A Novel Role of PM Extracts on the Post-Transcriptional Control of Pro-Inflammatory Mediators, IL-6 and CXCL8
Abstract
:1. Introduction
2. Experiments
2.1. PM2.5 Extract Preparation
2.2. Cell Culture and Maintenance
2.3. Dose-Response Experiments
2.4. Time-Course Experiments
2.5. Quantitative Real Time PCR
2.6. Nuclear Run-On Assays
2.7. HuR Abundance
2.8. Statistical Analysis
3. Results
3.1. Validation of the Experimental Conditions
3.2. Dose-Response Experiments
3.3. Time Course Experiments
3.4. HuR Abundance
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Backes, C.H.; Nelin, T.; Gorr, M.W.; Wold, L.E. Early life exposure to air pollution: How bad is it? Toxicol. Lett. 2013, 216, 47–53. [Google Scholar] [CrossRef] [PubMed]
- Rodríguez-Cotto, R.; Ortíz-Martínez, M.G.; Rivera-Ramírez, E.; Méndez, L.B.; Dávila, J.C.; Jiménez-Vélez, B.D. African dust storms reaching Puerto Rican coast stimulate the secretion of IL-6 and IL-8 and cause cytotoxicity to human bronchial epithelial cells (BEAS-2B). Health 2013, 5, 14–28. [Google Scholar] [CrossRef] [PubMed]
- Anderson, J.O.; Thundiyil, J.G.; Stolbach, A. Clearing the air: A review of the effects of particulate matter air pollution on human health. J. Med. Toxicol. 2012, 8, 166–175. [Google Scholar] [CrossRef]
- Ferecatu, I.; Borot, M.C.; Bossard, C.; Leroux, M.; Boggetto, N.; Marano, F.; Baeza-Squiban, A.; Andreau, K. Polycyclic aromatic hydrocarbon components contribute to the mitochondria-antiapoptotic effect of fine particulate matter on human bronchial epithelial cells via the aryl hydrocarbon receptor. Part. Fibre Toxicol. 2010, 7, 18. [Google Scholar] [CrossRef]
- Fuentes-Mattei, E.; Rivera, E.; Gioda, A.; Sánchez-Rivera, D.; Román-Velázquez, R.; Jiménez-Vélez, B.D. Use of human bronchial epithelial cells (BEAS-2B) to study immunological markers resulting from exposure to PM2.5 organic extract from Puerto Rico. Toxicol. Appl. Pharmacol. 2009, 243, 381–389. [Google Scholar] [CrossRef] [PubMed]
- Gioda, A.; Peréz, U.; Rosa, Z.; Jiménez-Vélez, B.D. Particulate Matter (PM10 and PM2.5) from different areas of Puerto Rico. Fresenius Environ. Bull. 2007, 16, 861–868. [Google Scholar]
- Mazzarella, G.; Ferraraccio, F.; Prati, M.V.; Annunziata, S.; Bianco, A.; Mezzogiorno, A.; Liguori, G.; Angelillo, I.F.; Cazzola, M. Effects of diesel exhaust particles on human lung epithelial cells: An in vitro study. Resp. Med. 2007, 101, 1155–1162. [Google Scholar] [CrossRef] [Green Version]
- Jiménez-Vélez, B.D.; Gioda, A.; Fuentes-Mattei, E. Organic and aqueous extracts from particulate matter (PM2.5) and their effect on immunological response of human bronchial epithelial cells BEAS-2B. Metal Ions Biol. Med. 2006, 9, 267–272. [Google Scholar]
- Hetland, R.B.; Cassee, F.R.; Lag, M.; Refsnes, M.; Dybing, E.; Schwarze, P.E. Cytokine release from alveolar macrophages exposed to ambient particulate matter: Heterogeneity in relation to size, city and season. Part. Fibre Toxicol. 2005, 2, 4–19. [Google Scholar] [CrossRef]
- Riedl, M.; Díaz-Sánchez, D. Biology of Diesel Exhaust effects on respiratory function. J. Allergy. Clin. Immunol. 2005, 115, 221–228. [Google Scholar] [CrossRef]
- Alfaro-Moreno, E.; Martínez, L.; García-Cuellar, C.; Bonner, J.C.; Murray, C.; Rosas, I.; Ponce de León-Rosales, S.; Osornio-Vargas, A.R. Biologic effects induced in vitro by PM10 from three different zones of Mexico City. Environ. Health Perspect. 2002, 110, 715–720. [Google Scholar] [CrossRef] [PubMed]
- Kawasaki, S.; Takizawa, H.; Takami, K.; Desaki, M.; Okazaki, H.; Kasama, T.; Kobayashi, K.; Yamamoto, K.; Nakahara, K.; Tanaka, M.; et al. Benzene-extracted components are important for the major activity of diesel exhaust particles: Effect on interleukin-8 gene expression in human bronchial epithelial cells. Am. J. Respir. Cell. Mol. Biol. 2001, 24, 419–426. [Google Scholar] [CrossRef]
- Nemmar, A.; Holme, J.A.; Rosas, I.; Schwarze, P.E.; Alfaro-Moreno, E. Recent advances in Particulate Matter and Nanoparticle Toxicology: A review of the in vivo and in vitro studies. BioMed Res. Int. 2013, 1–22. [Google Scholar] [CrossRef]
- Hamilton, T.; Li, X.; Novotny, M.; Pavicic, P.G., Jr.; Datta, S.; Zhao, C.; Hartupee, J.; Sun, D. Cell type- and stimulus-specific mechanisms for post-transcriptional control of neutrophil chemokine gene expression. J. Leukoc. Biol. 2012, 91, 377–383. [Google Scholar] [CrossRef] [PubMed]
- Palanisamy, V.; Jakymiw, A.; Van Tubergen, E.A.; D’Silva, N.J.; Kirkwood, K.L. Control of cytokine mRNA expression by RNA-binding proteins and micro RNAs. J. Dent. Res. 2012, 91, 651–658. [Google Scholar] [CrossRef]
- Joe, Y.; Kim, H.J.; Kim, S.; Chung, J.; Ko, M.S.; Lee, W.H.; Chang, K.C.; Park, J.W.; Chung, H.T. Tristetraprolin mediates anti-inflammatory effects of nicotine in lipopolisaccharide-stimulated macrophages. J. Biol. Chem. 2011, 286, 24735–24742. [Google Scholar] [CrossRef]
- Hao, S.; Baltimore, D. The stability of mRNA influences the temporal order of the induction of genes encoding inflammation molecules. Nat. Immunol. 2009, 10, 281–288. [Google Scholar] [CrossRef] [PubMed]
- Shoenberg, D.R.; Maquat, L.E. Regulation of cytoplasmic mRNA decay. Nat. Rev. Genet. 2012, 13, 246–259. [Google Scholar] [CrossRef] [Green Version]
- Stumpo, D.J.; Lai, W.S.; Blackshear, P.J. Inflammation: Cytokines and RNA-based regulation. Wiley Interdiscip. Rev. RNA 2010, 1, 60–80. [Google Scholar] [CrossRef]
- Lal, A.; Mazan-Mamczarz, K.; Kawai, T.; Yang, X.; Martindale, J.L.; Gorospe, M. Concurrent versus individual binding of HuR and AUF-1 to common labile target mRNAs. EMBO J. 2004, 23, 3092–3112. [Google Scholar] [CrossRef]
- Wilusz, C.J.; Wormington, M.; Peltz, S.T. The Cap-to-tail guide to mRNA turnover. Nature Rev. Mol. Cell. Biol. 2001, 2, 237–246. [Google Scholar] [CrossRef] [PubMed]
- Barreau, C.; Paillard, L.; Osborne, A.B. AU-rich elements and associated factors: Are there unifying principles. Nucl. Ac. Res. 2005, 33, 7138–7150. [Google Scholar] [CrossRef]
- Cheneval, D.; Kastelic, T.; Fuerst, P.; Parker, C. A review of methods to monitor the modulation of mRNA stability: A novel approach to drug discovery and therapeutic intervention. J. Biomol. Screen. 2010, 15, 609–622. [Google Scholar] [CrossRef] [PubMed]
- Gratacós, F.M.; Brewer, G. The role of AUF1 in regulated mRNA decay. Wiley Interdiscip. Rev. RNA 2010, 1, 457–473. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Moretto, N.; Bertolini, S.; Iadicicco, C.; Marchini, G.; Kaur, M.; Volpi, G.; Patacchini, R.; Singh, D.; Facchinetti, F. Cigarette smoke and its component acrolein augment IL-8/CXCL8 mRNA stability via p38 MAPK/MK2 signaling in human pulmonary cells. Am. J. Physiol. Lung Cell Mol. Physiol. 2012, 303, L929–L938. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Acevedo Figueroa, D.; Rodríguez-Sierra, C.J.; Jiménez-Vélez, B.J. Concentrations of Ni and V, other heavy metals, arsenic, elemental and organic carbon in atmospheric fine particles (PM2.5) from Puerto Rico. Toxicol. Ind. Health 2006, 22, 87–99. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Borenfreund, E.; Puerner, J.A. Toxicity determined in vitro by morphological alterations and neutral red absorption. Toxicol. Lett. 1981, 24, 119–124. [Google Scholar] [CrossRef]
- Graham, J.R.; Hendershott, M.C.; Terragni, J.; Cooper, G.M. mRNA degradation plays a significant role in the program of gene expression regulated by phosphatidylinositol 3-kinase signaling. Mol. Cell Biol. 2010, 30, 5295–5305. [Google Scholar] [CrossRef]
- Chen, C.-Y.A.; Shyu, A.-B. AU-rich elements: Characterization and importance in mRNA degradation. Trends Biochem. Sci. 1995, 20, 465–470. [Google Scholar] [CrossRef]
- Patrone, G.; Puppo, F.; Cusano, R.; Scaranari, M.; Ceccherini, I.; Puliti, A.; Ravazzolo, R. Nuclear run-on assay using biotin labeling, magnetic bead capture and analysis by fluorescence-based RT-PCR. Bio. Tech. 2000, 29, 1012–1017. [Google Scholar] [CrossRef] [PubMed]
- Lahiri, D.K.; WenGe, Y. Electrophoretic mobility shift assay for the detection of specific DNA–protein complex in nuclear extracts from the cultured cells and frozen autopsy human brain tissue. Brain Res. Protoc. 2000, 5, 257–265. [Google Scholar] [CrossRef]
- Rodríguez-Cotto, R.; Ortíz-Martínez, M.G.; Jiménez-Vélez, B.D. Organic extracts from African dust storms stimulate oxidative stress and induce inflammatory responses in human lung cells through Nrf2 but not NF-kB. Envirol. Toxicol. Pharmacol. 2015, 39, 845–856. [Google Scholar] [CrossRef]
- US Environmental Protection Agency. Air Quality Criteria for Particulate Matter, Vol. I.; National Center for Environmental Assessment RTP Office: Research Triangle Park, NC, USA, 2004.
- Veranth, J.M.; Reilly, C.A.; Veranth, M.M.; Moss, T.A.; Langelier, C.R.; Lanza, D.L.; Yost, G.S. Inflammatory cytokines and cell death in BEAS-2B lung cells treated with soil dust, lipopolysaccharide, and surface-modified particles. Toxicol. Sci. 2004, 82, 88–96. [Google Scholar] [CrossRef] [PubMed]
- Fujii, T.; Hayashi, S.; Hogg, J.C.; Vincent, R.; Van Eeden, S.F. Particulate Matter induces cytokine expression in human bronchial epithelial cells. Am. J. Respir. Cell Mol. Biol. 2001, 25, 265–271. [Google Scholar] [CrossRef]
- Monn, C.; Becker, S. Cytotoxicity and induction of Pro-inflammatory cytokines from human monocytes exposed to fine (PM2.5) and coarse particles (PM10-2.5) in outdoor and indoor air. Toxicol. Appl. Pharmacol. 1999, 155, 245–252. [Google Scholar] [CrossRef]
- Ortiz Martínez, M.G.; Rivera, E.; Méndez, L.; Jiménez Vélez, B.D. Role of chemical and biological constituents of PM10 from Saharan Dust in the exacerbation of asthma in Puerto Rico. In Biodiversity Science for Humanity; Theophanides, M., Theophanides, T., Eds.; Athens Institute for Education and Research (ATINER): Athens, Greece, 2010; pp. 101–118. [Google Scholar]
- Longhin, E.; Holme, J.A.; Gualtieri, M.; Camatini, M.; Øvrevik, J. Milan winter fine particulate matter (wPM2.5) induces IL-6 and IL-8 synthesis in human bronchial BEAS-2B cells, but specifically impairs IL-8 release. Toxicol. Vitro 2018, 52, 365–373. [Google Scholar] [CrossRef]
- Alvarez-Avilés, O.; Cuadra-Rodríguez, L.; González-Illán, F.; Quiñones-González, J.; Rosario, O. Optimization of a novel method for the organic chemical characterization of atmospheric aerosols based on microwave-assisted extraction combined with stir bar sorptive extraction. Ana. Chim. Acta. 2007, 597, 273–281. [Google Scholar] [CrossRef]
- Ortiz-Martínez, M.G.; Rodríguez-Cotto, R.I.; Ortiz-Rivera, M.A.; Pluguez-Turull, C.W.; Jiménez-Vélez, B.D. Linking endotoxins, African Dust PM10 and asthma in an urban and rural Environment of Puerto Rico. Mediators Inflamm. 2015, 2015. [Google Scholar] [CrossRef] [PubMed]
- Jia, Y.; Wang, Q.; Liu, T. Toxicity research of PM2.5 compositions in vitro. Int. J. Environ. Res. Public Health 2017, 14, 232. [Google Scholar] [CrossRef]
- Øvrevik, J.; Refsnes, M.; Låg, M.; Holme, J.A.; Schwarze, P.E. Activation of proinflammatory responses in cell of the airway mucosa by Particulate Matter: Oxidant- and non-oxidant mediated triggering mechanisms. Biomolecules 2015, 5, 1399–1440. [Google Scholar] [CrossRef] [PubMed]
- Longhin, E.; Capasso, L.; Battaglia, C.; Proverbio, M.C.; Cosentino, C.; Cifola, I.; Mangano, E.; Camatini, M.; Gualtieri, M. Integrative transcriptomic and protein analysis of human bronchial BEAS-2B exposed to seasonal urban particulate matter. Environ. Pollut. 2016, 209, 87–98. [Google Scholar] [CrossRef] [PubMed]
- Bak, R.O.; Mikkelsen, J.G. Regulation of cytokines by small RNAs during skin inflammation. J. Biomed. Sci. 2010, 17, 53. [Google Scholar] [CrossRef] [PubMed]
- Khabar, K.S.A. Post-transcriptional control during chronic inflammation and cancer: A focus on AU-rich elements. Cell. Mol. Life Sci. 2010, 67, 2937–2955. [Google Scholar] [CrossRef] [PubMed]
- Zhou, C.; Vignere, C.Z.; Levitan, E.S. AUF-1 is upregulated by angiotensin II to destabilize cardiac Kv4.3 channel mRNA. J. Mol. Cell. Cardiol. 2008, 45, 832–838. [Google Scholar] [CrossRef]
- David, P.S.; Tanveer, R.; Port, J.D. FRET-detectable interactions between the ARE binding proteins, HuR and AUF-1. RNA 2007, 13, 1453–1468. [Google Scholar] [CrossRef]
- Dean, J.L.E.; Sully, G.; Clark, A.R.; Saklatvala, J. The involvement of AU-rich element-binding proteins in p38 mitogen-activated protein kinase pathway-mediated mRNA stabilization. Cell. Signal. 2004, 16, 1113–1121. [Google Scholar] [CrossRef]
- Kim, Y.M.; Reed, W.; Lenz, A.G.; Jaspers, I.; Silbajoris, R.; Nick, H.S.; Samet, J.M. Ultrafine carbon particles induce interleukin-8 gene transcription and p38 MAPK activation in normal human bronchial epithelial cells. AM. J. Physiol. Lung Cell. Mol. Pysiol. 2005, 288, L432–L441. [Google Scholar] [CrossRef] [PubMed]
- Hashimoto, S.; Gon, Y.; Takeshita, I.; Matsumoto, K.; Jibiki, I.; Takizawa, H.; Kudoh, S.; Horie, T. Diesel Exhaust Particles activate p38 MAP kinase to produce interleukin 8 and RANTES by human bronchial epithelial cells and N-Acetylcysteine attenuates p38 MAP kinase activation. Am. J. Respir. Crit. Care Med. 2000, 161, 280–285. [Google Scholar] [CrossRef]
- Takizawa, H.; Abe, S.; Ohtoshi, T.; Kawasaki, K.; Desaki, M.; Sugawara, I.; Hashimoto, S.; Azuma, A.; Nakahara, K.; Kudoh, S. Diesel exhaust particles up-regulate expression of intercellular adhesion molecule-1 (ICAM-1) in human bronchial epithelial cells. Clin. Exp. Immun. 2000, 120, 356–362. [Google Scholar] [CrossRef] [Green Version]
Treatment | t1/2 IL-6 (min) | t1/2 CXCL8 (min) |
---|---|---|
Media | 18 ± 1 | 16 ± 1 |
LPS | 28 ± 1 | 28 ± 2 |
Carrier | 14 ± 4 | 30 ± 7 |
DEP | 61 ± 4 ** | 32 ± 4 |
Urban | 76 ± 5 *** | 49 ± 4 ** |
Rural | 59 ± 7 ** | 51 ± 3 ** |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rivera-Ramírez, E.; Méndez, L.B.; Ortíz-Rivera, A.; Rodríguez-Cotto, R.I.; Jiménez-Vélez, B. A Novel Role of PM Extracts on the Post-Transcriptional Control of Pro-Inflammatory Mediators, IL-6 and CXCL8. Atmosphere 2019, 10, 270. https://doi.org/10.3390/atmos10050270
Rivera-Ramírez E, Méndez LB, Ortíz-Rivera A, Rodríguez-Cotto RI, Jiménez-Vélez B. A Novel Role of PM Extracts on the Post-Transcriptional Control of Pro-Inflammatory Mediators, IL-6 and CXCL8. Atmosphere. 2019; 10(5):270. https://doi.org/10.3390/atmos10050270
Chicago/Turabian StyleRivera-Ramírez, Evasomary, Loyda B. Méndez, Andrea Ortíz-Rivera, Rosa I. Rodríguez-Cotto, and Braulio Jiménez-Vélez. 2019. "A Novel Role of PM Extracts on the Post-Transcriptional Control of Pro-Inflammatory Mediators, IL-6 and CXCL8" Atmosphere 10, no. 5: 270. https://doi.org/10.3390/atmos10050270
APA StyleRivera-Ramírez, E., Méndez, L. B., Ortíz-Rivera, A., Rodríguez-Cotto, R. I., & Jiménez-Vélez, B. (2019). A Novel Role of PM Extracts on the Post-Transcriptional Control of Pro-Inflammatory Mediators, IL-6 and CXCL8. Atmosphere, 10(5), 270. https://doi.org/10.3390/atmos10050270