An Assessment of the Role of Ice Hydrometeor-Types in WRF Bulk Microphysical Schemes in Simulating Two Heavy Rainfall Events over Southern Nigeria
Abstract
:1. Introduction
2. Data and Methods
2.1. Heavy Rainfall Events Description and Synoptic Analysis
2.1.1. Case One
2.1.2. Case Two
2.2. Model Simulations Set-Up
2.3. Dataset Used for Model Validation
2.4. Methods Used for Model Evaluations
3. Results
3.1. Evaluation of WRF Simulated Rainfall
3.2. Role of Ice Hydrometeor on Surface Rainfall Simulations
3.2.1. Spatial Distribution of Simulated Heavy Rainfall
3.2.2. Area Average Vertical Hydrometer Compositions
3.2.3. Hydrometeor Path Calculations
3.2.4. Analysis of the Scheme Simulated Air Temperature and Water Vapor
4. Discussion
5. Conclusions
Author Contributions
Acknowledgments
Conflicts of Interest
References
- Omotosho, J.B. The separate contributions of line squalls, thunderstorms and the monsoon to the total rainfall in Nigeria. J. Climatol. 1985, 5, 543–552. [Google Scholar] [CrossRef]
- Panthou, G.; Vischel, T.; Lebel, T.; Blanchet, J.; Quantin, G.; Ali, A. Extreme rainfall in West Africa: A regional modeling. Water Resour. Res. 2012, 48, W08501. [Google Scholar] [CrossRef]
- Agada, S.; Nirupama, N. A serious flooding event in Nigeria in 2012 with specific focus on Benue State: A brief review. Nat. Hazards 2015, 77, 1405–1414. [Google Scholar] [CrossRef]
- Nkwunonwo, U.C.; Malcolm, W.; Brian, B. Flooding and Flood Risk Reduction in Nigeria: Cardinal Gaps. J. Geogr. Nat. Disaster 2015, 5, 136. [Google Scholar] [CrossRef]
- Ubachukwu, N.N.; Emeribe, C.N. The 2012 flooding in selected parts of Isoko South, Delta State: Assessment of Soico-Economic Impacts, Mediterranean. Mediterr. J. Soc. Sci. 2017, 8, 353–358. [Google Scholar] [CrossRef]
- Babatolu, J.S.; Akinnubi, R.T.; Folagimi, A.T.; Bukola, O.O. Variability and Trends of Daily Heavy Rainfall Events over Niger River Basin Development Authority Area in Nigeria. Am. J. Clim. Chang. 2014, 3, 1–7. [Google Scholar] [CrossRef] [Green Version]
- Egbebiyi, T.S. Future Changes in Extreme Rainfall Events and African Easterly Waves over West Africa. Master’s Thesis, Department of Environmental and Geographical Science, University of Cape Town, Cape Town, South Africa, 2016, unpublished. [Google Scholar]
- Bouniol, D.; Dalanoe, J.; Duroure, C.; Protat, A.; Giraud, V.; Penide, G. Microphysical characterization of West African MCS anvils. Q. J. R. Meteorol. Soc. 2010, 136, 323–344. [Google Scholar] [CrossRef]
- Dione, C.; Lohou, F.; Lothon, M.; Adler, B.; Babić, K.; Kalthoff, N.; Pedruzo-Bagazgoitia, X.; Bezombes, Y.; Gabella, O. Low Level Cloud and Dynamical Features within the Southern West African Monsoon. Atmos. Chem. Phys. Discuss. 2018. [Google Scholar] [CrossRef]
- Adler, B.; Babić, K.; Kalthoff, N.; Lohou, F.; Lothon, M.; Dione, C.; Pedruzo-Bagazgoitia, X.; Andersen, H. Nocturnal low-level clouds in the atmospheric boundary layer over southern West Africa: An observation-based analysis of conditions and processes. Atmos. Chem. Phys. Discuss. 2018, 2018, 1–31. [Google Scholar] [CrossRef]
- Ibrahim, S.; Afandi, G. Short-range Rainfall Prediction over Egypt using the Weather Research and Forecasting Model. Open J. Renew. Energy Sustain. Dev. 2014, 2014, 56–70. [Google Scholar] [CrossRef]
- Akinsanola, A.A.; Aroninuola, B.A. Diagnostic Evaluation of September 29, 2012 Heavy Rainfall Event over Nigeria. J. Climatol. Weather Forecast. 2016, 4, 155. [Google Scholar] [CrossRef]
- Diongue, A.; Lafore, J.-P.; Redelsperger, J.-L.; Roca, R. Numerical study of a Sahara synoptic weather system: Initiation and mature stages of convection and its interactions with the large-scale dynamics. Q. J. R. Meteorol. Soc. 2002, 128, 1899–1927. [Google Scholar] [CrossRef]
- Maranan, M.; Fink, A.H.; Knippertz, P.; Francis, S.D.; Akpo, A.B.; Jegede, G.; Yorke, C. Interactions between Convection and a Moist Vortex Associated with and Extreme Rainfall Event over Southern Africa. Mon. Weather Rev. 2019, 147, 2309–2328. [Google Scholar] [CrossRef]
- Hou, A.Y.; Kakar, R.K.; Neeck, S.; Azarbarzin, A.A.; Kummerow, C.D.; Kojima, M.; Oki, R.; Nakamura, K.; Iguchi, T. The global precipitation measurement mission. Bull. Am. Meteorol. Soc. 2014, 95, 701–722. [Google Scholar] [CrossRef]
- Straka, J.M. Cloud and Precipitation Microphysics: Principle and Parameterizations; Cambridge University Press: New York, NY, USA, 2009; p. 392. [Google Scholar]
- Hong, S.-Y. Comparison of heavy rainfall mechanisms in Korea and the central US. J. Meteorol. Soc. Jpn. Ser. II 2004, 82, 1469–1479. [Google Scholar] [CrossRef]
- Akinbobola, A.; Okogbue, E.C.; Ayansola, A.K. Statistical Modeling of Monthly Rainfall in Selected Stations in Forest and Savannah Eco-climatic Regions of Nigeria. J. Climatol. Weather Forecast. 2018, 6, 226. [Google Scholar] [CrossRef]
- Hong, S.-Y.; Dudhia, J.; Chen, S.-H. A revised approach to ice microphysical processes for the bulk parameterization of clouds and precipitation. Mon. Weather Rev. 2004, 132, 103–120. [Google Scholar] [CrossRef]
- Hong, S.-Y.; Lim, J.-O.J. The WRF single-moment 6-class microphysics scheme (WSM6). J. Korean Meteorol. Soc. 2006, 42, 129–151. [Google Scholar]
- Lim, K.-S.S.; Hong, S.-Y. Development of an effective double moment cloud microphysics scheme with prognostic cloud condensation nuclei (CCN) for weather and climate models. Mon. Weather Rev. 2010, 138, 1587–1612. [Google Scholar] [CrossRef]
- Morrison, H.; Thompson, G.; Tatarskii, V. Impact of cloud microphysics on the development of trailing stratiform precipitation in a simulated squall line: Comparison of one-and two-moment schemes. Mon. Weather Rev. 2009, 137, 991–1007. [Google Scholar] [CrossRef]
- Hong, S.-Y.; Noh, Y.; Dudhia, J. A new vertical diffusion package with an explicit treatment of entrainment processes. Mon. Weather Rev. 2006, 134, 2318–2341. [Google Scholar] [CrossRef]
- Kain, J.S. The Kain-Fritsch convective parameterization: An update. J. Appl. Meteorol. 2004, 43, 170180. [Google Scholar] [CrossRef]
- Mlawer, E.J.; Taubman, S.J.; Brown, P.D.; Iacono, M.J.; Clough, S.A. Radiative transfer for inhomogeneous atmosphere: RRTM, a validated correlated-k model for the longwave. J. Geophys. Res. 1997, 102, 16663–16682. [Google Scholar] [CrossRef]
- Dudhia, J. Numerical study of convection observed during the Winter Monsoon Experiment using mesoscale two-dimensional model. J. Atmos. Sci. 1989, 46, 3077–3107. [Google Scholar] [CrossRef]
- Chen, F.; Dudhia, J. Coupling an advanced land surface–hydrology model with the Penn State–NCAR MM5 modeling system. Part I: Model implementation and sensitivity. Mon. Weather Rev. 2001, 129, 569–585. [Google Scholar] [CrossRef]
- Huffman, G.J.; Bolvin, D.T.; Nelkin, E.J.; Wolff, D.B.; Adler, R.F.; Gu, G.; Hong, Y.; Bowman, K.P.; Stocker, E.F. The TRMM Multisatellite Precipitation Analysis (TMPA): Quasi-Global, Multiyear, Combined-Sensor Precipitation Estimates at Fine Scales. J. Hydrometeorol. 2007, 8, 38–55. [Google Scholar] [CrossRef]
- Gbode, I.E.; Dudhia, J.; Ogunjobi, K.O.; Ajayi, V.O. Sensitivity of different physics schemes in the WRF model during a West African monsoon regime. Theor. Appl. Climatol. 2018, 136, 733–751. [Google Scholar] [CrossRef] [Green Version]
- Tanessong, R.S.; Vondou, D.A.; Djomou, Z.Y.; Igri, P.M. WRF high resolution simulation of an extreme rainfall event over Douala (Cameroon): A case study. Model. Earth Syst. Environ. 2017, 3, 927–942. [Google Scholar] [CrossRef]
- Jones, P.W. First- and Second-Order Conservative Remapping Schemes for Grids in Spherical Coordinates. Mon. Weather Rev. 1999, 127, 2204–2210. [Google Scholar] [CrossRef]
- Pu, Z.; Lin, C.; Dong, X.; Krueger, K.S. Sensitivity of Numerical Simulations of a Mesoscale Convective System to Ice Hydrometeors in Bulk Microphysical Parameterization. Pure Appl. Geophys. 2018, 176, 2097–2120. [Google Scholar] [CrossRef]
- Song, H.-J.; Sohn, B.-J. An Evaluation of WRF microphysics Schemes for Simulating the Warm-Type Heavy Rain over the Korean Peninsula. Asia Pac. J. Atmos. Sci. 2018, 54, 225–236. [Google Scholar] [CrossRef]
- Hong, S.-Y.; Lim, K.-S.S.; Lee, Y.-H.; Ha, J.-C.; Kim, H.-W.; Ham, S.-J.; Dudhia, J. Evaluation of the WRF double-moment 6-class microphysics scheme for precipitating convection. Adv. Meteorol. 2010, 2010, 707253. [Google Scholar] [CrossRef]
- Ite, A.E.; Ibok, U.J. Gas Flaring and Venting Associated with Petroleum Exploration and Production in the Nigeria’s Niger Delta. Am. J. Environ. Prot. 2013, 1, 70–77. [Google Scholar] [CrossRef]
- Giwa, S.O.; Adama, O.O.; Akinyemi, O.O. Baseline black carbon emissions for gas flaring in the Niger Delta region of Nigeria. J. Nat. Gas Sci. Eng. 2014, 20, 373–379. [Google Scholar] [CrossRef]
- Towney, S. Pollution and the planetary albedo. Atmos. Environ. 1974, 8, 1251–1256. [Google Scholar]
- Albrecht, B.A. Aerosols, cloud microphysics, and fractional cloudiness. Science 1989, 245, 1227–1231. [Google Scholar] [CrossRef] [PubMed]
- Song, H.-J.; Sohn, B.-J.; Hong, S.-Y.; Hashino, T. Idealized numerical experiments on the microphysical evolution of warm-type heavy rainfall. J. Geophys. Res. 2017, 122, 1685–1699. [Google Scholar] [CrossRef]
- Houze, R.A.; Biggerstaff, M.I.; Rutledge, S.A.; Smull, B.F. Interpretation of Doppler weather radar displays of midlatitude mesoscale convective systems. Bull. Am. Meteorol. Soc. 1989, 70, 608–619. [Google Scholar] [CrossRef]
- Efstathiou, G.A.; Zoumakis, N.M.; Melas, D.; Kassomenos, P. Imapct of Precipitating Ice on the Simulation of a Heavy Rainfall Event with Advanced Research WRF using Two Bulk Microphysics Schemes. Asia Pac. J. Atmos. Sci. 2012, 48, 357–368. [Google Scholar] [CrossRef]
- Van Weverberg, K.; Vogelmann, A.M.; Lin, W.; Luke, E.P.; Cialella, A.; Minnis, P.; Khaiyer, M.; Boer, E.R.; Jensen, M.P. The role of cloud microphysics parameterization in the simulation of mesoscale convective system clouds and precipitation in the tropical western Pacific. J. Atmos. Sci. 2013, 70, 1104–1128. [Google Scholar] [CrossRef]
- Wu, D.; Dong, X.; Xi, B.; Feng, Z.; Kennedy, A.; Mullendore, G.; Gilmore, M.; Tao, W.-K. Impacts of microphysical scheme on convective and stratiform characteristics in two high precipitation squall line events. J. Geophys. Res. Atmos. 2013, 118, 11119–11135. [Google Scholar] [CrossRef]
- Kar, S.C.; Tiwari, S. Model simulations of heavy precipitation in Kashmir, India, in September 2014. Nat. Hazards 2016, 81, 167–188. [Google Scholar] [CrossRef]
Bulk Scheme Name | Mass Mixing Ratio Prognosis Variables | Number Mixing Ratio Prognosis Variables |
---|---|---|
WSM5 | Qr Qc Qi Qs | |
WSM6 | Qr Qc Qi Qs Qg | |
WDM6 | Qr Qc Qi Qs Qg | Nn Nc Nr |
MORR -2 moment | Qr Qc Qi Qs Qg | Nr Nr Nc Ng |
CASE ONE | CASE TWO | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
TRMM | MORR_G | MORR_H | WDM6 | WSM6 | WSM5 | TRMM | MORR_G | MORR_H | WDM6 | WSM6 | WSM5 | |
Accumulated Rainfall (mm/day) | 22.23 | 14.03 | 13.68 | 13.67 | 14.50 | 17.32 | 14.57 | 17.27 | 27.58 | 15.14 | 21.40 | 29.18 |
Mean Bias (mm/day) | 8.20 | 8.55 | 8.56 | 7.73 | 4.91 | −2.70 | −13.01 | −0.58 | −6.82 | −14.61 | ||
RMSE (mm/day) | 2.90 | 3.02 | 3.03 | 2.73 | 1.74 | 0.96 | 4.60 | 0.2 | 2.41 | 5.16 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Akinola, O.E.; Yin, Y. An Assessment of the Role of Ice Hydrometeor-Types in WRF Bulk Microphysical Schemes in Simulating Two Heavy Rainfall Events over Southern Nigeria. Atmosphere 2019, 10, 513. https://doi.org/10.3390/atmos10090513
Akinola OE, Yin Y. An Assessment of the Role of Ice Hydrometeor-Types in WRF Bulk Microphysical Schemes in Simulating Two Heavy Rainfall Events over Southern Nigeria. Atmosphere. 2019; 10(9):513. https://doi.org/10.3390/atmos10090513
Chicago/Turabian StyleAkinola, Oluseyi Ezekiel, and Yan Yin. 2019. "An Assessment of the Role of Ice Hydrometeor-Types in WRF Bulk Microphysical Schemes in Simulating Two Heavy Rainfall Events over Southern Nigeria" Atmosphere 10, no. 9: 513. https://doi.org/10.3390/atmos10090513
APA StyleAkinola, O. E., & Yin, Y. (2019). An Assessment of the Role of Ice Hydrometeor-Types in WRF Bulk Microphysical Schemes in Simulating Two Heavy Rainfall Events over Southern Nigeria. Atmosphere, 10(9), 513. https://doi.org/10.3390/atmos10090513