Parameter Modulation of Madden-Julian Oscillation Behaviors in BCC_CSM1.2: The Key Role of Moisture-Shallow Convection Feedback
Abstract
:1. Introduction
2. Data and Methodology
2.1. Data
2.2. Methodology
2.2.1. Evaluation of MJO Simulation with Three Canonical Methods
2.2.2. A New Strategy to Evaluate the MJO Simulation Skill
2.2.3. Compositing Technique and Significance Test
3. Composites of Good and Poor Simulations
3.1. Parameter Values
3.2. Zonal Wavenumber-Frequency Spectrum
3.3. Hovmöller diagrams
4. Diagnostics of Climatology
4.1. Mean State
4.2. Environmental Moisture Sensitivity of Convection
5. Role of Moisture-Shallow Convection Feedback
5.1. Pre-Moistening Effect over the Lower-Layer Atmosphere
5.2. Key Role of Shallow Convection Leading the Deep Convection
6. Summary and Discussion
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Madden, R.A.; Julian, P.R. Detection of a 40–50 day oscillation in the zonal wind in the tropical Pacific. J. Atmos. Sci. 1971, 28, 702–708. [Google Scholar] [CrossRef]
- Madden, R.A.; Julian, P.R. Description of global-scale circulation cells in the tropics with a 40–50 day period. J. Atmos. Sci. 1972, 29, 1109–1123. [Google Scholar] [CrossRef]
- Lau, W.K.-M.; Waliser, D.E. Intraseasonal Variability in the Atmosphere-Ocean Climate System; Springer Science & Business Media: Berlin, Germany, 2011. [Google Scholar]
- Zhang, C.D. Madden-Julian oscillation. Rev. Geophys. 2005, 43, 36. [Google Scholar] [CrossRef]
- Wei, Y.; Liu, F.; Mu, M.; Ren, H.-L. Planetary scale selection of the Madden–Julian Oscillation in an air-sea coupled dynamic moisture model. Clim Dyn. 2017, 50, 3441–3456. [Google Scholar] [CrossRef]
- Zhang, C. Madden–Julian oscillation: Bridging Weather and Climate. Bull. Am. Meteorol. Soc. 2013, 94. [Google Scholar] [CrossRef]
- Kim, H.-K.; Seo, K.-H. Cluster analysis of tropical cyclone tracks over the western north pacific using a self-organizing map. J. Clim. 2016, 29, 3731–3751. [Google Scholar] [CrossRef]
- Adames, A.F.; Wallace, J.M. Three-Dimensional Structure and Evolution of the Vertical Velocity and Divergence Fields in the MJO. J. Atmos. Sci. 2014, 71, 267–287. [Google Scholar] [CrossRef]
- Weickmann, K.M. Intraseasonal circulation and outgoing longwave radiation modes during Northern Hemisphere winter. Mon. Weather Rev. 1983, 111, 1838–1858. [Google Scholar] [CrossRef]
- Wang, B.; Liu, F.; Chen, G. A trio-interaction theory for Madden–Julian oscillation. Geosci. Lett. 2016, 3, 34. [Google Scholar] [CrossRef]
- Wang, B.; Rui, H. Dynamics of the coupled moist Kelvin–Rossby wave on an equatorial β-plane. J. Atmos. Sci. 1990, 47, 397–413. [Google Scholar] [CrossRef]
- Liu, F.; Wang, B. Roles of the moisture and wave feedbacks in shaping the Madden–Julian oscillation. J. Clim. 2017, 30, 10275–10291. [Google Scholar] [CrossRef]
- Adames, Á.F.; Kim, D. The MJO as a dispersive, convectively coupled moisture wave: Theory and observations. J. Atmos. Sci. 2016, 73, 913–941. [Google Scholar] [CrossRef]
- Sobel, A.; Maloney, E. An idealized semi-empirical framework for modeling the Madden–Julian oscillation. J. Atmos. Sci. 2012, 69, 1691–1705. [Google Scholar] [CrossRef]
- Sobel, A.; Maloney, E. Moisture modes and the eastward propagation of the MJO. J. Atmos. Sci. 2013, 70, 187–192. [Google Scholar] [CrossRef]
- Woolnough, S.; Slingo, J.; Hoskins, B. The organization of tropical convection by intraseasonal sea surface temperature anomalies. Q. J. R. Meteorol. Soc. 2001, 127, 887–907. [Google Scholar] [CrossRef]
- Andersen, J.A.; Kuang, Z. Moist static energy budget of MJO-like disturbances in the atmosphere of a zonally symmetric aquaplanet. J. Clim. 2012, 25, 2782–2804. [Google Scholar] [CrossRef]
- Kim, D.; Kug, J.-S.; Sobel, A.H. Propagating versus nonpropagating Madden–Julian oscillation events. J. Clim. 2014, 27, 111–125. [Google Scholar] [CrossRef]
- Maloney, E.D. The moist static energy budget of a composite tropical intraseasonal oscillation in a climate model. J. Clim. 2009, 22, 711–729. [Google Scholar] [CrossRef]
- Maloney, E.D.; Sobel, A.H.; Hannah, W.M. Intraseasonal variability in an aquaplanet general circulation model. J. Adv. Model. Earth Syst. 2010, 2. [Google Scholar] [CrossRef] [Green Version]
- Liu, F.; Wang, B. Effects of moisture feedback in a frictional coupled Kelvin–Rossby wave model and implication in the Madden–Julian oscillation dynamics. Clim. Dyn. 2017, 48, 513–522. [Google Scholar] [CrossRef]
- Wang, B.; Chen, G. A general theoretical framework for understanding essential dynamics of Madden–Julian oscillation. Clim. Dyn. 2017, 49, 2309–2328. [Google Scholar] [CrossRef]
- Biello, J.A.; Majda, A.J. A new multiscale model for the Madden–Julian oscillation. J. Atmos. Sci. 2005, 62, 1694–1721. [Google Scholar] [CrossRef]
- Liu, F.; Huang, G.; Feng, L. Critical roles of convective momentum transfer in sustaining the multi-scale Madden–Julian oscillation. Theor. Appl. Climatol. 2012, 108, 471–477. [Google Scholar] [CrossRef]
- Liu, F.; Wang, B. A frictional skeleton model for the Madden–Julian oscillation. J. Atmos. Sci. 2012, 69, 2749–2758. [Google Scholar] [CrossRef]
- Liu, F.; Wang, B. A model for the interaction between 2-day waves and moist Kelvin waves. J. Atmos. Sci. 2012, 69, 611–625. [Google Scholar] [CrossRef]
- Majda, A.J.; Biello, J.A. A multiscale model for tropical intraseasonal oscillations. Proc. Natl. Acad. Sci. USA 2004, 101, 4736–4741. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, B.; Liu, F. A model for scale interaction in the Madden–Julian oscillation. J. Atmos. Sci. 2011, 68, 2524–2536. [Google Scholar] [CrossRef]
- Khouider, B.; Majda, A.J. A Simple multicloud parameterization for convectively coupled tropical waves. Part I: Linear analysis. J. Atmos. Sci. 2006, 63, 1308–1323. [Google Scholar] [CrossRef]
- Khouider, B.; Majda, A.J. A simple multicloud parameterization for convectively coupled tropical waves. Part II: Nonlinear simulations. J. Atmos. Sci. 2007, 64, 381–400. [Google Scholar] [CrossRef]
- Yang, D.; Ingersoll, A.P. Testing the hypothesis that the MJO is a mixed Rossby–gravity wave packet. J. Atmos. Sci. 2011, 68, 226–239. [Google Scholar] [CrossRef]
- Yang, D.; Ingersoll, A.P. Triggered convection, gravity waves, and the MJO: A shallow-water model. J. Atmos. Sci. 2013, 70, 2478–2486. [Google Scholar] [CrossRef]
- Yang, D.; Ingersoll, A.P. A theory of the MJO horizontal scale. Geophys. Res. Lett. 2014, 41, 1059–1064. [Google Scholar] [CrossRef] [Green Version]
- Wang, B.; Xie, X. A Model for the boreal summer intraseasonal oscillation. J. Atmos. Sci. 1997, 54, 72–86. [Google Scholar] [CrossRef]
- Fu, X.; Wang, B. The Boreal-Summer intraseasonal oscillations simulated in a hybrid coupled atmosphere–ocean model. Mon. Weather Rev. 2004, 132, 2628–2649. [Google Scholar] [CrossRef]
- Liu, F.; Wang, B. An air–sea coupled skeleton model for the Madden–Julian oscillation. J. Atmos. Sci. 2013, 70, 3147–3156. [Google Scholar] [CrossRef]
- Wang, B.; Xie, X. Coupled modes of the warm pool climate system. Part I: The role of air–sea interaction in maintaining Madden–Julian oscillation. J. Clim. 1998, 11, 2116–2135. [Google Scholar] [CrossRef]
- Cao, G.; Zhang, G.J. Role of Vertical Structure of Convective Heating in MJO Simulation in NCAR CAM5.3. J. Clim. 2017, 30, 7423–7439. [Google Scholar] [CrossRef]
- Fu, X.H.; Lee, J.Y.; Hsu, P.C.; Taniguchi, H.; Wang, B.; Wang, W.Q.; Weaver, S. Multi-model MJO forecasting during DYNAMO/CINDY period. Clim. Dyn. 2013, 41, 1067–1081. [Google Scholar] [CrossRef] [Green Version]
- Fu, X.H.; Lee, J.Y.; Wang, B.; Wang, W.Q.; Vitart, F. Intraseasonal Forecasting of the Asian Summer Monsoon in Four Operational and Research Models. J. Clim. 2013, 26, 4186–4203. [Google Scholar] [CrossRef]
- Jiang, X.; Waliser, D.E.; Xavier, P.K.; Petch, J.; Klingaman, N.P.; Woolnough, S.J.; Guan, B.; Bellon, G.; Crueger, T.; DeMott, C.; et al. Vertical structure and physical processes of the Madden-Julian oscillation: Exploring key model physics in climate simulations. J. Geophys. Res. Atmos. 2015, 120, 4718–4748. [Google Scholar] [CrossRef] [Green Version]
- Ling, J.; Zhang, C.; Wang, S.; Li, C. A new interpretation of the ability of global models to simulate the MJO. Geophys. Res. Lett. 2017, 44, 5798–5806. [Google Scholar] [CrossRef]
- Xavier, P.K.; Petch, J.C.; Klingaman, N.P.; Woolnough, S.J.; Jiang, X.A.; Waliser, D.E.; Caian, M.; Cole, J.; Hagos, S.M.; Hannay, C.; et al. Vertical structure and physical processes of the Madden-Julian Oscillation: Biases and uncertainties at short range. J. Geophys. Res. Atmos. 2015, 120, 4749–4763. [Google Scholar] [CrossRef] [PubMed]
- Hung, M.-P.; Lin, J.-L.; Wang, W.; Kim, D.; Shinoda, T.; Weaver, S.J. MJO and convectively coupled equatorial waves simulated by CMIP5 climate models. J. Clim. 2013, 26, 6185–6214. [Google Scholar] [CrossRef]
- Waliser, D.; Sperber, K.; Hendon, H.; Kim, D.; Wheeler, M.; Weickmann, K.; Zhang, C.; Donner, L.; Gottschalck, J.; Higgins, W.; et al. MJO Simulation Diagnostics. J. Clim. 2009, 22, 3006–3030. [Google Scholar]
- Wheeler, M.C.; Hendon, H.H. An all-season real-time multivariate MJO index: development of an Index for monitoring and prediction. Mon Weather Rev. 2004, 132. [Google Scholar] [CrossRef]
- Tiedtke, M. A Comprehensive Mass Flux Scheme for Cumulus Parameterization in Large-Scale Models. Mon Weather Rev. 1989, 117, 1779–1800. [Google Scholar] [CrossRef] [Green Version]
- Zhang, G.J.; McFarlane, N.A. Sensitivity of climate simulations to the parameterization of cumulus convection in the Canadian climate centre general circulation model. Atmos. Ocean. 1995, 33, 407–446. [Google Scholar] [CrossRef] [Green Version]
- Zhang, G.J.; Mu, M. Effects of modifications to the Zhang-McFarlane convection parameterization on the simulation of the tropical precipitation in the National Center for Atmospheric Research Community Climate Model, version 3. J. Geophys. Res. Atmos. 2005, 110. [Google Scholar] [CrossRef] [Green Version]
- Tokioka, T.; Yamazaki, K.; Kitoh, A.; Ose, T. The equatorial 30–60 day oscillation and the Arakawa-Schubert penetrative cumulus parameterization. J. Meteorol. Soc. Jpn. Ser. II 1988, 66, 883–901. [Google Scholar] [CrossRef]
- Wang, W.; Schlesinger, M.E. The dependence on convection parameterization of the tropical intraseasonal oscillation simulated by the UIUC 11-layer atmospheric GCM. J. Clim. 1999, 12, 1423–1457. [Google Scholar] [CrossRef]
- Maloney, E.D.; Hartmann, D.L. The sensitivity of intraseasonal variability in the NCAR CCM3 to changes in convective parameterization. J. Clim. 2001, 14, 2015–2034. [Google Scholar] [CrossRef]
- Fu, X.; Wang, B. Critical roles of the stratiform rainfall in sustaining the Madden–Julian oscillation: GCM experiments. J. Clim. 2009, 22, 3939–3959. [Google Scholar] [CrossRef]
- Bretherton, C.S.; Peters, M.E.; Back, L.E. Relationships between water vapor path and precipitation over the tropical oceans. J. Clim. 2004, 17, 1517–1528. [Google Scholar] [CrossRef]
- Kim, D.; Xavier, P.; Maloney, E.; Wheeler, M.; Waliser, D.; Sperber, K.; Hendon, H.; Zhang, C.; Neale, R.; Hwang, Y.-T. Process-oriented MJO simulation diagnostic: Moisture sensitivity of simulated convection. J. Clim. 2014, 27, 5379–5395. [Google Scholar] [CrossRef]
- Thayer-Calder, K.; Randall, D.A. The Role of Convective Moistening in the Madden-Julian Oscillation. J. Atmos. Sci. 2009, 66, 3297–3312. [Google Scholar] [CrossRef]
- Liu, X.; Li, W.; Wu, T.; Li, T.; Gu, W.; Bo, Z.; Yang, B.; Zhang, L.; Jie, W. Validity of parameter optimization in improving MJO simulation and prediction using the sub-seasonal to seasonal forecast model of Beijing Climate Center. Clim Dyn. 2018, 52, 3823–3843. [Google Scholar] [CrossRef]
- Wu, T.; Song, L.; Li, W.; Wang, Z.; Zhang, H.; Xin, X.; Zhang, Y.; Zhang, L.; Li, J.; Wu, F.; et al. An overview of BCC climate system model development and application for climate change studies. J. Meteorol. Res. 2014, 28, 34–56. [Google Scholar] [CrossRef]
- Ji, J.; Huang, M.; Li, K. Prediction of carbon exchanges between China terrestrial ecosystem and atmosphere in 21st century. Sci. China Ser. D Earth Sci. 2008, 51, 885–898. [Google Scholar] [CrossRef]
- Winton, M. A Reformulated Three-Layer Sea Ice Model. J. Atmos. Ocean. Technol. 2000, 17, 525–531. [Google Scholar] [CrossRef] [Green Version]
- Wu, T.; Yu, R.; Zhang, F.; Wang, Z.; Dong, M.; Wang, L.; Jin, X.; Chen, D.; Li, L. The Beijing Climate Center atmospheric general circulation model: description and its performance for the present-day climate. Clim Dyn. 2008, 34, 123. [Google Scholar] [CrossRef]
- McKay, M.D. Latin hypercube sampling as a tool in uncertainty analysis of computer models. In Proceedings of the 24th Conference on Winter Simulation, Arlington, VA, USA, 13–16 December 1992; ACM Press: New York, NY, USA, 1947; pp. 557–564. [Google Scholar]
- Liebmann, B.; Smith, C.A. Description of a Complete (Interpolated) Outgoing Longwave Radiation Dataset. Bull. Am. Meteorol. Soc. 1996, 77, 1275–1277. [Google Scholar]
- Huffman, G.J.; Bolvin, D.T.; Nelkin, E.J.; Wolff, D.B.; Adler, R.F.; Gu, G.; Hong, Y.; Bowman, K.P.; Stocker, E.F. The TRMM Multisatellite Precipitation Analysis (TMPA): Quasi-Global, Multiyear, Combined-Sensor Precipitation Estimates at Fine Scales. J. Hydrometeorol. 2007, 8, 38–55. [Google Scholar] [CrossRef]
- Dee, D.P.; Uppala, S.M.; Simmons, A.J.; Berrisford, P.; Poli, P.; Kobayashi, S.; Andrae, U.; Balmaseda, M.A.; Balsamo, G.; Bauer, P.; et al. The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Q. J. R. Meteorol. Soc. 2011, 137, 553–597. [Google Scholar] [CrossRef]
- Hannah, W.M.; Maloney, E.D. The Role of Moisture-Convection Feedbacks in Simulating the Madden-Julian Oscillation. J. Clim. 2011, 24, 2754–2770. [Google Scholar] [CrossRef]
- Hirota, N.; Ogura, T.; Tatebe, H.; Shiogama, H.; Kimoto, M.; Watanabe, M. Roles of Shallow Convective Moistening in the Eastward Propagation of the MJO in MIROC6. J. Clim. 2018, 31, 3033–3047. [Google Scholar] [CrossRef]
- Maloney, E.D.; Wolding, B.O. Initiation of an intraseasonal oscillation in an aquaplanet general circulation model. J. Adv. Model. Earth Syst. 2015, 7, 1956–1976. [Google Scholar] [CrossRef] [Green Version]
- Wolding, B.O.; Maloney, E.D. Objective Diagnostics and the Madden–Julian Oscillation. Part I: Methodology. J. Clim. 2015, 28, 4127–4140. [Google Scholar] [CrossRef]
- Wheeler, M.; Kiladis, G.N. Convectively coupled equatorial waves: Analysis of clouds and temperature in the wavenumber-frequency domain. J. Atmos. Sci. 1999, 56, 374–399. [Google Scholar] [CrossRef]
- Zhang, C.D.; Ling, J. Barrier Effect of the Indo-Pacific Maritime Continent on the MJO: Perspectives from Tracking MJO Precipitation. J. Clim. 2017, 30, 3439–3459. [Google Scholar] [CrossRef]
- Zhang, Y.; Xie, S.; Covey, C.; Lucas, D.D.; Gleckler, P.; Klein, S.A.; Tannahill, J.; Doutriaux, C.; Klein, R. Regional assessment of the parameter-dependent performance of CAM4 in simulating tropical clouds. Geophys. Res. Lett. 2012, 39, L14708. [Google Scholar] [CrossRef]
- Yoneyama, K.; Zhang, C.; Long, C.N. Tracking pulses of the Madden–Julian oscillation. Bull. Am. Meteorol. Soc. 2013, 94, 1871–1891. [Google Scholar] [CrossRef]
- Wei, Y.; Mu, M.; Ren, H.L.; Fu, J.X. Conditional Nonlinear Optimal Perturbations of Moisture Triggering Primary MJO Initiation. Geophys. Res. Lett. 2019, 46, 3492–3501. [Google Scholar] [CrossRef]
- Guo, Y.; Jiang, X.; Waliser, D.E. Modulation of the convectively coupled Kelvin waves over South America and the tropical Atlantic Ocean in association with the Madden–Julian oscillation. J. Atmos. Sci. 2014, 71, 1371–1388. [Google Scholar] [CrossRef]
- Guo, Y.; Waliser, D.E.; Jiang, X. A Systematic Relationship between the Representations of Convectively Coupled Equatorial Wave Activity and the Madden–Julian Oscillation in Climate Model Simulations. J. Clim. 2015, 28, 1881–1904. [Google Scholar] [CrossRef]
- Kim, D.; Sperber, K.; Stern, W.; Waliser, D.; Kang, I.-S.; Maloney, E.; Wang, W.; Weickmann, K.; Benedict, J.; Khairoutdinov, M. Application of MJO simulation diagnostics to climate models. J. Clim. 2009, 22, 6413–6436. [Google Scholar] [CrossRef]
- Chang, C.W.J.; Tseng, W.L.; Hsu, H.H.; Keenlyside, N.; Tsuang, B.J. The Madden-Julian Oscillation in a warmer world. Geophys. Res. Lett. 2015, 42, 6034–6042. [Google Scholar] [CrossRef] [Green Version]
- Maloney, E.D.; Adames, Á.F.; Bui, H.X. Madden–Julian oscillation changes under anthropogenic warming. Nat. Clim. Chang. 2019, 9, 26–33. [Google Scholar] [CrossRef]
- Gonzalez, A.O.; Jiang, X. Winter mean lower tropospheric moisture over the Maritime Continent as a climate model diagnostic metric for the propagation of the Madden-Julian oscillation. Geophys. Res. Lett. 2017, 44, 2588–2596. [Google Scholar] [CrossRef] [Green Version]
- Xavier, P.K. Intraseasonal Convective Moistening in CMIP3 Models. J. Clim. 2012, 25, 2569–2577. [Google Scholar] [CrossRef]
- Hsu, P.-C.; Li, T. Role of the boundary layer moisture asymmetry in causing the eastward propagation of the Madden–Julian oscillation. J. Clim 2012, 25, 4917–4931. [Google Scholar] [CrossRef]
- Zhao, C.; Li, T.; Zhou, T. Precursor signals and processes associated with MJO initiation over the tropical Indian Ocean. J. Clim. 2013, 26, 291–307. [Google Scholar] [CrossRef]
- Hsu, P.-C.; Li, T.; Murakami, H. Moisture asymmetry and MJO eastward propagation in an aquaplanet general circulation model. J. Clim. 2014, 27, 8747–8760. [Google Scholar] [CrossRef]
- Wang, L.; Li, T.; Maloney, E.; Wang, B. Fundamental Causes of Propagating and Nonpropagating MJOs in MJOTF/GASS Models. J. Clim. 2017, 30, 3743–3769. [Google Scholar] [CrossRef]
- Yanai, M.; Esbensen, S.; Chu, J.-H. Determination of bulk properties of tropical cloud clusters from large-scale heat and moisture budgets. J. Atmos. Sci. 1973, 30, 611–627. [Google Scholar] [CrossRef]
- Wang, B. Dynamics of tropical low-frequency waves: An analysis of the moist Kelvin wave. J. Atmos. Sci. 1988, 45, 2051–2065. [Google Scholar] [CrossRef]
- Wang, B.; Chen, J. On the zonal-scale selection and vertical structure of equatorial intraseasonal waves. Q. J. R. Meteorol. Soc. 1989, 115, 1301–1323. [Google Scholar] [CrossRef]
- Peatman, S.C.; Matthews, A.J.; Stevens, D.P. Propagation of the Madden–Julian Oscillation through the Maritime Continent and scale interaction with the diurnal cycle of precipitation. Q. J. R. Meteorol. Soc. 2014, 140, 814–825. [Google Scholar] [CrossRef]
- Boyle, J.; Klein, S.; Lucas, D.; Ma, H.Y.; Tannahill, J.; Xie, S. The parametric sensitivity of CAM5’s MJO. J. Geophys. Res. Atmos. 2015, 120, 1424–1444. [Google Scholar] [CrossRef]
- Liu, X.; Wu, T.; Yang, S.; Li, T.; Jie, W.; Zhang, L.; Wang, Z.; Liang, X.; Li, Q.; Cheng, Y. MJO prediction using the sub-seasonal to seasonal forecast model of Beijing Climate Center. Clim Dyn. 2017, 48, 3283–3307. [Google Scholar] [CrossRef]
Parameter | Description (units) | Default Value | Minimum | Maximum |
---|---|---|---|---|
Adjustment time scale for shallow convection (s) | 1.8 × 103 | 0.9 × 103 | 9.0 × 103 | |
Precipitation efficiency for shallow convection () | 0.8 × 10−4 | 0.5 × 10−4 | 3.0 × 10−4 | |
Relative humidity threshold for low stable clouds (fraction) | 0.87 | 0.80 | 0.99 | |
Relative humidity threshold for high stable clouds (fraction) | 0.65 | 0.65 | 0.85 | |
Relative humidity threshold for convection trigger (fraction) | 0.60 | 0.60 | 0.85 | |
Precipitation efficiency for deep convection () | 2.0 × 10−3 | 1.0 × 10−3 | 6.0 × 10−3 | |
Evaporation efficiency for deep convective precipitation () | 1.0 × 10−6 | 0.5 × 10−6 | 10.0 × 10−6 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huang, K.; Ren, H.-L.; Liu, X.; Ren, P.; Wei, Y.; Mu, M. Parameter Modulation of Madden-Julian Oscillation Behaviors in BCC_CSM1.2: The Key Role of Moisture-Shallow Convection Feedback. Atmosphere 2019, 10, 241. https://doi.org/10.3390/atmos10050241
Huang K, Ren H-L, Liu X, Ren P, Wei Y, Mu M. Parameter Modulation of Madden-Julian Oscillation Behaviors in BCC_CSM1.2: The Key Role of Moisture-Shallow Convection Feedback. Atmosphere. 2019; 10(5):241. https://doi.org/10.3390/atmos10050241
Chicago/Turabian StyleHuang, Kai, Hong-Li Ren, Xiangwen Liu, Pengfei Ren, Yuntao Wei, and Mu Mu. 2019. "Parameter Modulation of Madden-Julian Oscillation Behaviors in BCC_CSM1.2: The Key Role of Moisture-Shallow Convection Feedback" Atmosphere 10, no. 5: 241. https://doi.org/10.3390/atmos10050241
APA StyleHuang, K., Ren, H. -L., Liu, X., Ren, P., Wei, Y., & Mu, M. (2019). Parameter Modulation of Madden-Julian Oscillation Behaviors in BCC_CSM1.2: The Key Role of Moisture-Shallow Convection Feedback. Atmosphere, 10(5), 241. https://doi.org/10.3390/atmos10050241