Fetch Effect on Flux-Variance Estimations of Sensible and Latent Heat Fluxes of Camellia Sinensis
Abstract
:1. Introduction
2. Theory
2.1. Flux Variance (FV) Method
2.2. Footprint Analysis
3. Materials and Methods
3.1. Study Site and Climate Features
3.2. The Field Experiments
3.3. Evaluation Criteria
3.4. Possible Error Sources
4. Results and Discussion
4.1. The Footprint of EC Flux Measurements
4.2. Energy Balance Closure Analysis
4.3. Sensible Heat Flux Comparison
4.4. Latent Heat Flux Estimation
5. Conclusions and Outlook
Author Contributions
Funding
Conflicts of Interest
References
- Jarmain, C.S.C.; Everson, M.J.; Savage, M.G.; Mengistu, A.D.; Clulow, S.W.; Gush, M.B. Refining Tools for Evaporation Monitoring in Support of Water Resources Management; Water Research Commission: Pretoria, South Africa, 2009. [Google Scholar]
- Allen, R.G.; Luis, S.; Pereira, D.R.; Smith, M. Crop Evapotranspiration-Guidelines for Computing Crop Water Requirements-FAO Irrigation and Drainage Paper; FAO: Rome, Italy, 1998; Volume 300. [Google Scholar]
- Saigusa, N.; Yamamoto, S.; Hirata, R.; Ohtani, Y.; Ide, R.; Asanuma, J.; Gamo, M.; Hirano, T.; Kondo, H.; Kosugi, Y.; et al. Temporal and spatial variations in the seasonal patterns of CO2 flux in boreal, temperate, and tropical forests in East Asia. Agric. For. Meteorol. 2008, 148, 700–713. [Google Scholar] [CrossRef]
- Hollinger, D.Y.; Aber, J.; Dail, B.; Davidson, E.A.; Goltz, S.M.; Hughes, H.; Leclerc, M.Y.; Lee, J.T.; Richardson, A.D.; Rodrigues, C.; et al. Spatial and temporal variability in forest–atmosphere CO2 exchange. Glob. Chang. Biol. 2004, 10, 1689–1706. [Google Scholar] [CrossRef]
- Aubinet, M.; Timo, V.; Papale, D. (Eds.) Eddy Covariance: A Practical Guide to Measurement and Data Analysis; Springer Science and Business Media: Berlin, Germany, 2012. [Google Scholar]
- Hu, Y.; Buttar, N.A.; Tanny, J.; Snyder, R.L.; Savage, M.J.; Lakhiar, I.A. “Surface Renewal Application for Estimating Evapotranspiration: A Review”. Adv. Meteorol. 2018, 2018, 1690714. [Google Scholar] [CrossRef]
- Wesely, M.L.; Thurtell, G.W.; Tanner, C.B. Eddy correlation measurements of sensible heat flux near the earth’s surface. J. Appl. Meteorol. 1970, 9, 45–50. [Google Scholar] [CrossRef]
- Tillman, J.E. The indirect determination of stability, heat and momentum fluxes in the atmospheric boundary layer from simple scalar variables during dry unstable conditions. J. Appl. Meteorol. 1972, 11, 783–792. [Google Scholar] [CrossRef]
- Wesson, K.H.; Gabriel, K.; Chun-Ta, L. Sensible heat flux estimation by flux variance and half-order time derivative methods. Water Resour. Res. 2001, 37, 2333–2343. [Google Scholar] [CrossRef] [Green Version]
- Weaver, H.L. Temperature and humidity flux-variance relations determined by one-dimensional eddy correlation. Bound. Layer Meteorol. 1990, 53, 77–91. [Google Scholar] [CrossRef]
- Lloyd, C.R.; Culf, A.D.; Dolman, A.J.; Gash, J.H.C. Estimates of sensible heat flux from observations of temperature fluctuations. Bound. Layer Meteorol. 1991, 57, 311–322. [Google Scholar] [CrossRef]
- Albertson, J.D.; Marc, B.; Parlange, G.G.; Katul, C.-R.C.; Stricker, H.; Scott, T. Sensible heat flux from arid regions: A simple flux-variance method. Water Resources Res. 1995, 31, 969–973. [Google Scholar] [CrossRef]
- Ali Buttar, N.; Hu, Y.; Zhang, C.; Josef, T.; Ikram, U.; Muhammad, A. Height effect of air temperature measurement on sensible heat flux estimation using flux variance method. Pak. J. Agric. Sci. 2019, 56, 793–800. [Google Scholar]
- Tanny, J.O.; Achiman, Y.; Mazliach, V.; Lukyanov, S.C.; Cohen, T. The effect of variable fetch on flux-variance estimates of sensible and latent heat fluxes in a pepper screenhouse. In Proceedings of the International Symposium on Sensing Plant. Water Status-Methods and Applications in Horticultural Science, Potsdam, Germany, 6 October 2016; Volume 1197, pp. 109–116. [Google Scholar]
- Ahiman, O.; Mekhmandarov, Y.; Pirkner, M.; Tanny, Y. Application of the Flux-Variance Technique for Evapotranspiration Estimates in Three Types of Agricultural Structures. Int. J. Agron. 2018, 2018, 7935140. [Google Scholar] [CrossRef]
- Choi, T.; Hong, J.; Kim, J.; Lee, H.; Asanuma, J.; Ishikawa, H.; Tsukamoto, O.; Zhiqiu, G.; Ma, Y.; Ueno, K.; et al. Turbulent exchange of heat, water vapor, and momentum over a Tibetan prairie by eddy covariance and flux variance measurements. J. Geophys. Res. Atmos. 2004, 109, doi. [Google Scholar] [CrossRef]
- Sugita, M.; Noriaki, K. Surface and mixed-layer variance methods to estimate regional sensible heat flux at the surface. Bound. Layer Meteorol. 2003, 106, 117–145. [Google Scholar] [CrossRef]
- De Bruin, H.A.R.; Hartogensis, O.K. Variance method to determine turbulent fluxes of momentum and sensible heat in the stable atmospheric surface layer. Bound. Layer Meteorol. 2005, 116, 385–392. [Google Scholar] [CrossRef]
- Stull, R.B. Similarity Theory. In An Introduction to Boundary Layer Meteorology; Springer: Dordrecht The Netherlands, 1988; pp. 347–404. [Google Scholar]
- Stull, R.B. Transilient turbulence theory. Part I: The concept of eddy-mixing across finite distances. J. Atmos. Sci. 1984, 41, 3351–3367. [Google Scholar] [CrossRef]
- Garratt, J.R. The atmospheric boundary layer. Earth-Sci. Rev. 1994, 37, 89–134. [Google Scholar] [CrossRef]
- Deardorf, J.W. Observed characteristics of the outer layer. AMS course on the planetary boundary layer. Boulder, Colorado, 1983; (unpublished manuscript). [Google Scholar]
- Detering, H.W.; Etling, D. Application of the E-ε turbulence model to the atmospheric boundary layer. Bound. Layer Meteorol. 1985, 33, 113–133. [Google Scholar] [CrossRef]
- Kljun, N.P.; Calanca, M.W.; Rotach, S.; Schmid, H.P. A simple two-dimensional parameterisation for Flux Footprint Prediction (FFP). Geosci. Model. Develop. 2015, 8, 3695–3713. [Google Scholar] [CrossRef] [Green Version]
- Gash, J.H.C. A note on estimating the effect of a limited fetch on micrometeorological evaporation measurements. Bound. Layer Meteorol. 1986, 35, 409–4134. [Google Scholar] [CrossRef]
- Savage, M.J.; Everson, C.S.; Rawstorne Metelerkamp, B. Evaporation measurement above vegetated surfaces using micrometeorological techniques. Pretoria. Water Res. Comm. 1997. [Google Scholar]
- Hsieh, C.-I.; Mei-Chun, L.; Yue-Joe, H.; Tsang-Jung, C. Estimation of sensible heat, water vapor, and CO2 fluxes using the flux-variance method. Int. J. Biometeorol. 2008, 52, 521–533. [Google Scholar] [CrossRef]
- Savage, M.J.; Everson, C.S.; Odhiambo, G.O.; Mengistu, M.G.; Jarmain, C. Theory and Practice of Evaporation Measurement, with Spatial Focus on SLS as an Operational Tool for the Estimation of Spatially-Averaged Evaporation; Report No. 1335/1/04; Water Research Commission: Pretoria, South Africa, 2004; p. 204. ISBN 1−77005−247−X. [Google Scholar]
- Hsieh, C.-I.; Gabriel, K.; Tzewen, C. An approximate analytical model for footprint estimation of scalar fluxes in thermally stratified atmospheric flows. Adv. Water Res. 2000, 23, 765–772. [Google Scholar] [CrossRef]
- Hu, Y.; Zhu, X.; Zhao, M.; Richard, L.; Snyder, L.; Li, P. Operation effects of wind machines for frost protection of tea trees on different time scales. Nongye Jixie Xuebao Transact. Chin. Soc. Agric. Mach. 2013, 44, 252–257. [Google Scholar]
- Allen, R.G.; Pereira, L.S.; Howell, T.A.; Jensen, M.E. Evapotranspiration information reporting: I. Factors governing measurement accuracy. Agric. Water Manag. 2011, 98, 899–920. [Google Scholar] [CrossRef] [Green Version]
- Foken, T.; Napo, C.J. Micrometeorology; Springer: Berlin, Germany, 2008; Volume 2. [Google Scholar]
- Tanner, C.B.; Pelton, W.L. Potential evapotranspiration estimates by the approximate energy balance method of Penman. J. Geophys. Res. 1960, 65, 3391–3413. [Google Scholar] [CrossRef]
- Cameron, A.C.; Windmeijer, F.A.G. An R-squared measure of goodness of fit for some common nonlinear regression models. J. Econom. 1997, 77, 329–342. [Google Scholar] [CrossRef]
- Willmott, C.J. Some comments on the evaluation of model performance. Bull. Am. Meteorol. Soc. 1982, 63, 1309–1313. [Google Scholar] [CrossRef]
- Willmott, C.J.; Matsuura, K. Advantages of the mean absolute error (MAE) over the root mean square error (RMSE) in assessing average model performance. Climate Res. 2005, 30, 79–82. [Google Scholar] [CrossRef]
- Wilson, K.; Goldstein, A.; Falge, E.; Aubinet, M.; Baldocchi, D.; Berbigier, P.; Bernhofer, C.; Ceulemans, R.; Dolman, H.; Field, C.; et al. Energy balance closure at FLUXNET sites. Agric. For. Meteorol. 2002, 113, 223–243. [Google Scholar] [CrossRef] [Green Version]
- Kordova-Biezuner, L.; Mahrer, I.; Schwartz, C. Estimation of actual evapotranspiration from vineyard by utilizing eddy correlation method. In Proceedings of the III International Symposium on Irrigation of Horticultural Crops, Lleida, Spain, 8 June 1999; Volume 537, pp. 167–175. [Google Scholar]
- Testi, L.; Villalobos, F.J.; Orgaz, F. Evapotranspiration of a young irrigated olive orchard in southern Spain. Agric. For. Meteorol. 2004, 121, 1–18. [Google Scholar] [CrossRef]
- Wyngaard, J.C.; Coté, O.R.; Izumi, Y. Local free convection, similarity, and the budgets of shear stress and heat flux. J. Atmos. Sci. 1971, 28, 1171–1182. [Google Scholar] [CrossRef]
- Haymann, N.; Lukyanov, V.; Tanny, J. Effects of variable fetch and footprint on surface renewal measurements of sensible and latent heat fluxes in cotton. Agric. For. Meteorol. 2019, 268, 63–73. [Google Scholar] [CrossRef]
Stability Condition | Obukhov Length (L) |
---|---|
Stable | 0 < L < 200 |
Unstable | −200 < L < 0 |
Neutral | |L| > 200 |
D | P | Stability Condition |
---|---|---|
0.28 | 0.59 | Unstable |
0.97 | 1 | Natural |
2.44 | 1.33 | Stable |
Notation | Units | Height (m) | Equipment | |
---|---|---|---|---|
3D-Wind velocity, Sonic temperature | u, v, w, Ts | m s−1, °C | 2.3 | CSAT3, Sonic anemometer, Campbell Scientific, USA. |
H2O and CO2 concentrations | - | µmol m−3 | 2.3 | EC150, Campbell Scientific., USA. |
Soil temperature | Tsoil | °C | 0.02 and 0.06 (Depth) | TCAV-L, Campbell Scientific, USA. |
Air temperature for FV analysis | Ta | °C | 1.7 | Fine-wire thermocouple, COCO-002, Omega, Eng., UK. |
Relative humidity | RH | % | 2.1 | HC2S3-L, Campbell Scientific., USA. |
Soil heat flux | G | W m−2 | 0.08 | HFP01, Hukseflux plate sensor. |
Net radiation | Rn | W m−2 | 2.3 | CNR4-L, KIPP and ZENON. |
Liquid precipitation | - | mm | 2.1 | TE525MM, Campbell Scientific Inc., USA. |
Soil water content | ϴv | m3m−3 | 0.04 (Depth) | CS655, Campbell Scientific Inc., USA. |
Statistics | HFV | ||||
---|---|---|---|---|---|
Sensors | TC1 | TC2 | TC3 | TC4 | TC5 |
Fetch (m) | 170 | 165 | 160 | 155 | 150 |
R2 | 0.86 | 0.80 | 0.72 | 0.68 | 0.64 |
CT | 2.3 | 2.4 | 2.3 | 2.2 | 2.3 |
RMSE (Wm−2) | 25.00 | 30.55 | 37.85 | 41.70 | 44.84 |
RE (%) | 9.25 | 10.74 | 14.33 | 14.44 | 12.57 |
Slope | 0.94 | 0.98 | 0.98 | 0.96 | 0.97 |
n | 291 | 289 | 294 | 291 | 293 |
Statistics | LEFV | ||||
---|---|---|---|---|---|
Sensors | TC1 | TC2 | TC3 | TC4 | TC5 |
Fetch (m) | 170 | 165 | 160 | 155 | 150 |
R2 | 0.90 | 0.87 | 0.78 | 0.75 | 0.71 |
RMSE (Wm−2) | 25.11 | 29.22 | 37.79 | 41.74 | 44.77 |
RE (%) | 4.73 | 5.96 | 7.52 | 7.78 | 7.03 |
Slope | 0.95 | 0.87 | 0.97 | 0.97 | 0.96 |
n | 291 | 289 | 294 | 291 | 293 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Buttar, N.A.; Yongguang, H.; Tanny, J.; Akram, M.W.; Shabbir, A. Fetch Effect on Flux-Variance Estimations of Sensible and Latent Heat Fluxes of Camellia Sinensis. Atmosphere 2019, 10, 299. https://doi.org/10.3390/atmos10060299
Buttar NA, Yongguang H, Tanny J, Akram MW, Shabbir A. Fetch Effect on Flux-Variance Estimations of Sensible and Latent Heat Fluxes of Camellia Sinensis. Atmosphere. 2019; 10(6):299. https://doi.org/10.3390/atmos10060299
Chicago/Turabian StyleButtar, Noman Ali, Hu Yongguang, Josef Tanny, M Waqar Akram, and Abdul Shabbir. 2019. "Fetch Effect on Flux-Variance Estimations of Sensible and Latent Heat Fluxes of Camellia Sinensis" Atmosphere 10, no. 6: 299. https://doi.org/10.3390/atmos10060299
APA StyleButtar, N. A., Yongguang, H., Tanny, J., Akram, M. W., & Shabbir, A. (2019). Fetch Effect on Flux-Variance Estimations of Sensible and Latent Heat Fluxes of Camellia Sinensis. Atmosphere, 10(6), 299. https://doi.org/10.3390/atmos10060299