 2017, 122, 10669–10685. [Google Scholar]
- Reddy, C.D.; Seemala, G.K. Two-mode ionospheric response and Rayleigh wave group velocity distribution reckoned from GPS measurement following Mw 7.8 Nepal earthquake on 25 April 2015. J. Geophys. Res. Space 2015, 120, 7049–7059. [Google Scholar] [CrossRef]
- Rolland, L.M.; Lognonné, P.; Astafyeva, E.; Kherani, E.A.; Kobayashi, N.; Mann, M.; Munekane, H. The resonant response of the ionosphere imaged after the 2011 off the Pacific coast of Tohoku Earthquake. Earth Planets Space 2011, 63, 853–857. [Google Scholar] [CrossRef] [Green Version]
- Occhipinti, G.; Rolland, L.; Lognonné, P.; Watada, S. From Sumatra 2004 to Tohoku-Oki 2011: The systematic GPS detection of the ionospheric signature induced by tsunamigenic earthquakes. J. Geophys. Res. Space 2013, 188, 3626–3636. [Google Scholar] [CrossRef]
- Ducic, V.; Artru, J.; Lognonné, P. Ionospheric remote sensing of the Denali earthquake Rayleigh surface waves. Geophys. Res. Lett. 2003, 30, 223–250. [Google Scholar] [CrossRef]
- Afraimovich, E.L.; Ding, F.; Kiryushkin, V.V.; Astafyeva, E.I.; Jin, S.; Sankov, V.A. TEC response to the 2008 Wenchuan Earthquake in comparison with other strong earthquakes. Int. J. Remote Sens. 2010, 31, 3601–3613. [Google Scholar] [CrossRef] [Green Version]
- Astafyeva, E.; Rolland, L.M.; Sladen, A. Strike-slip earthquakes can also be detected in the ionosphere. Earth Planet Sc. Lett. 2014, 405, 180–193. [Google Scholar] [CrossRef]
- Cahyadi, M.N.; Heki, K. Coseismic ionospheric disturbance of the large strike-slip earthquakes in North Sumatra in 2012: Mw dependence of the disturbance amplitudes. Geophys. J. Int. 2015, 200, 116–129. [Google Scholar] [CrossRef] [Green Version]
- Perevalova, N.P.; Sankov, V.A.; Astafyeva, E.I.; Zhupityaeva, A.S. Threshold magnitude for the ionospheric TEC response to earthquakes. J. Atmos. Sol. Terr. Phy. 2013, 108, 77–90. [Google Scholar] [CrossRef]
- Afraimovich, E.L.; Perevalova, N.P.; Plotnikov, A.V.; Uralov, A.M. The shock-acoustic waves generated by the earthquakes. Ann. Geophys. 2000, 19, 395–409. [Google Scholar] [CrossRef] [Green Version]
- Zheng, K.; Zhang, X.; Li, X.; Li, P.; Sang, J.; Ma, T. Capturing coseismic displacement in real time with mixed single- and dual-frequency receivers: Application to the 2018 Mw7.9 Alaska earthquake. Gps Solut. 2019, 23, 1. [Google Scholar] [CrossRef]
- Lay, T.; Ye, L.; Bai, Y. The 2018 Mw 7.9 Gulf of Alaska Earthquake: Multiple Fault Rupture in the Pacific Plate. Geophys. Res. Lett. 2018, 45, 9542–9551. [Google Scholar] [CrossRef]
- Wen, Y.; Guo, Z.; Xu, C. Coseismic and postseismic deformation associated with the 2018 Mw 7.9 Kodiak, Alaska, earthquake from low-rate and high-rate GPS observations. B. Seism. Soc. Am. 2019, 109, 908–918. [Google Scholar] [CrossRef]
- Li, W.; Yue, J.P.; Guo, J.Y. Statistical seismo-ionospheric precursors of M7.0+ earthquakes in Circum-Pacific seismic belt by GPS TEC measurements. Adv. Space Res. 2017, 61, 1206–1219. [Google Scholar] [CrossRef]
- Song, Q.; Ding, F.; Wan, W.X.; Ning, B.Q. Statistical study of large-scale traveling ionospheric disturbances generated by the solar terminator over China. J. Geophys. Res. Space 2013, 118, 4583–4593. [Google Scholar] [CrossRef]
- Tsai, H.F.; Liu, J.Y. Ionospheric total electron content response to solar eclipse. J. Geophys. Res. 1999, 104, 12657–12668. [Google Scholar] [CrossRef]
- Astafyeva, E.; Heki, K. Vertical TEC over seismically active region during low solar activity. J. Atmos. Terr. Phys. 2011, 73, 1643–1652. [Google Scholar] [CrossRef] [Green Version]
- Guo, J.; Shi, K.; Liu, X.; Sun, Y.; Li, W.; Kong, Q. Singular spectrum analysis of ionospheric anomalies preceding great earthquakes: Case studies of Kaikoura and Fukushima earthquakes. J. Geodyn. 2019, 124, 1–13. [Google Scholar] [CrossRef]
- Vautard, R.; Yiou, P.; Ghil, M. Singular-spectrum analysis: A toolkit for short, noisy chaotic signals. Phys. D Nonlinear Phenom. 1992, 58, 95–126. [Google Scholar] [CrossRef]
- Hassani, H.H. Singular spectrum analysis: Methodology and comparison. J. Data Sci. 2007, 5, 239–257. [Google Scholar]
- Shen, Y.; Guo, J.; Liu, X.; Kong, Q.; Guo, L.; Li, W. Long-term prediction of polar motion using a combined SSA and ARMA model. J. Geod. 2017, 92, 333–343. [Google Scholar] [CrossRef]
- Elsner, J.B. Analysis of time series structure: SSA and related techniques. J. Am. Stat. Assoc. 2001, 97, 1207–1208. [Google Scholar] [CrossRef]
- Shen, Y.; Guo, J.; Liu, X.; Wei, X.B.; Li, W. One hybrid model combining singular spectrum analysis and LS+ARMA for polar motion prediction. Adv. Space Res. 2017, 59, 513–523. [Google Scholar] [CrossRef]
- Liu, Y.; Jin, S. Ionospheric Rayleigh wave disturbances following the 2018 Alaska earthquake from GPS observations. Remote Sens. (Basel) 2019, 11, 901. [Google Scholar] [CrossRef] [Green Version]
- Juliette, A.; Thomas, F.; Philippe, L. Acoustic waves generated from seismic surface waves: Propagation properties determined from Doppler sounding observations and normal mode modeling. Geophys. J. Int. 2004, 158, 1067–1077. [Google Scholar]
- Saito, A. Acoustic resonance and plasma depletion detected by GPS total electron content observation after the 2011 off the Pacific coast of Tohoku earthquake. Earth Planets Space 2011, 63, 863–867. [Google Scholar] [CrossRef] [Green Version]
- Nishida, K.; Kiwamu, N.; Kobayashi, Y. Resonant oscillations between the solid earth and the atmosphere. Science 2011, 287, 2242–2246. [Google Scholar] [CrossRef]
- Kunitsyn, V.E.; Nesterov, I.A.; Shalimov, S.L. Japan megathrust earthquake on March 11, 2011: GPS-TEC evidence for ionospheric disturbances. JETP Lett. 2017, 94, 616–620. [Google Scholar] [CrossRef]
- Jin, R.; Li, D.; Jin, S. GPS detection of ionospheric Rayleigh wave and its source following the 2012 Haida Gwaii earthquake. J. Geophys. Res. Space 2017, 122, 1360–1372. [Google Scholar] [CrossRef]
- Jin, S.; Jin, R.; Li, J. Pattern and evolution of seismo-ionospheric disturbances following the 2011 Tohoku earthquakes from GPS observations. J. Geophys. Res. Space 2014, 119, 7914–7927. [Google Scholar] [CrossRef] [Green Version]
- Walsh, J.B. Seismic wave attenuation in rock due to friction. J. Geophys. Res. 1966, 71, 2591–2599. [Google Scholar] [CrossRef]
- Johnston, D.H.; Toksoz, M.N.; Timur, A. Attenuation of seismic waves in dry and saturated rocks: II. Mechanisms. Geophysics 1979, 44, 691–711. [Google Scholar] [CrossRef]
- Mitchell, B.J. Anelastic structure and evolution of continental crust and upper mantle from seismic surface wave attenuation. Rev. Geophys. 1995, 33, 441–462. [Google Scholar] [CrossRef]
- Heki, K. Ionospheric electron enhancement preceding the 2011 Tohoku-Oki earthquake. Geophys. Res. Lett. 2011, 38, L17312. [Google Scholar] [CrossRef] [Green Version]
- Liu, J.Y.; Chen, C.H.; Sun, Y.Y.; Chen, C.H.; Tsai, H.F.; Yen, H.Y.; Chum, J.; Lastovicka, J.; Yang, Q.S.; Chen, W.S.; et al. The vertical propagation of disturbances triggered by seismic waves of the 11 March 2011 M9.0 Tohoku earthquake over Taiwan. Geophys. Res. Lett. 2016, 43, 1759–1765. [Google Scholar] [CrossRef] [Green Version]
- Matsumura, M.; Saito, A.; Iyemori, T.; Shinagawa, H.; Tsugawa, T.; Otsuka, Y. Numerical simulations of atmospheric waves excited by the 2011 off the Pacific coast of Tohoku Earthquake. Earth Planets Space 2011, 63, 885–889. [Google Scholar] [CrossRef] [Green Version]
- Astafyeva, E.; Shalimov, S.; Olshanshaya, E.; Lognonné, P. Ionospheric response to earthquakes of different magnitudes: Larger quakes perturb the ionosphere stronger and longer. Geophys. Res. Lett. 2013, 40, 1675–1681. [Google Scholar] [CrossRef] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, Y.; Liu, X.; Guo, J.; Shi, K.; Zhou, M.; Wang, F. Co-Seismic Ionospheric Disturbance with Alaska Strike-Slip Mw7.9 Earthquake on 23 January 2018 Monitored by GPS. Atmosphere 2021, 12, 83. https://doi.org/10.3390/atmos12010083
Zhang Y, Liu X, Guo J, Shi K, Zhou M, Wang F. Co-Seismic Ionospheric Disturbance with Alaska Strike-Slip Mw7.9 Earthquake on 23 January 2018 Monitored by GPS. Atmosphere. 2021; 12(1):83. https://doi.org/10.3390/atmos12010083
Chicago/Turabian StyleZhang, Yongming, Xin Liu, Jinyun Guo, Kunpeng Shi, Maosheng Zhou, and Fangjian Wang. 2021. "Co-Seismic Ionospheric Disturbance with Alaska Strike-Slip Mw7.9 Earthquake on 23 January 2018 Monitored by GPS" Atmosphere 12, no. 1: 83. https://doi.org/10.3390/atmos12010083
APA StyleZhang, Y., Liu, X., Guo, J., Shi, K., Zhou, M., & Wang, F. (2021). Co-Seismic Ionospheric Disturbance with Alaska Strike-Slip Mw7.9 Earthquake on 23 January 2018 Monitored by GPS. Atmosphere, 12(1), 83. https://doi.org/10.3390/atmos12010083