Long-Term Atmospheric Changes in a Convection-Permitting Regional Climate Model Hindcast Simulation over Northern Germany and the German Bight
Abstract
:1. Introduction
2. Model Configuration, Data, and Methods
2.1. Model Configuration and Data
2.2. Methods
3. Results
3.1. Time Slice Comparison of GB0028 with other Data Sets
3.2. Trend Analysis of GB0028 over Northern Germany 1948–2014
3.2.1. Annual Means
3.2.2. Extreme Events
4. Summary and Discussion
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- IPCC. Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2013; p. 1535. [Google Scholar]
- Roshan, G.; Yousefi, R.; Fitchett, J.M. Long-term trends in tourism climate index scores for 40 stations across Iran: The role of climate change and influence on tourism sustainability. Int. J. Biometeorol. 2016, 60, 33–52. [Google Scholar] [CrossRef] [PubMed]
- Caloiero, T.; Coscarelli, R.; Ferrari, E.; Sirangelo, B. Trend analysis of monthly mean values and extreme indices of daily temperature in a region of southern Italy. Int. J. Climatol. 2017, 37, 284–297. [Google Scholar] [CrossRef]
- Meinke, I.; Rechid, D.; Tinz, B.; Maneke, M.; Lefebvre, C.; Isokeit, E. Klima der Region – Zustand, bisherige Entwicklung und mögliche Änderungen bis 2100. In Hamburger Klimabericht – Wissen über Klima, Klimawandel und Auswirkungen in Hamburg und Norddeutschland; Von Storch, H., Meinke, I., Claußen, M., Eds.; Springer: Berlin/Heidelberg, Gemany, 2018; pp. 15–36. [Google Scholar]
- Schefczyk, L.; Heinemann, G. Climate change impact on thunderstorms: Analysis of thunderstorm indices using high-resolution regional climate simulations. Meteorol. Z. 2017, 26, 409–419. [Google Scholar] [CrossRef]
- Meinke, I.; Maneke, M.; Riecke, W.; Tinz, B. Norddeutscher Klimamonitor–Klimazustand und Klimaentwicklung in Norddeutschland innerhalb der letzten 60 Jahre (1951–2010). Mitteilungen DMG 012014. 2014. Available online: https://www.hzg.de/imperia/md/content/klimabuero/norddeutscher_klimamonitor.pdf (accessed on 8 January 2018).
- Klimamonitor, Norddeutscher Klimamonitor. Available online: http://www.norddeutscher-klimamonitor.de/ (accessed on 21 January 2018).
- Quante, M.; Colijn, F. North Sea Region Climate Change Assessment. Available online: https://doi.org/10.1007/978-3-319-39745-0 (accessed on 23 January 2019).
- The BACC II Author Team. Second Assessment of Climate Change for the Baltic Sea Basin; Springer: Berlin, Germany, 2015. [Google Scholar]
- Von Storch, H.; Meinke, I.; Claussen, M. Hamburger Klimabericht–Wissen über Klima, Klimawandel und Auswirkungen in Hamburg und Norddeutschland. Available online: https://doi.org/10.1007/978-3-662-55379-4 (accessed on 23 January 2019).
- Prein, A.F.; Langhans, W.; Fosser, G.; Ferrone, A.; Ban, N.; Keller, K.G.M.; Tölle, M.; Gutjahr, O.; Feser, F.; Brisson, E.; et al. A review on regional convection-permitting climate modeling: Demonstrations, prospects, and challenges. Rev. Geophys. 2015, 52, 323–361. [Google Scholar] [CrossRef]
- Prein, A.F.; Gobiet, A.; Suklitsch, M.; Truhetz, H.; Awan, N.K.; Keuler, K.; Georgievski, G. Added value of convection permitting seasonal simulations. Clim. Dyn. 2013, 41, 2655–2677. [Google Scholar] [CrossRef] [Green Version]
- Schaaf, B.; Feser, F. Is there added value of convection-permitting regional climate model simulations for storms over the German Bight and Northern Germany? Meteorol. Hydrol. Water Manag. 2018. [Google Scholar] [CrossRef]
- Brisson, E.; van Weverberg, K.; Demuzere, M.; Devis, A.; Saeed, S.; Stengel, M.; van Lipzig, N.P.M. How well can a convection-permitting climate model reproduce decadal statistics of precipitation, temperature and cloud characteristics? Clim. Dyn. 2016, 47, 3043–3061. [Google Scholar] [CrossRef] [Green Version]
- Liu, C.; Ikeda, K.; Rasmussen, R.; Barlage, M.; Newman, A.J.; Prein, A.F.; Chen, F.; Chen, L.; Clark, M.; Dai, A.; et al. Continental-scale convection-permitting modeling of the current and future climate of North America. Clim. Dyn. 2017, 49, 71–95. [Google Scholar] [CrossRef]
- Dawson, A.G.; Hickey, K.; Holt, T.; Elliott, L.; Dawson, S.; Foster, I.D.L.; Wadhams, P.; Jonsdottir, I.; Wilkinson, J.; McKenna, J.; et al. Complex North Atlantic Oscillation (NAO) Index signal of historic North Atlantic storm-track changes. Holocene 2002, 12, 363–369. [Google Scholar] [CrossRef]
- Hurrell, J.W.; Deser, C. North Atlantic climate variability: The role of the North Atlantic Oscillation. Impact Clim. Var. Mar. Ecosyst. Comp. Approach 2010, 79, 231–244. [Google Scholar] [CrossRef]
- Iles, C.; Hegerl, G. Role of the North Atlantic Oscillation in decadal temperature trends. Environ. Res. Lett. 2017, 12, 114010. [Google Scholar] [CrossRef]
- Schaaf, B. CoastDat_COSMO-CLM German Bright 0028. Available online: https://doi.org/10.1594/WDCC/coastDat_COSMO-CLM_GB0028 (accessed on 23 January 2019).
- Steppeler, J.; Doms, G.; Schättler, U.; Bitzer, H.W.; Gassmann, A.; Damrath, U.; Gregoric, G. Meso-gamma scale forecasts using the nonhydrostatic model LM. Meteorol. Atmos. Phys. 2003, 82, 75–96. [Google Scholar] [CrossRef]
- Rockel, B.; Castro, C.L.; Pielke, R.A.; von Storch, H.; Leoncini, G. Dynamical downscaling: Assessment of model system dependent retained and added variability for two different regional climate models. J. Geophys. Res. 2008, 113, D21103. [Google Scholar] [CrossRef]
- Geyer, B.; Rockel, B. Coastdat-2 COSMO-CLM. 2013. Available online: http://cera-www.dkrz.de/WDCC/ui/Compact.jsp?acronym=coastDat-2_COSMO-CLM (accessed on 23 January 2019).
- Geyer, B. High-resolution atmospheric reconstruction for Europe 1948–2012: coastDat2. Earth Syst. Sci. Data 2014, 6, 147–164. [Google Scholar] [CrossRef]
- Kalnay, E.; Kanamitsu, M.; Kistler, R.; Collins, W.; Deaven, D.; Gandin, L.; Iredell, M.; Saha, S.; White, G.; Woollen, J.; et al. The NCEP/NCAR 40-year reanalysis project. Bull. Am. Meteorol. Soc. 1996, 77, 437–471. [Google Scholar] [CrossRef]
- Schulz, J.P.; Schaettler, U. Kurze Beschreibung des Lokal-Modells Europa COSMO-EU (LME) und seiner Datenbanken auf dem Datenserver des DWD. 2009. Deutscher Wetterdienst. Available online: http://www.dwd.de/bvbw/generator/Sites/DWDWWW/Content/Forschung/FE1/Veroeffentlichungen/Download/LME__DBbeschr__0901,templateId=raw,property=publicationFile.pdf/LME_DBbeschr_0901.pdf (accessed on 23 January 2019).
- Doms, G.; F¨orstner, J.; Heise, E.; Herzog, H.-J.; Mironov, D.; Raschendorfer, M.; Reinhardt, T.; Ritter, B.; Schrodin, R.; Schulz, J.-P.; et al. A Description of the Nonhydrostatic Regional COSMO Model. Part II: Physical Parameterization. Deutscher Wetterdienst. 2011. Available online: http://www.cosmo-model.org/content/model/documentation/core/cosmoPhysParamtr.pdf (accessed on 23 January 2019).
- Tiedtke, M. A Comprehensive Mass Flux Scheme for Cumulus Parameterization in Large-scale Models. Mon. Weather Rev. 1989, 117, 1779–1800. [Google Scholar] [CrossRef]
- Schulz, J.-P.; Heise, E. A new scheme for diagnosing near-surface convective gusts. COSMO Newsl. 2003, 3, 221–225. [Google Scholar]
- Schulz, J.-P. Revision of the turbulent gust diagnostic in the COSMO model. COSMO Newsl. 2008, 8, 17–22. [Google Scholar]
- Von Storch, H.; Langenberg, H.; Feser, F. A Spectral Nudging Technique for Dynamical Downscaling Purposes. Mon. Weather Rev. 2000, 128, 3664–3673. [Google Scholar] [CrossRef]
- Schaaf, B.; von Storch, H.; Feser, F. Does Spectral Nudging Have an Effect on Dynamical Downscaling Applied in Small Regional Model Domains? Mon. Weather Rev. 2017, 145, 4303–4311. [Google Scholar] [CrossRef] [Green Version]
- Mann, H.B. Nonparametric Tests against Trend. Econometrica 1945, 13, 245–259. [Google Scholar] [CrossRef]
- Kendall, M.G. Rank Correlation Methods. Available online: https://onlinelibrary.wiley.com/doi/abs/10.1111/j.2044-8317.1956.tb00172.x (accessed on 23 January 2019).
- Weisse, R.; von Storch, H.; Callies, U.; Chrastansky, A.; Feser, F.; Grabemann, I.; Günther, H.; Pluess, A.; Stoye, T.; Tellkamp, J.; et al. Regional Meteorological–Marine Reanalyses and Climate Change Projections. Bull. Am. Meteorol. Soc. 2009, 90, 849–860. [Google Scholar] [CrossRef]
- University of East Anglia Climatic Research Unit (CRU). CRU TS3.20, Climatic Research Unit (CRU) Time-Series (TS) Version 3.20 of High Resolution Gridded Data of Month-by-month Variation in Climate (Jan. 1901–Dec. 2011); NCAS British Atmospheric Data Centre: Leeds, UK, 2013. [Google Scholar]
- DWD Climate Data Center (CDC), Raster der Monatsmittel der Lufttemperatur (2m) für Deutschland, Version v1.0. Available online: http://ftp-cdc.dwd.de/pub/CDC/grids_germany/monthly/air_temperature_mean/ (accessed on 27 June 2018).
- Haylock, M.R.; Hofstra, N.; Klein Tank, A.M.G.; Klok, E.J.; Jones, P.D.; New, M. A European daily high-resolution gridded data set of surface temperature and precipitation for 1950–2006. J. Geophys. Res. Atmos. 2008, 113. [Google Scholar] [CrossRef]
- Willmott, C.J.; Matsuura, K. Terrestrial Air Temperature, Gridded Monthly Time Series (1950–2014) (V 4.01). 2015. Available online: http://climate.geog.udel.edu/~climate/html_pages/Global2014/README.GlobalTsT2014.html (accessed on 27 June 2018).
- Schultze, M.; Rockel, B. Direct and semi-direct effects of aerosol climatologies on long-term climate simulations over Europe. Clim. Dyn. 2017. [Google Scholar] [CrossRef]
- Alexandersson, H.; Tuomenvirta, H.; Schmith, T.; Iden, K. Trends of storms in NW Europe derived from an updated pressure data set. Clim. Res. 2000, 14, 71–73. [Google Scholar] [CrossRef] [Green Version]
- Krueger, O.; Feser, F.; Weisse, R. Northeast Atlantic Storm Activity and Its Uncertainty from the Late Nineteenth to the Twenty-First Century. J. Clim. 2019, 32, 1919–1931. [Google Scholar] [CrossRef]
- Matulla, C.; Schöner, W.; Alexandersson, H.; von Storch, H.; Wang, X.L. European storminess: Late nineteenth century to present. Clim. Dyn. 2008, 31, 125–130. [Google Scholar] [CrossRef]
- Hurrell Station-Based DJFM NAO Index. Available online: https://climatedataguide.ucar.edu/sites/default/files/nao_station_djfm.txt (accessed on 27 June 2018).
- Global Land and Ocean Temperature Anomalies. Available online: https://www.ncdc.noaa.gov/cag/global/time-series/globe/land_ocean/ytd/12/1880-2018.csv (accessed on 27 June 2018).
- Barcikowska, M.; Feser, F.; Zhang, W.; Mei, W. Changes in intense tropical cyclone activity for the western North Pacific during the last decades derived from a regional climate model simulation. Clim. Dyn. 2017, 49, 2931–2949. [Google Scholar] [CrossRef] [Green Version]
- Barcikowska, M.J.; Weaver, S.J.; Feser, F.; Russo, S.; Schenk, F.; Stone, D.A.; Zahn, M. Euro-Atlantic winter storminess and precipitation extremes under 1.5 °C versus 2 °C warming scenarios. Earth Syst. Dyn. Discuss. 2018, 9. [Google Scholar] [CrossRef]
- McCabe, G.J.; Clark, M.P.; Serreze, M.C. Trends in Northern Hemisphere Surface Cyclone Frequency and Intensity. J. Clim. 2001, 14, 2763–2768. [Google Scholar] [CrossRef]
- Schneidereit, A.; Blender, R.; Fraedrich, K.; Lunkeit, F. Icelandic climate and North Atlantic cyclones in ERA-40 reanalyses. Meteorol. Z. 2007, 16, 17–23. [Google Scholar] [CrossRef]
- Moncrieff, M.W.; Miller, M.J. The dynamics and simulation of tropical cumulonimbus and squall lines. Q. J. R. Meteorol. Soc. 1976, 102, 373–394. [Google Scholar] [CrossRef]
- Markowski, P.; Richardson, Y. Mesoscale Meteorology in Midlatitudes; John Wiley & Sons Ltd.: Hoboken, NJ, USA, 2010; p. 215. [Google Scholar]
- Jhajharia, D.; Singh, V.P. Trends in temperature, diurnal temperature range and sunshine duration in Northeast India. Int. J. Climatol. 2011, 31, 1353–1367. [Google Scholar] [CrossRef]
- Schoetter, R.; Grawe, D.; Hoffmann, P.; Kirschner, P.; Grätz, A.; Schlünzen, K.H. Impact of local adaptation measures and regional climate change on perceived temperature. Meteorol. Z. 2013, 22, 117–130. [Google Scholar] [CrossRef]
- Schmidt, H.; von Storch, H. German Bight storms analysed. Nature 1993, 365, 791. [Google Scholar] [CrossRef]
- Weisse, R.; von Storch, H.; Feser, F. Northeast Atlantic and North Sea Storminess as Simulated by a Regional Climate Model during 1958–2001 and Comparison with Observations. J. Clim. 2005, 18, 465–479. [Google Scholar] [CrossRef]
- Feser, F.; Barcikowska, M.; Krueger, O.; Schenk, F.; Weisse, R.; Xia, L. Storminess over the North Atlantic and Northwestern Europe—A Review. Q. J. R. Meteorol. Soc. 2015, 141, 350–382. [Google Scholar] [CrossRef]
- Casty, C.; Raible, C.C.; Stocker, T.F.; Wanner, H.; Luterbacher, J. A European pattern climatology 1766–2000. Clim. Dyn. 2007, 29, 791–805. [Google Scholar] [CrossRef]
Difference 2 m Temperature in °C | Difference Annual Precipitation in % | |
---|---|---|
GB0028 | 0.7 | −5 |
CoastDat II | 0.6 | −4 |
CoastDat I | 0.6 | 2 |
CRU | 0.9 | 3 |
DWD | 0.8 | 5 |
EOBS 14 | 0.8 | 3 |
Willmott | 0.6 | 0 |
Cuxhaven | 0.9 | 2 |
Hamburg | 1.0 | 6 |
Schwerin | 0.9 | 2 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Schaaf, B.; Feser, F.; Meinke, I. Long-Term Atmospheric Changes in a Convection-Permitting Regional Climate Model Hindcast Simulation over Northern Germany and the German Bight. Atmosphere 2019, 10, 283. https://doi.org/10.3390/atmos10050283
Schaaf B, Feser F, Meinke I. Long-Term Atmospheric Changes in a Convection-Permitting Regional Climate Model Hindcast Simulation over Northern Germany and the German Bight. Atmosphere. 2019; 10(5):283. https://doi.org/10.3390/atmos10050283
Chicago/Turabian StyleSchaaf, Benjamin, Frauke Feser, and Insa Meinke. 2019. "Long-Term Atmospheric Changes in a Convection-Permitting Regional Climate Model Hindcast Simulation over Northern Germany and the German Bight" Atmosphere 10, no. 5: 283. https://doi.org/10.3390/atmos10050283
APA StyleSchaaf, B., Feser, F., & Meinke, I. (2019). Long-Term Atmospheric Changes in a Convection-Permitting Regional Climate Model Hindcast Simulation over Northern Germany and the German Bight. Atmosphere, 10(5), 283. https://doi.org/10.3390/atmos10050283