Temporal Variability of Equivalent Black Carbon Components in Atmospheric Air in Southern Poland
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Instrumentation and Data Sources
2.3. Aethalometer AE33
2.4. Data Processing and Statistical Analyses
3. Results and Discussion
3.1. Diurnal Variations of eBC Concentrations
3.2. Daily Variations of eBC—A Seasonal Behavior
3.3. eBC Concentrations vs. Gaseous Pollution and PM10
3.4. eBC Concentrations vs. Meteorological Parameters
3.5. BC Concentrations vs. Air Circulation
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Balakrishnaiah, G.; Ragjavendra Kumar, K.; Suresh Kumar Reddy, B.; Swamulu, C.; Rama Gopal, K.; Reddy, R.R.; Reddy, L.S.S.; Nazeer Ahammed, Y.; Narasimhulu, K.; KrishnaMoorthy, K.; et al. Anthropogenic impact on the temporal variations of black carbon and surface aerosol mass concentrations at a tropical semi-arid station in southeastern region of India. J. Asia Earth Sci. 2011, 42, 1297–1308. [Google Scholar] [CrossRef]
- Bond, T.C.; Doherty, S.J.; Fahey, D.W.; Forster, P.M.; Berntsen, T.; DeAngelo, B.J.; Flanner, M.G.; Ghan, S.; Kärcher, B.; Koch, D.; et al. Bounding the role of black carbon in the climate system: A scientific assessment. J. Geophys. Res. Atmos. 2013, 118, 5380–5552. [Google Scholar] [CrossRef]
- IPCC. Climate Change 2014: Synthesis Report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Core Writing Team; Pachauri, R.K., Meyer, L.A., Eds.; IPCC: Geneva, Switzerland, 2014; p. 151. [Google Scholar]
- Sandrini, S.; Fuzzi, S.; Piazzalunga, A.; Prati, P.; Bonasoni, P.; Cavalli, F.; Bove, M.C.; Calvello, M.; Cappelletti, D.; Colombi, C.; et al. Spatial and seasonal variability of carbonaceous aerosol across Italy. Atmos. Environ. 2014, 99, 587–598. [Google Scholar] [CrossRef]
- Maciejewska, K.; Juda-Rezler, K.; Reizer, M.; Klejnowski, K. Modelling of black carbon statistical distribution and return periods of extreme concentrations. Environ. Model. Softw. 2015, 74, 212–226. [Google Scholar] [CrossRef]
- Gelencsér, A. Major Carbonaceous Particle Types and Their Sources. Available online: https://link.springer.com/chapter/10.1007/978-1-4020-2887-8_3 (accessed on 14 January 2021).
- Błaszczak, B.; Mathews, B. Characteristics of Carbonaceous Matter in Aerosol from Selected Urban and Rural Areas of Southern Poland. Atmosphere 2020, 11, 687. [Google Scholar] [CrossRef]
- Rechman, I.H.; Ahmed, T.; Praveen, P.S.; Kar, A.; Ramanathan, V. Black carbon emissions from biomass and fossil fuels in rural India. Atmos. Chem. Phys. 2011, 11, 7289–7299. [Google Scholar] [CrossRef] [Green Version]
- Lonati, G.; Ozgen, S.; Ripamonti, G.; Signorini, S. Variability of black carbon and ultrafine particle concentration on urban bike routes in a mid-sized city in the Po Valley (northern Italy). Atmosphere 2017, 8, 40. [Google Scholar] [CrossRef] [Green Version]
- Saturno, J.; Holanda, B.A.; Pöhlker, C.; Ditas, F.; Wang, Q.; Moran-Zuloaga, D.; Brito, J.; Carbone, S.; Cheng, Y.; Chi, X.; et al. Black and brown carbon over central Amazonia: Long-term aerosol measurements at the ATTO site. Atmos. Chem. Phys. 2018, 18, 12817–12843. [Google Scholar] [CrossRef] [Green Version]
- Laing, J.R.; Jaffe, D.A.; Sedlacek, A.J., III. Comparison of Filter-based Absorption Measurements of Biomass Burning Aerosol and Background Aerosol at the Mt. Bachelor Observatory. Aerosol. Air Qual. Res. 2020, 20, 663–678. [Google Scholar]
- Kirchstetter, T.W.; Novakov, T.; Hobbs, P.V. Evidence that the spectral dependence of light absorption by aerosols is affected by organic carbon. J. Geophys. Res. 2004, 109, D21208. [Google Scholar] [CrossRef] [Green Version]
- Andreae, M.O.; Gelencser, A. Black carbon or brown carbon? The nature of light-absorbing carbonaceous aerosols. Atmos. Chem. Phys. 2006, 6, 3131–3148. [Google Scholar] [CrossRef] [Green Version]
- Saleh, R.; Hennigan, C.J.; McMeeking, G.R.; Chuang, W.K.; Robinson, E.S.; Coe, H.; Donahue, N.M.; Robinson, A.L. Absorptivity of brown carbon in fresh and photo-chemically aged biomass-burning emissions. Atmos. Chem. Phys. 2013, 13, 7683–7693. [Google Scholar] [CrossRef] [Green Version]
- European Environment Agency. Status of Black Carbon Monitoring in Ambient Air in Europe. Available online: https://www.eea.europa.eu/publications/status-of-black-carbon-monitoring (accessed on 14 January 2021).
- IPCC. Climate Change 2007: Synthesis Report. Contribution of Working Groups I, II and III to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change; Core Writing Team; Pachauri, R.K., Reisinger, A., Eds.; IPCC: Geneva, Switzerland, 2007; p. 104. [Google Scholar]
- EPA. Report to Congress on Black Carbon, Department of the Interior, Environment, and Related Agencies Appropriations Act; EPA-450/R-12-001 March 2012; US Environmental Protection Agency: Washington, DC, USA, 2010.
- Dutkiewicz, V.; DeJulio, A.M.; Ahmed, T.; Laing, J. Forty-seven Years of Weekly Atmospheric Black Carbon Measurements in the Finnish Artic: Decrease in Black Carbon with Declining Emissions. J. Geophys. Res. Atmos. 2014, 119, 7667–7683. [Google Scholar] [CrossRef] [Green Version]
- Li, C.; Yan, F.; Kang, S.; Chen, P.; Han, X.; Hu, Z.; Zhang, G.; Hong, Y.; Gao, S.; Qu, B.; et al. Re-evaluating black carbon in the Himalayas and the Tibetan Plateau: Concentrations and deposition. Atmos. Chem. Phys. 2017, 17, 11899–11912. [Google Scholar] [CrossRef] [Green Version]
- Chýlek, P.; Kou, L.; Johnson, B.; Boudala, F.; Lesins, G. Black carbon concentrations in precipitation and near surface air in and near Halifax, Nova Scotia. Atmos. Environ. 1999, 33, 2269–2277. [Google Scholar] [CrossRef]
- Cao, J.-J.; Zhu, C.-S.; Chow, J.C.; Watson, J.G.; Han, Y.-M.; Wang, G.-H.; Shen, Z.-X.; An, Z.-S. Black carbon relationships with emissions and meteorology in Xi’an, China. Atmos. Res. 2009, 94, 194–202. [Google Scholar] [CrossRef]
- Tiwari, S.; Srivastava, A.K.; Bisht, D.S.; Parmita, P.; Srivastava, M.K.; Attri, S.D. Diurnal and seasonal variations of black carbon and PM2.5 over New Delhi, India: Influence of meteorology. Atmos. Res. 2013, 125–126, 50–62. [Google Scholar] [CrossRef]
- Simpson, D.; Yttri, K.E.; Klimont, Z.; Kupiainen, K.; Caseiro, A.; Gelencsér, A.; Pio, C.; Puxbaum, H.; Legrand, M. Modeling carbonaceous aerosol over Europe: Analysis of the CARBOSOL and EMEP EC/OC campaigns. J. Geophys. Res. 2007, 112, 1–26. [Google Scholar] [CrossRef]
- Kanaya, Y.; Taketani, F.; Komazaki, Y.; Liu, X.; Kondo, Y.; Sahu, L.K.; Irie, H.; Takashima, H. Comparison of Black Carbon Mass Concentrations Observed by Multi-Angle Absorption Photometer (MAAP) and Continuous Soot-Monitoring System (COSMOS) on Fukue Island and in Tokya, Japan. Aerosol Sci. Technol. 2013, 47, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Bauer, S.E.; Bausch, A.; Nazarenko, L.; Tsigardis, K.; Xu, B.; Edwards, R.; Bisiaux, M.; McConnell, J. Historical and future black carbon deposition on the three ice caps: Ice core measurements and model simulations from 1850 to 2100. J. Geophys. Res. Atmos. 2013, 118, 1–14. [Google Scholar] [CrossRef] [Green Version]
- Forbes, M.S.; Raison, R.J.; Skjemstad, J.O. Formation, transformation and transport of black carbon (charcoal) in terrestrial and aquatic ecosystems. Sci. Total Environ. 2006, 370, 190–206. [Google Scholar] [CrossRef]
- Magalhaes, S.; Baumgartner, J.; Weichenthal, S. Impacts of exposure to black carbon, elemental carbon, and ultrafine particles from indoor and outdoor sources on blood pressure in adults: A review of epidemiological evidence. Environ. Res. 2018, 161, 345–353. [Google Scholar] [CrossRef] [PubMed]
- Wichmann, H.-E.; Spix, C.; Tuch, T.; Wölke, G.; Peters, A.; Heinrich, J.; Kreyling, W.G.; Heyder, J. Daily Mortality and Fine and Ultrafine Particles in Erfurt, Germany, Part I: Role of Particle Number and Particle Mass, Research Report; Health Effects Institute: Boston, United States, 2000; Volume 98, pp. 5–86. [Google Scholar]
- Arden Pope, C., III; Dockery, D.W. Health Effects of Fine Particulate Air Pollution: Lines that Connect. J. Air Waste Manag. Assoc. 2006, 56, 709–742. [Google Scholar] [CrossRef] [PubMed]
- Torres, A.; Bond, T.C.; Lehmann, C.M.B.; Subramanian, R.; Hadley, O.L. Measuring Organic Carbon and Black Carbon in Rainwater: Evaluation of Methods. Aerosol Sci. Technol. 2014, 48, 239–250. [Google Scholar] [CrossRef]
- Smart Freight Centre. Black Carbon Methodology for the Logistics Sector. Available online: https://ctl.mit.edu/pub/paper/black-carbon-methodology-logistics-sector (accessed on 14 January 2021).
- Helin, A.; Niemi, J.V.; Virkkula, A.; Pirjola, L.; Teinilä, K.; Backman, J.; Aurela, M.; Saarikoski, S.; Rönkkö, T.; Asmi, E.; et al. Characteristics and source apportionment of black carbon in the Helsinki metropolitan area. Finland. Atmos. Environ. 2018, 190, 87–98. [Google Scholar] [CrossRef]
- Klimont, Z.; Kupiainen, K.; Heyes, C.; Purohit, P.; Cofala, J.; Rafaj, P.; Borken-Kleefeld, J.; Schöpp, W. Global anthropogenic emissions of particulate matter including black carbon. Atmos. Chem. Phys. 2017, 17, 8681–8723. [Google Scholar] [CrossRef] [Green Version]
- Berkowicz, R.; Hertel, O.; Larsen, S.E.; Sørensen, N.N.; Nielsen, M. Modelling Traffic Pollution in Streets; National Environmental Research Institute: Roskilde, Denmark, 1997. [Google Scholar]
- Gulia, S.; Nagendra, S.M.S.; Khare, M.; Khanna, I. Urban air quality management—A review. Atmos. Pollut. Res. 2015, 6, 286–304. [Google Scholar] [CrossRef] [Green Version]
- Grundstrom, M.; Tang, L.; Hallquist, M.; Nguyen, H.; Chen, D.; Pleijel, H. Influence of atmospheric circulation patterns on urban air quality during the winter. Atmos. Pollut. Res. 2015, 6, 278–285. [Google Scholar] [CrossRef] [Green Version]
- Briggs, N.L.; Long, C.M. Critical review of black carbon and elemental carbon source apportionment in Europe and the United States. Atmos. Environ. 2016, 144, 409–427. [Google Scholar] [CrossRef]
- Invernizzi, G.; Ruprecht, A.; Mazza, R.; De Marco, C.; Močnik, G.; Sioutas, C.; Westerdahl, D. Measurement of black carbon concentration as an indicator of air qualitybenefits of traffic restriction policies within the ecopass zone in Milan. Italy. Atmos. Environ. 2011, 45, 3522–3527. [Google Scholar] [CrossRef]
- Titos, G.; Lyamani, H.; Drinovec, L.; Olmo, F.J.; Močnik, G.; Alados-Arboledas, L. Evaluation of the impact of transportation changes on air quality. Atmos. Environ. 2015, 114, 19–31. [Google Scholar] [CrossRef]
- Ježek, I.; Blond, N.; Skupinski, G.; Močnik, G. The traffic emission-dispersion model for a Central-European city agrees with measured black carbon apportioned to traffic. Atmosp. Environ. 2018, 184, 177–190. [Google Scholar] [CrossRef]
- Herich, H.; Hueglin, C.; Buchmann, B. A 2.5 year’s source apportionment study of black carbon from wood burning and fossil fuel combustion at urban and rural sites in Switzerland. Atmos. Meas. Tech. 2011, 4, 1409–1420. [Google Scholar] [CrossRef] [Green Version]
- Schleicher, N.; Cen, K.; Norra, S. Daily variations of black carbon and element concentrations of atmospheric particles in the Beijing megacity—Part 1: General temporal course and source identification. Chemie der Erde 2013, 73, 51–60. [Google Scholar] [CrossRef]
- Crilley, L.R.; Bloss, W.J.; Yin, J.; Beddows, D.C.S.; Harrison, R.M.; Allan, J.D.; Young, D.E.; Flynn, M.; Williams, P.; Zotter, P.; et al. Sources and contributions of wood smoke during winter in London: Assessing local and regional influences. Atmos. Chem. Phys. 2015, 15, 3149–3171. [Google Scholar] [CrossRef] [Green Version]
- Becerril-Valle, M.; Coz, E.; Prévôt, A.; Močnik, G.; Pandis, S.; de la Campa, A.S.; Alastuey, A.; Díaz, E.; Pérez, R.; Artíñano, B. Characterization of atmospheric black carbon and co-pollutants in urban and rural areas of Spain. Atmos. Environ. 2017, 169, 36–53. [Google Scholar] [CrossRef]
- Healy, R.; Sofowote, U.; Su, Y.; Debosz, J.; Noble, M.; Jeong, C.-H.; Wang, J.; Hilker, N.; Evans, G.; Doerksen, G. Ambient measurements and source apportionment of fossil fuel and biomass burning black carbon in Ontario. Atmos. Environ. 2017, 161, 34–47. [Google Scholar] [CrossRef]
- Juda-Rezler, K.; Reizer, M.; Maciejewska, K.; Błaszczak, B.; Klejnowski, K. Characterization of atmospheric PM2.5sources at a Central Europeanurban background site. Sci. Total Environ. 2020, 713, 136729. [Google Scholar] [CrossRef]
- Commission Directive. Directive 2008/50/EC of the European Parliament and Council of 21.05.2008 on Air Quality and Cleaner Air in Europe. Available online: http://extwprlegs1.fao.org/docs/pdf/eur80016.pdf (accessed on 14 January 2021).
- Chief Inspectorate of Environmental Protection. Air Quality Portal. Available online: http://powietrze.gios.gov.pl/pjp/current?lang=en (accessed on 20 September 2018).
- Niedźwiedź, T. Calendar of Atmosphere Circulation Types for Southern Poland—Computer Collection; University of Silesia, Department of Climatology: Sosnowiec, Poland, 2017. [Google Scholar]
- Lamb, H.H. British Isles Weather Types and a Register of Daily Sequence of Circulation Patterns, 1861–1971; Geophysical Memoir, 116; HMSO: London, UK, 1972; p. 85. [Google Scholar]
- Petzold, A.; Schloesser, H.; Sheridan, P.J.; Arnott, W.P.; Ogren, J.A.; Virkkula, A. Evaluation of Multiangle Absorption Photometry for Measuring Aerosol Light Absorption. Aerosol Sci. Technol. 2005, 39, 40–51. [Google Scholar] [CrossRef] [Green Version]
- Drinovec, L.; Močnik, G.; Zotter, P.; Prévôt, A.S.H.; Ruckstuhl, C.; Coz, E.; Rupakheti, M.; Sciare, J.; Müller, T.; Wiedensohler, A.; et al. The “dual-spot” Aethalometer: An improved measurement of aerosol black carbon with real-time loading compensation. Atmos. Meas. Tech. 2015, 8, 1965–1979. [Google Scholar] [CrossRef] [Green Version]
- Sedlacek, A.J. AethalometerTM Instrumental Handbook; DOE/SC-ARM-TR-156; ARM Climate Research Facility: Billings, MT, USA, 2016.
- Magee Scientific. Magee Scientific Aerosol d.o.o, Aethalometer Model AE33 User’s Manual. Available online: https://www.benchmarkmonitoring.com.au/sites/default/files/documents/AE33_UsersManual_Rev154.pdf (accessed on 14 January 2021).
- Liu, D.; He, C.; Schwarz, J.P.; Wang, X. Lifecycle of light-absorbing carbonaceous aerosols in the atmosphere. Clim. Atmos. Sci. 2020, 3, 40. [Google Scholar] [CrossRef]
- Hoffer, A.; Tóth, A.; Pósfai, M.; Chung, C.E.; Gelencsér, A. Brown carbon absorption in the red and near infrared spectral region. Atmos. Chem. Phys. Discuss. 2016. [Google Scholar] [CrossRef]
- Sandradewi, J.; Prévôt, A.S.H.; Alfarra, M.R.; Szidat, S.; Wehrli, M.N.; Ruff, M.; Weimer, S.; Lanz, V.A.; Weingartner, E.; Perron, N.; et al. Comparison of several wood smoke markers and source apportionment methods for wood burning particulate mass. Atmos. Chem. Phys. 2008, 8, 8091–8118. [Google Scholar] [CrossRef] [Green Version]
- Belis, C.A.; Larsen, B.R.; Amati, F.; Haddad, I.E.; Favez, O.; Harrison, R.M.; Hopke, P.K.; Nava, S.; Paatero, P.; Prévôt, A.; et al. European Guide on Air Pollution Source Apportionment with Receptor Models. Available online: https://ec.europa.eu/jrc/en/publication/reference-reports/european-guide-air-pollution-source-apportionment-receptor-models (accessed on 14 January 2021).
- Zotter, P.; Herich, H.; Gysel, M.; El-Haddad, I.; Zgang, Y.; Močnik, G.; Hüglin, C.; Baltensperger, U.; Szidat, S.; Prévôt, A.S.H. Evaluation of the absorption Ångström exponents for traffic and wood burning in the Aethalometer-based source apportionment using radiocarbon measurements of ambient aerosol. Atmos. Chem. Phys. 2017, 17, 4229–4249. [Google Scholar] [CrossRef] [Green Version]
- Harrison, R.M.; Beddows, D.C.S.; Hu, L.; Yin, J. Comparison of methods for evaluation of wood smoke and estimation of UK ambient concentrations. Atmos. Chem. Phys. Discuss. 2012, 12, 6805–6838. [Google Scholar] [CrossRef]
- Petzold, A.; Baltensperger, U.; Holzer-Popp, T.; Pappalardo, G. Recommendations for reporting “black carbon” measurements. Atmos. Chem. Phys. 2013, 13, 8365–8379. [Google Scholar] [CrossRef] [Green Version]
- Innocente, E.; Squizzato, S.; Visin, F.; Facca, C.; Rampazzo, G.; Bertolini, V.; Gandolfi, I.; Franzetti, A.; Ambrosini, R.; Bestetti, G. Influence of seasonality, air mass origin and particulate matter chemical composition on airborne bacterial community structure in the Po Valley, Italy. Sci. Total Environ. 2017, 593–594, 677–687. [Google Scholar] [CrossRef] [PubMed]
- Srivastava, D.; Favez, O.; Bonnaire, N.; Lucarelli, F.; Haeffelin, M.; Perraudin, E.; Gros, V.; Villenave, E.; Albinet, A. Speciation of organic fractions does matter for aerosol source apportionment. Part 2: Intensive short-term campaign in the Paris area (France). Sci. Total Environ. 2018, 634, 267–278. [Google Scholar] [CrossRef] [PubMed]
- Bandowe, B.A.M.; Nkansah, M.A.; Leimer, S.; Fischer, D.; Lammel, G.; Han, Y. Chemical (C, N, S, black carbon) and stable isotope composition of street dusts from a major West African metropolis: Implications for source apportionment and exposure. Sci. Total Environ. 2019, 655, 1468–1478. [Google Scholar] [CrossRef]
- Gong, W.; Zhang, T.; Zhu, Z.; Ma, Y. Characteristics of PM1.0, PM2.5, and PM10, and Their Relation to Black Carbon in Wuhan, Central China. Atmosphere 2015, 6, 1377–1387. [Google Scholar] [CrossRef] [Green Version]
- Jones, A.M.; Harrison, R.M. Interpretation of particulate elemental andorganic carbon concentrations at rural, urban andkerbside sites. Atmos. Environ. 2005, 39, 7114–7126. [Google Scholar] [CrossRef]
- Guo, B.; Wang, Y.; Zhang, X.; Che, H.; Ming, J.; Yi, Z. Long-Term Variation of Black Carbon Aerosol in China Based on Revised Aethalometer Monitoring Data. Atmosphere 2020, 11, 684. [Google Scholar] [CrossRef]
- Rattigan, O.V.; Civerolo, K.; Doraiswamy, P.; Felton, H.D.; Hopke, P.K. Long term Black Carbon Measurements at Two Urban Locations in New York. AAQR. 2013, 13, 1181–1196. [Google Scholar] [CrossRef] [Green Version]
- Tian, J.; Fang, C.; Qiu, J.; Wang, J. Analysis of Pollution Characteristics and Influencing Factors of Main Pollutants in the Atmosphere of Shenyang City. Atmosphere 2020, 11, 766. [Google Scholar] [CrossRef]
- Järvi, L.; Junninen, H.; Karppinen, A.; Hillamo, R.; Virkkula, A.; Mäkelä, T.; Pakkanen, T.; Kulmala, M. Temporal variations in black carbon concentrations with different time scales in Helsinki during 1996–2005. Atmos. Chem. Phys. 2008, 8, 1017–1027. [Google Scholar] [CrossRef] [Green Version]
- Saarnio, K.; Teinilä, K.; Saarikoski, S.; Carbone, S.; Gilardoni, S.; Timonen, H.; Aurela, M.; Hillamo, R. Online determination of levoglucosan in ambient aerosols with particle-into-liquid sampler–high-performance anion-exchange chromatography–mass spectrometry (PILS–HPAEC–MS). Atmos. Meas. Tech. 2013, 6, 2839–2849. [Google Scholar] [CrossRef] [Green Version]
- Pérez, N.; Pey, J.; Cusack, M.; Reche, C.; Querol, X.; Alastuey, A.; Viana, M. Variability of Particle Number, Black Carbon, and PM10, PM2.5, and PM1 Levels and Speciation: Influence of Road Traffic Emissions on Urban Air Quality. Aerosol Sci. Technol. 2010, 44, 487–499. [Google Scholar] [CrossRef]
- Kucbel, M.; Corsaro, A.; Švédová, B.; Raclavská, H.; Raclavský, K.; Juchelková, D. Temporal and seasonal variations of black carbon in a highly polluted European city: Apportionment of potential sources and the efect of meteorological conditions. J. Environ. Manag. 2017, 203, 1178–1189. [Google Scholar] [CrossRef]
- Kuzu, S.L.; Yavuz, E.; Akyüz, E.; Saral, A.; Akkoyunlu, B.O.; Özdemir, H.; Demir, G.; Ünal, A. Black carbon and size-segregated elemental carbon, organic carbon compositions in a megacity: A case study for Istanbul. Air Qual. Atmos. Health 2020, 13, 827–837. [Google Scholar] [CrossRef]
- Sharma, R.K.; Bhattarai, B.K.; Sapkota, B.K.; Gewali, M.B.; Kjeldstad, M.B. Black carbon aerosols variation in Kathmandu valley. Nepal. Atmos. Environ. 2012, 63, 282–288. [Google Scholar] [CrossRef]
- Fuller, G.W.; Tremper, A.H.; Baker, T.D.; Yttri, K.E.; Butterfield, D. Contribution of wood burning to PM 10 in London. Atmos. Environ. 2014, 87, 87–94. [Google Scholar] [CrossRef] [Green Version]
- Diapouli, E.; Kalogridis, A.-C.; Markantonaki, C.; Vratolis, S.; Fetfatzis, P.; Colombi, C.; Eleftheriadis, K. Annual Variability of Black Carbon Concentrations Originating from Biomass and Fossil Fuel Combustion for the Suburban Aerosol in Athens, Greece. Atmosphere 2017, 8, 234. [Google Scholar] [CrossRef] [Green Version]
- Martinsson, J.; Abdul Azeem, H.; Sporre, M.K.; Bergström, R.; Ahlberg, E.; Öström, E.; Kristensson, A.; Swietlicki, E.; Eriksson Stenström, K. Carbonaceous aerosol source apportionment using the Aethalometer model–evaluation by radiocarbon and levoglucosan analysis at a rural background site in southern Sweden. Atmos. Chem. Phys. 2017, 17, 4265–4281. [Google Scholar] [CrossRef] [Green Version]
- Pataud, J.P.; Cavalli, F.; Crippa, M. Long-Term Trends in Black Carbon from Biomass and Fossil Fuel Combustion Detected at the JRC Atmospheric Observatory in Ispra, EUR 29147 EN; JRC110502; Publications Office of the European Union: Luxembourg, 2018; ISBN 978-92-79-80976-7. [Google Scholar] [CrossRef]
- Zheng, H.; Kong, S.; Wu, F.; Cheng, Y.; Niu, Z.; Zheng, S.; Yang, G.; Yao, L.; Yan, Q.; Zheng, M.; et al. Intra-regional transport of black carbon between the south edge of the North China Plain and central China during winter haze episodes. Atmos. Chem. Phys. 2019, 19, 4499–4516. [Google Scholar] [CrossRef] [Green Version]
- Klejnowski, K.; Janoszka, K.; Czaplicka, M. Characterization and Seasonal Variations of Organic and Elemental Carbon and Levoglucosan in PM10 in Krynica Zdroj, Poland. Atmosphere 2017, 8, 190. [Google Scholar] [CrossRef] [Green Version]
- Juda-Rezler, K.; Reizer, M.; Oudinet, J.-P. Determination and analysis of PM10 source apportionment during episodes of air pollution in Central Eastern European urban areas: The case of wintertime 2006. Atmos. Environ. 2011, 45, 6557–6566. [Google Scholar] [CrossRef]
- Błaszczak, B.; Rogula-Kozłowska, W.; Mathews, B.; Juda-Rezler, K.; Klejnowski, K.; Rogula-Kopiec, P. Chemical Compositions of PM2.5 at Two Non-Urban Sites from the Polluted Region in Europe. Aerosol Air Qual. Res. 2016, 16, 2333–2348. [Google Scholar] [CrossRef] [Green Version]
- Zhou, X.; Gao, J.; Wang, T.; Wu, W.; Wang, W. Measurement of black carbon aerosols near two Chinese megacities and the implications for improving emission inventories. Atmos. Environ. 2009, 43, 3918–3924. [Google Scholar] [CrossRef]
- Badarinath, K.V.S.; Kumar Kharol, S.; Kiran Chand, T.R.; Parvathi, Y.G.; Anasuya, T.; Jyothsna, A.N. Variations in black carbon aerosol, carbon monoxide and ozone over an urban area of Hyderabad, India, during the forest fire season. Atmos. Res. 2017, 85, 18–26. [Google Scholar] [CrossRef]
- Singh, V.; Ravindra, K.; Sahu, L.; Sokhi, R. Trends of atmospheric black carbon concentration over United Kingdom. Atmos. Environ. 2018, 178, 148–157. [Google Scholar] [CrossRef]
- Kassomenos, P.A.; Vardoulakis, S.; Chaloulakou, A.; Pschalidou, A.K.; Grivas, G.; Borge, R.; Lumbreras, J. Study of PM10 and PM2.5 levels in three European cities: Analysis of intra and inter urban variations. Atmos. Environ. 2014, 87, 153–163. [Google Scholar] [CrossRef] [Green Version]
- Fernandez Gutierrez, M.; Baxter, D.; Hunter, C.; Svoboda, K. Nitrous Oxide (N2O) Emissions from Waste and Biomass to Energy Plants. Waste Manag. Res. 2005, 23, 133–147. [Google Scholar] [CrossRef]
- Cofer, W.R.; Levine, J.S.; Winstead, E.L.; Stocks, B.J. New Estimates of Nitrous Oxide Emissions from Biomass Burning. Available online: https://www.cfs.nrcan.gc.ca/publications?id=38683 (accessed on 14 January 2021).
- Shen, L.; Li, L.; Lü, S.; Zhang, X.; Liu, J.; An, J.; Zhang, G.; Wu, B.; Wang, F. Characteristics of black carbon aerosol in Jiaxing, China during autumn. Particuology 2013, 20, 10–15. [Google Scholar] [CrossRef]
- Pastuszka, J.S.; Rogula-Kozłowska, W.; Zajusz-Zubek, E. Characterization of PM10 and PM2.5 and associated heavy metals at the crossroads and urban background site in Zabrze, Upper Silesia, Poland, during the smog episodes. Environ. Monit. Assess. 2010, 168, 613–627. [Google Scholar] [CrossRef] [PubMed]
- Rogula-Kozłowska, W.; Błaszczak, B.; Szopa, S.; Klejnowski, K.; Sówka, I.; Zwoździak, A.; Jabłońska, M.; Mathews, B. PM2.5 in the central part of Upper Silesia, Poland: Concentrations, elemental composition, and mobility of components. Environ. Monit. Assess. 2013, 185, 581–601. [Google Scholar] [CrossRef]
- Cheng, Y.-H.; Yun, K.Y.; Jian, L.-J. Correlations between black carbon mass and size-resolved particle number concentrations in the Taipei urban area: A five-year long-term observation. Atmos. Pollut. Res. 2014, 5, 62–72. [Google Scholar] [CrossRef] [Green Version]
- Yang, Q.; Yuan, Q.; Li, T.; Shen, H.; Zhang, L. The Relationship between PM2.5 and Meteorological Factors in China: Seasonal and Regional Variations. Int. J. Environ. Res. Public Health 2017, 14, 1510. [Google Scholar] [CrossRef] [Green Version]
- Wang, J.; Ogawa, S. Effects of Meteorological Conditions on PM2.5 Concentrations in Nagasaki, Japan. Int. J. Environ. Res. Public Health 2015, 12, 9089–9101. [Google Scholar] [CrossRef]
- Tai, A.P.K.; Mickley, L.J.; Jacob, D.J.; Leibensperger, E.M.; Zhang, L.; Fisher, J.A.; Pye, H.O.T. Meteorological modes of variability for fine particulate matter (PM2.5) air quality in the United States: Implications for PM2.5 sensitivity to climate change. Atmos. Chem. Phys. 2012, 12, 3131–3145. [Google Scholar] [CrossRef] [Green Version]
- Galindo, N.; Varea, M.; Gil-Moltó, J.; Yubero, E. The Influence of Meteorology on Particulate Matter Concentrations at an Urban Mediterranean Location. Water Air Soil Pollut. 2011, 215, 365–372. [Google Scholar] [CrossRef]
- Heo, J.; McGinnis, J.E.; de Foy, B.; Schauer, J.J. Identification of potential source areas for elevated PM2.5, nitrate and sulfate concentrations. Atmos. Environ 2013, 71, 187197. [Google Scholar] [CrossRef]
- Ragosta, M.; Caggiano, R.; D’Emilio, S.S.; Trippetta, S.; Macchiato, M. PM10and heavy metal measurements in an industrialarea of southern Italy. Atmos. Res. 2006, 81, 304–319. [Google Scholar] [CrossRef]
- Pilguj, N.; Kendzierski, S.; Kolendowicz, L. The role of the atmospheric circulation types on PM10 concentrations in Poznań. Geogr. Overv. 2018, 90, 77–91. [Google Scholar]
- European Commission. DG Environment 2010. Guidance on Assessment around Point Sources under the EU Air Quality Directive 2008/50/EC. Available online: https://ec.europa.eu/environment/air/quality/legislation/pdf/Guidance%20on%20assessment%20around%20point%20sources%20AQCincluded_final.pdf (accessed on 14 January 2021).
- Leśniok, M.R.; Caputa, Z.A. The role of atmospheric circulation in air pollution distribution in Katowice Region (Southern Poland). Int. J. Environ. Waste Manag. 2009, 4, 62–74. [Google Scholar] [CrossRef]
- Pietras, B. Circulation conditions for the presence of high concentrations of particulate matter in Kraków. In Physiographic Research. Series A—Physical Geography; Publishing House of the Poznań Society of Friends of Sciences: Kraków, Poland, 2015; Volume 66, pp. 121–130. [Google Scholar]
Type of Circulation | Explanation |
---|---|
Na (1), Nc (11) | Situations with advection from the north |
NEa (2), NEc (12) | Situations with advection from the northeast |
Ea (3), Ec (13) | Situations with advection from the east |
SEa (4), SEc (14) | Situations with advection from the southeast |
Sa (5), Sc (15) | Situations with advection from the south |
SWa (6), SWc (16) | Situations with advection from the southwest |
Wa (7), Wc (17) | Situations with advection from the west |
NWa (8), NWc (18) | Situations with advection from the northwest |
Situations without a specific direction of advection | |
Ca (9) | Central anticyclone situation (high center) |
Ka (10) | Anticyclonic wedge or ridge of high pressure |
Cc (19) | Central cyclonic, center of low |
Bc (20) | Through of low pressure (different directions of air flow and frontal system in the axis of through) |
x (21) | Unclassified situations or pressure col |
Substance | Concentration [µg·m−3] | H/NH Ratio e | ||||||
---|---|---|---|---|---|---|---|---|
Limit Value | Entire | Non-Heating | Heating | |||||
Ave ± SD | Range | Ave ± SD | Range | Ave ± SD | Range | |||
eBC | - | 3.22 ± 2.81 | 0.39–20.48 | 1.75 ± 1.26 | 0.39–8.02 | 4.70 ± 3.13 | 0.88–20.48 | 2.69 |
eBCff | - | 2.33 ± 2.16 | 0.32–16.08 | 1.28 ± 0.93 | 0.32–5.92 | 3.39 ± 2.51 | 0.53–16.08 | 2.65 |
eBCbb | - | 0.93 ± 0.76 | 0.06–6.33 | 0.55 ± 0.61 | 0.06–6.33 | 1.32 ± 0.69 | 0.27–4.40 | 2.41 |
SO2 | 125 a | 10.31 ± 6.34 | 1.97–38.50 | 6.60 ± 2.95 | 1.97–17.03 | 14.02 ± 6.65 | 1.99–38.50 | 2.12 |
NO2 | 200 b 40 c | 20.30 ± 8.95 | 2.88–47.04 | 16.95 ± 6.66 | 2.88–41.67 | 23.65 ± 9.69 | 4.54–47.04 | 1.40 |
NOx | - | 31.52 ± 26.95 | 3.79–197.38 | 21.50 ± 11.03 | 3.79–65.96 | 41.55 ± 33.65 | 5.75–197.38 | 1.93 |
NO | - | 7.32 ± 13.03 | 0.04–103.00 | 2.97 ± 3.42 | 0.04–21.42 | 11.68 ± 17.05 | 0.42–103.00 | 3.93 |
O3 | 120 d | 48.45 ± 22.66 | 3.42–109.54 | 63.55 ± 16.93 | 18.71–109.54 | 33.35 ± 17.00 | 3.42–76.79 | 0.52 |
CO | 10,000 d | 364.81 ± 228.28 | 129.17–1778.13 | 240.94 ± 93.20 | 129.17–706.75 | 488.74 ± 254.84 | 180.33–1778.13 | 2.03 |
PM10 | 50 a 40 c | 34.49 ± 24.00 (episodes f: 68 days) | 6.67–195.04 | 24.71 ± 11.49 (episodes f: 9 days) | 6.67–75.67 | 44.28 ± 28.83 (episodes f: 59 days) | 9.67–195.04 | 1.79 |
Specification | Year | Non-Heating | Heating | ||||||
---|---|---|---|---|---|---|---|---|---|
eBC | eBCff | eBCbb | eBC | eBCff | eBCbb | eBC | eBCff | eBCbb | |
SO2 | 0.76 | 0.75 | 0.75 | 0.55 | 0.58 | 0.60 | 0.66 | 0.65 | 0.64 |
NO2 | 0.78 | 0.80 | 0.67 | 0.67 | 0.71 | 0.57 | 0.83 | 0.84 | 0.75 |
NOx | 0.84 | 0.86 | 0.71 | 0.72 | 0.75 | 0.60 | 0.90 | 0.90 | 0.83 |
NO | 0.82 | 0.84 | 0.70 | 0.65 | 0.68 | 0.52 | 0.89 | 0.89 | 0.83 |
O3 | −0.69 | −0.68 | −0.64 | −0.27 | −0.26 | −0.27 | −0.67 | −0.68 | −0.57 |
CO | 0.87 | 0.86 | 0.84 | 0.80 | 0.79 | 0.83 | 0.80 | 0.80 | 0.73 |
PM10 | 0.83 | 0.86 | 0.75 | 0.67 | 0.70 | 0.66 | 0.90 | 0.90 | 0.85 |
Period | Parameter | Specification | ||
---|---|---|---|---|
eBC | eBCff | eBCbb | ||
Year | T | −0.54 | −0.49 | −0.61 |
RH | 0.27 | 0.27 | 0.25 | |
Bar | 0.07 | 0.07 | 0.05 | |
SI | −0.47 | −0.45 | −0.51 | |
WS | −0.14 | −0.17 | −0.06 | |
Pr | −0.23 | −0.22 | −0.21 | |
Non-heating | T | −0.41 | −0.31 | −0.31 |
RH | −0.06 | −0.06 | −0.07 | |
Bar | 0.10 | 0.17 | 0.18 | |
SI | −0.12 | −0.11 | −0.07 | |
WS | −0.11 | −0.19 | −0.20 | |
Pr | −0.17 | −0.16 | −0.15 | |
Heating | T | 0.00 | 0.06 | 0.04 |
RH | 0.11 | 0.16 | 0.15 | |
Bar | 0.05 | 0.04 | 0.04 | |
SI | −0.02 | −0.03 | −0.03 | |
WS | −0.54 | −0.60 | −0.60 | |
Pr | −0.27 | −0.27 | −0.24 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zioła, N.; Błaszczak, B.; Klejnowski, K. Temporal Variability of Equivalent Black Carbon Components in Atmospheric Air in Southern Poland. Atmosphere 2021, 12, 119. https://doi.org/10.3390/atmos12010119
Zioła N, Błaszczak B, Klejnowski K. Temporal Variability of Equivalent Black Carbon Components in Atmospheric Air in Southern Poland. Atmosphere. 2021; 12(1):119. https://doi.org/10.3390/atmos12010119
Chicago/Turabian StyleZioła, Natalia, Barbara Błaszczak, and Krzysztof Klejnowski. 2021. "Temporal Variability of Equivalent Black Carbon Components in Atmospheric Air in Southern Poland" Atmosphere 12, no. 1: 119. https://doi.org/10.3390/atmos12010119
APA StyleZioła, N., Błaszczak, B., & Klejnowski, K. (2021). Temporal Variability of Equivalent Black Carbon Components in Atmospheric Air in Southern Poland. Atmosphere, 12(1), 119. https://doi.org/10.3390/atmos12010119