Genesis, Maintenance and Demise of a Simulated Tornado and the Evolution of Its Preceding Descending Reflectivity Core (DRC)
Abstract
1. Introduction
2. Methodology
3. Overview of the Simulated Storm
4. Life Cycle of the Simulated Tornado
4.1. DRC Formation (t0 − 19 min ≤ t < t0 min)
4.2. Tornadogenesis (t0 min ≤ t < t0 + 4 min)
4.3. Tornado Intensification and Maturity (t0 + 4 min ≤ t < t0 + 17 min)
4.4. Tornado’s Demise (t0 + 17 min ≤ t ≤ t0 + 24 min)
5. Summary and Discussion
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Pazmany, A.L.; Mead, J.B.; Bluestein, H.B.; Snyder, J.C.; Houser, J.B. A mobile rapid-scanning x-band polarimetric (RaXPol) Doppler radar system. J. Appl. Meteor. 2013, 30, 1398–1413. [Google Scholar] [CrossRef]
- Houser, J.L.; Bluestein, H.B.; Snyder, J.C. A finescale radar examination of the tornadic debris signature and weak-echo reflectivity band associated with a large, violent tornado. Mon. Wea. Rev. 2016, 144, 4101–4130. [Google Scholar] [CrossRef]
- Markowski, P.; Richardson, Y.; Marquis, J.; Wurman, J.; Kosiba, K.; Robinson, P.; Rasmussen, E.; Dowell, D. The Pretornadic Phase of the Goshen County, Wyoming, Supercell of 5 June 2009 Intercepted by VORTEX2. Part II: Intensification of Low-Level Rotation. Mon. Wea. Rev. 2012, 140, 2916–2938. [Google Scholar] [CrossRef]
- Marquis, J.; Richardson, Y.; Markowski, P.; Wurman, J.; Kosiba, K.; Robinson, P. An Investigation of the Goshen County, Wyoming, Tornadic Supercell of 5 June 2009 Using EnKF Assimilation of Mobile Mesonet and Radar Observations Collected during VORTEX2. Part II: Mesocyclone-Scale Processes Affecting Tornado Formation, Maintenance, and Decay. Mon. Wea. Rev. 2016, 144, 3441–3463. [Google Scholar]
- Clark, A.J.; Gao, J.; Marsh, P.T.; Smith, T.; Kain, J.S.; Correia, J., Jr.; Xue, M.; Kong, F. Tornado Pathlength Forecasts from 2010 to 2011 Using Ensemble Updraft Helicity. Wea. Forecasting. 2013, 28, 387–407. [Google Scholar] [CrossRef]
- Naylor, J.; Gilmore, M.S. Vorticity Evolution Leading to Tornadogenesis and Tornadogenesis Failure in Simulated Supercells. J. Atmos. Sci. 2014, 71, 1201–1217. [Google Scholar] [CrossRef]
- Stensrud, D.J.; Wicker, L.J.; Xue, M.; Dawson, D.T.; Yussouf, N.; Wheatley, D.M.; Thompson, T.E.; Snook, N.A.; Smith, T.M.; Schenkman, A.D.; et al. Progress and challenges with Warn-on-Forecast. Atmospheric Research. 2013, 123, 2–16. [Google Scholar]
- Xue, M.; Hu, M.; Schenkman, A.D. Numerical Prediction of the 8 May 2003 Oklahoma City Tornadic Supercell and Embedded Tornado Using ARPS with the Assimilation of WSR-88D Data. Wea. Forecasting. 2014, 29, 39–62. [Google Scholar] [CrossRef]
- Mashiko, W. A Numerical Study of the 6 May 2012 Tsukuba City Supercell Tornado. Part I: Vorticity Sources of Low-Level and Midlevel Mesocyclones. Mon. Wea. Rev. 2016, 144, 1069–1092. [Google Scholar] [CrossRef]
- Mashiko, W. A Numerical Study of the 6 May 2012 Tsukuba City Supercell Tornado. Part II: Mechanisms of Tornadogenesis. Mon. Wea. Rev. 2016, 144, 3077–3098. [Google Scholar] [CrossRef]
- Schenkman, A.D.; Xue, M.; Hu, M. Tornadogenesis in a High-Resolution Simulation of the 8 May 2003 Oklahoma City Supercell. J. Atmos. Sci. 2014, 71, 130–154. [Google Scholar] [CrossRef]
- Markowski, P.M.; Richardson, Y.P. The Influence of Environmental Low-Level Shear and Cold Pools on Tornadogenesis: Insights from Idealized Simulations. J. Atmos. Sci. 2014, 71, 243–275. [Google Scholar] [CrossRef]
- Wicker, L.J.; Wilhelmson, R.B. Simulation and Analysis of Tornado Development and Decay within a Three-Dimensional Supercell Thunderstorm. J. Atmos. Sci. 1995, 52, 2675–2703. [Google Scholar] [CrossRef]
- Wilhelmson, R.B.; Klemp, J.B. A Three-Dimensional Numerical Simulation of Splitting Severe Storms on 3 April 1964. J. Atmos. Sci. 1981, 38, 1581–1600. [Google Scholar] [CrossRef][Green Version]
- Klemp, J.B.; Wilhelmson, R.B.; Ray, P.S. Observed and Numerically Simulated Structure of a Mature Supercell Thunderstorm. J. Atmos. Sci. 1981, 38, 1558–1580. [Google Scholar] [CrossRef][Green Version]
- Klemp, J.B.; Rotunno, R. A Study of the Tornadic Region within a Supercell Thunderstorm. J. Atmos. Sci. 1983, 40, 359–377. [Google Scholar] [CrossRef]
- Orf, L.; Wilhelmson, R.; Lee, B.; Finley, C.; Houston, A. Evolution of a Long-Track Violent Tornado within a Simulated Supercell. Bull. Amer. Meteorol. Soc. 2017, 98, 45–68. [Google Scholar] [CrossRef]
- Meng, Z.; Yao, D. Damage Survey, Radar, and Environment Analyses on the First-Ever Documented Tornado in Beijing during the Heavy Rainfall Event of 21 July 2012. Wea. Forecasting. 2014, 29, 702–724. [Google Scholar] [CrossRef]
- Bryan, G.H.; Fritsch, J.M. A Benchmark Simulation for Moist Nonhydrostatic Numerical Models. Mon. Wea. Rev. 2002, 130, 2917–2928. [Google Scholar] [CrossRef]
- Byko, Z.; Markowski, P.; Richardson, Y.; Wurman, J.; Adlerman, E. Descending Reflectivity Cores in Supercell Thunderstorms Observed by Mobile Radars and in a High-Resolution Numerical Simulation. Wea. Forecasting. 2009, 24, 155–186. [Google Scholar] [CrossRef]
- Roberts, B.; Xue, M.; Schenkman, A.D.; Dawson, D.T. The role of surface friction in tornadogenesis within an idealized supercell simulation. J. Atmos. Sci., 2016, 73, 3371–3395. [Google Scholar] [CrossRef]
- French, M.M.; Bluestein, H.B.; PopStefanija, I.; Baldi, C.A.; Bluth, R.T. Reexamining the Vertical Development of Tornadic Vortex Signatures in Supercells. Mon. Wea. Rev. 2013, 141, 4576–4601. [Google Scholar] [CrossRef]
- Yao, D.; Xue, H.; Yin, J.; Sun, J.; Liang, X.; Guo, J. Investigation into the Formation, Structure, and Evolution of an EF4 Tornado in East China Using a High-Resolution Numerical Simulation. J. Meteorol. Res. 2018, 32, 157–171. [Google Scholar] [CrossRef]
- Trapp, R.J.; Mitchell, E.D.; Tipton, G.A.; Effertz, D.W.; Watson, A.I.; Andra, D.L.; Magsig, M.A. Descending and Nondescending Tornadic Vortex Signatures Detected by WSR-88Ds. Wea. Forecasting. 1999, 14, 625–639. [Google Scholar] [CrossRef]
- Adlerman, E.J.; Droegemeier, K.K.; Davies-Jones, R. A Numerical Simulation of Cyclic Mesocyclogenesis. J. Atmos. Sci. 1999, 56, 2045–2069. [Google Scholar] [CrossRef]
- Dowell, D.C.; Bluestein, H.B. The 8 June 1995 McLean, Texas, Storm. Part I: Observations of Cyclic Tornadogenesis. Mon. Wea. Rev. 2002, 130, 2626–2648. [Google Scholar] [CrossRef]
- Snook, N.; Xue, M. Effects of Microphysical Drop Size Distribution on Tornadogenesis in Supercell Thunderstorms. Geophys. Res. Lett. 2008, 35, 851–854. [Google Scholar] [CrossRef]
- Roberts, B.; Xue, M. The role of surface drag in mesocyclone intensification leading to tornadogenesis within an idealized supercell simulation. J. Atmos. Sci., 2017, 74, 3055–3077. [Google Scholar] [CrossRef]
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yao, D.; Meng, Z.; Xue, M. Genesis, Maintenance and Demise of a Simulated Tornado and the Evolution of Its Preceding Descending Reflectivity Core (DRC). Atmosphere 2019, 10, 236. https://doi.org/10.3390/atmos10050236
Yao D, Meng Z, Xue M. Genesis, Maintenance and Demise of a Simulated Tornado and the Evolution of Its Preceding Descending Reflectivity Core (DRC). Atmosphere. 2019; 10(5):236. https://doi.org/10.3390/atmos10050236
Chicago/Turabian StyleYao, Dan, Zhiyong Meng, and Ming Xue. 2019. "Genesis, Maintenance and Demise of a Simulated Tornado and the Evolution of Its Preceding Descending Reflectivity Core (DRC)" Atmosphere 10, no. 5: 236. https://doi.org/10.3390/atmos10050236
APA StyleYao, D., Meng, Z., & Xue, M. (2019). Genesis, Maintenance and Demise of a Simulated Tornado and the Evolution of Its Preceding Descending Reflectivity Core (DRC). Atmosphere, 10(5), 236. https://doi.org/10.3390/atmos10050236