Sustainable Development of New Urbanization from the Perspective of Coordination: A New Complex System of Urbanization‒Technology Innovation and the Atmospheric Environment
Abstract
:1. Introduction
2. Methods and Materials
2.1. Study Area
2.2. Data Preprocessing
2.3. Methods
2.3.1. Theoretical Framework and Indicator System for the Evaluation of UTA
2.3.2. Determination of Indicator Weight
2.3.3. UTA Coordinated Development Index
2.3.4. Gray Predicted Model (1,1)
3. Results and Discussion
3.1. Variations of Comprehensive Level of UTA Subsystems
3.1.1. Urbanization Subsystem
3.1.2. Technology Innovation Subsystem
3.1.3. Atmospheric Environment Subsystem
3.2. Variations of Coordinated Development Index of UTA Subsystems
3.2.1. Coordination Degree of UTA in 11 Cities
3.2.2. Coordinated Development Index of UTA in 11 Cities
3.3. Predicted Results of UTACDI Based on GM (1,1)
3.4. Policy Implications
4. Conclusions
Supplementary Materials
Supplementary File 1Author Contributions
Funding
Conflicts of Interest
References
- Wang, X.; Hui, E.; Choguill, C.; Jia, S. The new urbanization policy in China: Which way forward? Habitat. Int. 2015, 47, 279–284. [Google Scholar] [CrossRef]
- Chen, M.; Liu, W.; Lu, D.; Chen, H.; Ye, C. Progress of China’s new-type urbanization construction since 2014: A preliminary assessment. Cities 2018, 78, 180–193. [Google Scholar] [CrossRef]
- Guan, X.; Wei, H.; Lu, S.; Dai, Q.; Su, H. Assessment on the urbanization strategy in China: Achievements, challenges and reflections. Habitat. Int. 2018, 71, 97–109. [Google Scholar] [CrossRef]
- Fang, C.; Yu, D. China’s New Urbanization; Springer: Berlin/Heidelberg, Germany; Science Press: Beijing, China, 2016. [Google Scholar]
- Lin, B.; Zhu, J. Changes in urban air quality during urbanization in China. J. Clean. Prod. 2018, 188, 312–321. [Google Scholar] [CrossRef]
- Fang, C.; Liu, H.; Li, G.; Sun, D.; Miao, Z. Estimating the Impact of Urbanization on Air Quality in China Using Spatial Regression Models. Sustainability 2015, 7, 15570–15592. [Google Scholar] [CrossRef] [Green Version]
- Ding, L.; Zhao, W.; Huang, Y.; Cheng, S.; Liu, C. Research on the Coupling Coordination Relationship between Urbanization and the Air Environment: A Case Study of the Area of Wuhan. Atmosphere 2015, 6, 1539–1558. [Google Scholar] [CrossRef] [Green Version]
- Han, L.; Zhou, W.; Li, W.; Li, L. Impact of urbanization level on urban air quality: A case of fine particles (PM2.5) in Chinese cities. Environ. Pollut. 2014, 194, 163–170. [Google Scholar] [CrossRef]
- Xu, S.; Miao, Y.; Gao, C.; Long, R.; Chen, H.; Zhao, B.; Wang, S. Regional differences in impacts of economic growth and urbanization on air pollutants in China based on provincial panel estimation. J. Clean. Prod. 2019, 208, 340–352. [Google Scholar] [CrossRef]
- Zhou, D.; Xu, J.; Wang, L.; Lin, Z. Assessing urbanization quality using structure and function analyses: A case study of the urban agglomeration around Hangzhou Bay (UAHB), China. Habitat. Int. 2015, 49, 165–176. [Google Scholar] [CrossRef]
- Tan, Y.; Jiao, L.; Shuai, C.; Shen, L. A system dynamics model for simulating urban sustainability performance: A China case study. J. Clean. Prod. 2018, 199, 1107–1115. [Google Scholar] [CrossRef]
- Wang, S.; Ma, H.; Zhao, Y. Exploring the relationship between urbanization and the eco-environment—A case study of Beijing-Tianjin-Hebei region. Ecol. Indic. 2014, 45, 171–183. [Google Scholar] [CrossRef]
- He, J.; Wang, S.; Liu, Y.; Ma, H.; Liu, Q. Examining the relationship between urbanization and the eco-environment using a coupling analysis: Case study of Shanghai, China. Ecol. Indic. 2017, 77, 185–193. [Google Scholar] [CrossRef]
- Liu, N.; Liu, C.; Xia, Y.; Da, B. Examining the coordination between urbanization and eco-environment using coupling and spatial analyses: A case study in China. Ecol. Indic 2018, 93, 1163–1175. [Google Scholar] [CrossRef]
- Zhao, Y.; Wang, S.; Ge, Y.; Liu, Q.; Liu, X. The spatial differentiation of the coupling relationship between urbanization and the eco-environment in countries globally: A comprehensive assessment. Ecol. Model. 2017, 360, 313–327. [Google Scholar] [CrossRef]
- Tian, L.; Xu, G.; Fan, C.; Zhang, Y.; Gu, C.; Zhang, Y. Analyzing Mega City-Regions through Integrating Urbanization and Eco-Environment Systems: A Case Study of the Beijing-Tianjin-Hebei Region. Int. J. Environ. Res. Public Health 2019, 16, 114. [Google Scholar] [CrossRef]
- Ostrom, E. A general framework for analyzing sustainability of social-ecological systems. Science 2009, 325, 419–422. [Google Scholar] [CrossRef]
- Cui, X.; Fang, C.; Liu, H.; Liu, X. Assessing sustainability of urbanization by a coordinated development index for an Urbanization-Resources-Environment complex system: A case study of Jing-Jin-Ji region, China. Ecol. Indic. 2019, 96, 383–391. [Google Scholar] [CrossRef]
- Xie, M.; Wang, J.; Chen, K. Coordinated Development Analysis of the “Resources-Environment-Ecology-Economy-Society” Complex System in China. Sustainability 2016, 8, 582. [Google Scholar] [CrossRef]
- Zheng, D.; Zang, Z.; Zhang, Y.; Sun, C. Comprehensive assessment of regional PRED system based on new urbanization approach: A case study in Dalian. Prog. Geogr. 2014, 33, 364–374. (In Chinese) [Google Scholar]
- Xu, X.; González, J.; Shen, S.; Dou, J. Impacts of urbanization and air pollution on building energy demands—Beijing case study. Appl. Energy 2018, 225, 98–109. [Google Scholar] [CrossRef]
- Wang, Q.S.; Yuan, X.L.; Lai, Y.H.; Ma, C.Y.; Ren, W. Research on interactive coupling mechanism and regularity between urbanization and atmospheric environment: A case study in Shandong Province, China. Stoch. Environ. Res. Risk Assess. 2012, 26, 887–898. [Google Scholar] [CrossRef]
- Wang, Q.S.; Yuan, X.L.; Zhang, J.; Mu, R.M.; Yang, H.C.; Ma, C.Y. Key evaluation framework for the impacts of urbanization on air environment: A case study. Ecol. Indic. 2013, 24, 266–272. [Google Scholar] [CrossRef]
- Qiu, G.; Song, R.; He, S. The aggravation of urban air quality deterioration due to urbanization, transportation and economic development—Panel models with marginal effect analyses across China. Sci. Total Environ. 2019, 651, 1114–1125. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.; Fang, C.; Zhang, X.; Wang, Z.; Bao, C.; Li, F. The effect of natural and anthropogenic factors on haze pollution in Chinese cities: A spatial econometrics approach. J. Clean. Prod. 2017, 165, 323–333. [Google Scholar] [CrossRef]
- Han, X.; Li, H.; Liu, Q.; Liu, F.; Arif, A. Analysis of influential factors on air quality from global and local perspectives in China. Environ. Pollut. 2019, 248, 965–979. [Google Scholar] [CrossRef] [PubMed]
- Zhan, D.; Kwan, M.; Zhang, W.; Yu, X.; Meng, B.; Liu, Q. The driving factors of air quality index in China. J. Clean. Prod. 2018, 197, 1342–1351. [Google Scholar] [CrossRef]
- Chen, Y.; Zhao, L. Exploring the relation between the industrial structure and the eco-environment based on an integrated approach: A case study of Beijing, China. Ecol. Indic. 2019, 103, 83–93. [Google Scholar] [CrossRef]
- Ge, M. Dynamic Relationship Between Technology Innovation of Industrial Enterprises and Environmental Pollution: A Case Study of Zhejiang Province, China. Nat. Environ. Pollut. Technol. 2019, 18, 531–536. [Google Scholar]
- Gu, G.; Zhu, W. Interaction Effects between Technology-Driven Urbanization and Eco-Environment: Evidence from China’s East Zhejiang Region. Sustainability 2019, 11, 836. [Google Scholar] [CrossRef]
- Liu, W.; Jiao, F.; Ren, L.; Xu, X.; Wang, J.; Wang, X. Coupling coordination relationship between urbanization and atmospheric environment security in Jinan City. J. Clean. Prod. 2018, 204, 1–11. [Google Scholar] [CrossRef]
- Wang, Y.; Jin, C.; Lu, M.; Lu, Y. Assessing the suitability of regional human settlements environment from a different preferences perspective: A case study of Zhejiang Province, China. Habitat Int. 2017, 70, 1–12. [Google Scholar] [CrossRef]
- Lu, Y.-Y.; He, Y.; Wang, B.; Ye, S.-S.; Hua, Y.; Ding, L. Efficiency Evaluation of Atmospheric Pollutants Emission in Zhejiang Province China: A DEA-Malmquist Based Approach. Sustainability 2019, 11, 4544. [Google Scholar] [CrossRef]
- Chen, Y.; Zang, L.; Du, W.; Shen, G.; Zhang, Q.; Zou, Q.; Chen, J.; Zhao, M.; Yao, D. Ambient air pollution of particles and gas pollutants, and the predicted health risks from long-term exposure to PM 2.5 in Zhejiang province, China. Environ. Sci. Pollut. Res. 2018, 25, 23833–23844. [Google Scholar] [CrossRef] [PubMed]
- Zhejiang Provincial Bureau of Statistics. Zhejiang Statistical Yearbook; China Statistics Press: Beijing, China, 2018.
- Zhejiang Provincial Bureau of Statistics. Zhejiang Natural Resources and Environment Statistical Yearbook; China Statistics Press: Beijing, China, 2018.
- Zhejiang Provincial Bureau of Statistics. Zhejiang Statistical Yearbook of Science and Technology; Zhejiang University Press: Hangzhou, China, 2018.
- Ren, L.J.; Cui, E.Q.; Sun, H.Y. Temporal and spatial variations in the relationship between urbanization and water quality. Environ. Sci. Pollut. Res. 2014, 21, 13646–13655. [Google Scholar] [CrossRef] [PubMed]
- Guo, Y.T.; Wang, H.W.; Nijkamp, P.; Xu, J.G. Space-time indicators in interdependent urban-environmental systems: A study on the Huai River Basin in China. Habitat. Int. 2015, 45, 135–146. [Google Scholar] [CrossRef]
- Ishizaka, A.; Labib, A. Review of the main developments of the analytic hierarchy process. Expert Syst. Appl. 2011, 39, 14336–14345. [Google Scholar] [CrossRef]
- Chen, Y.; Yu, J.; Khan, S. The spatial framework for weight sensitivity analysis in AHP-based multi-criteria decision making. Environ. Model. Softw. 2013, 48, 129–140. [Google Scholar] [CrossRef]
- Fang, C.; Luo, K.; Kong, Y.; Lin, H.; Ren, Y. Evaluating Performance and Elucidating the Mechanisms of Collaborative Development within the Beijing–Tianjin–Hebei Region, China. Sustainability 2018, 10, 471. [Google Scholar] [CrossRef]
- Jiang, Q.; Liu, Z.; Liu, W.; Li, T.; Cong, W.; Zhang, H.; Shi, J. A principal component analysis based three-dimensional sustainability assessment model to evaluate corporate sustainable performance. J. Clean. Prod. 2018, 187, 625–637. [Google Scholar] [CrossRef]
- Tripathi, M.; Singal, S. Use of Principal Component Analysis for parameter selection for development of a novel Water Quality Index: A case study of river Ganga India. Ecol. Indic. 2019, 96, 430–436. [Google Scholar] [CrossRef]
- Dai, Q.; Liu, G.; Liu, M.; Wang, B. An evaluation on sustainable development of eco-economic system in small watershed in hilly area of Northeast China. Acta Geogr. Sin. 2005, 60, 210–218. (In Chinese) [Google Scholar]
- Li, J.; Heap, A. A review of comparative studies of spatial interpolation methods in environmental sciences: Performance and impact factors. Ecol. Inform. 2011, 6, 228–241. [Google Scholar] [CrossRef]
- Liang, L.; Wang, Z.; Fang, C.; Sun, Z. Spatiotemporal differentiation and coordinated development pattern of urbanization and the ecological environment of the Beijing-Tianjin-Hebei urban agglomeration. Acta Ecol. Sin. 2019, 39, 1212–1225. (In Chinese) [Google Scholar]
- Liang, X.; Liang, W.; Zhang, L.; Guo, X. Risk assessment for long-distance gas pipelines in coal mine gobs based on structure entropy weight method and multi-step backward cloud transformation algorithm based on sampling with replacement. J. Clean. Prod. 2019, 227, 218–228. [Google Scholar] [CrossRef]
- Liu, F.; Zhao, S.; Weng, M.; Liu, Y. Fire risk assessment for large-scale commercial buildings based on structure entropy weight method. Saf. Sci. 2017, 94, 26–40. [Google Scholar] [CrossRef]
- Cheng, Q. Structure entropy weight method to confirm the weight of evaluating index. Syst. Eng. Theory Pract. 2010, 30, 1225–1228. [Google Scholar]
- Zhao, X.; Guo, H.; Huang, C.; Zhong, J. Teaching evaluation system research based on structure entropy weight method. J. Discrete Math. Sci. Cryptogr. 2017, 20, 179–191. [Google Scholar] [CrossRef]
- Mamat, Z.; Yimit, H.; Eziz, M.; Ablimit, A. Analysis of the ecology-economy coordination degree in yanqi basin, Xinjiang, China. Asian J. Chem. 2013, 25, 9034–9040. [Google Scholar] [CrossRef]
- Li, Y.; Li, Y.; Zhou, Y.; Shi, Y.; Zhu, X. Investigation of a coupling model of coordination between urbanization and the environment. J. Environ. Manag. 2012, 98, 127–133. [Google Scholar] [CrossRef]
- Yang, Q.; Ding, Y.; De Vries, B.; Han, Q.; Ma, H.M. Assessing regional sustainability using a model of coordinated development index: A case study of mainland China. Sustainability 2014, 6, 9282–9304. [Google Scholar] [CrossRef]
- Tang, Z. An integrated approach to evaluating the coupling coordination between tourism and the environment. Tour. Manag. 2015, 46, 11–19. [Google Scholar] [CrossRef]
- Wu, J.; Wang, X.; Wang, X.; Peng, W. Measurement of system coordination degree of China National Sustainable Communities. Int. J. Sustain. Dev. Plan. 2017, 12, 922–932. [Google Scholar] [CrossRef]
- Li, M.; Wang, W.; De, G.; Ji, X.; Tan, Z. Forecasting carbon emissions related to energy consumption in Beijing-Tianjin-Hebei region based on grey prediction theory and extreme learning machine optimized by support vector machine algorithm. Energies 2018, 11, 2475. [Google Scholar] [CrossRef]
- Sun, W.; Hou, Y.; Guo, L. Analyzing and Forecasting Energy Consumption in China’s Manufacturing Industry and Its Subindustries. Sustainability 2019, 11, 99. [Google Scholar] [CrossRef]
- Wang, Z.X.; Li, Q.; Pei, L.L. A seasonal GM (1, 1) model for forecasting the electricity consumption of the primary economic sectors. Energy 2018, 154, 522–534. [Google Scholar] [CrossRef]
- Cao, W.; Li, R.; Chi, X.; Chen, N.; Chen, J.; Zhang, H.; Zhang, F. Island urbanization and its ecological consequences: A case study in the Zhoushan Island, East China. Ecol. Indic. 2017, 76, 1–14. [Google Scholar] [CrossRef]
- Wu, A.; Wang, C.; Li, S. Geographical knowledge search, internal R&D intensity and product innovation of clustering firms in Zhejiang, China. Pap. Reg. Sci. 2015, 94, 553–572. [Google Scholar]
- Yu, Y.; Deng, Y.; Chen, F. Impact of population aging and industrial structure on CO2 emissions and emissions trend prediction in China. Atmos. Pollut. Res. 2018, 9, 446–454. [Google Scholar] [CrossRef]
- Tang, D.; Ma, T.; Li, Z.; Tang, J.; Bethel, B.J. Trend Prediction and Decomposed Driving Factors of Carbon Emissions in Jiangsu Province during 2015–2020. Sustainability 2016, 8, 1018. [Google Scholar] [CrossRef]
- Zhang, C.; Zhong, S.; Wang, X.; Shen, L.; Liu, L.; Liu, Y. Land Use Change in Coastal Cities during the Rapid Urbanization Period from 1990 to 2016: A Case Study in Ningbo City, China. Sustainability 2019, 11, 2122. [Google Scholar] [CrossRef]
Subsystem | Second Level Indicator | W1 | Primary Indicator | W2 | W3 | Effect |
---|---|---|---|---|---|---|
Urbanization | Urbanization level | 0.466 | Percentage of urban population | 0.386 | 0.180 | Positive |
Area of urban construction land (km2) | 0.303 | 0.141 | Positive | |||
Percentage of the tertiary industry | 0.311 | 0.145 | Positive | |||
Urbanization efficiency | 0.534 | GDP per capita (Yuan) | 0.204 | 0.109 | Positive | |
Number of college students per 10,000 people | 0.195 | 0.104 | Positive | |||
Number of health technicians per 10,000 people | 0.121 | 0.064 | Positive | |||
Urban residents’ per capita disposable income | 0.208 | 0.111 | Positive | |||
Green coverage in built-up areas | 0.124 | 0.066 | Positive | |||
Private vehicle ownership | 0.148 | 0.079 | Positive | |||
Technology innovation | Input in technological innovation | 0.277 | proportion of R&D expenditure in GDP | 0.395 | 0.109 | Positive |
Number of R&D personnel (10,000 people) | 0.341 | 0.094 | Positive | |||
Number of R&D projects of industrial enterprises above scale | 0.264 | 0.073 | Positive | |||
Output in technological innovation | 0.324 | Number of patent applications granted | 0.385 | 0.124 | Positive | |
Technical contract transaction amount (100 million yuan) | 0.228 | 0.074 | Positive | |||
Output value of high-tech industry (100 million yuan) | 0.387 | 0.126 | Positive | |||
Benefits of technological innovation | 0.399 | Production rate of new product | 0.527 | 0.210 | Positive | |
The added value of high-tech industry accounts for the proportion of industries above scale | 0.473 | 0.189 | Positive | |||
Atmospheric environment | Air pollution emission | 0.307 | Total volume of waste gas emission (100 million cu. m) | 0.257 | 0.079 | Negative |
Mass of sulfur dioxide emission (10,000 tons) | 0.200 | 0.061 | Negative | |||
Mass of nitrogen oxide emission (ton) | 0.252 | 0.077 | Negative | |||
Mass of smoke & dust emission (10,000 tons) | 0.292 | 0.089 | Negative | |||
Air pollution control | 0.253 | Energy consumption per unit of GDP | 0.399 | 0.101 | Negative | |
Investment in environmental pollution control | 0.288 | 0.073 | Positive | |||
Waste gas treatment facilities of unit industrial output | 0.314 | 0.079 | Positive | |||
Air quality | 0.440 | Sulfur dioxide concentration (μg/m3) | 0.216 | 0.095 | Negative | |
Nitrogen dioxide concentration (μg/m3) | 0.224 | 0.099 | Negative | |||
Particulate Matter 10 concentration (μg/m3) | 0.279 | 0.123 | Negative | |||
Good air quality rate | 0.281 | 0.124 | Positive |
UTA Indexes | No. of Experts | 1st Choice | 2nd Choice | 3rd Choice | 4th Choice |
---|---|---|---|---|---|
Index A | E1 | √ | |||
E2 | √ | ||||
E3 | √ | ||||
Index B | E1 | √ | |||
E2 | √ | ||||
E3 | √ | ||||
Index C | E1 | √ | |||
E2 | √ | ||||
E3 | √ |
Coordinated development index range | [0, 0.20] | (0.20, 0.40] | (0.40, 0.60] | (0.60, 0.80] | (0.80, 1.00] |
Coordination Types | Serious imbalance | Little coordination | Basic coordination | Good coordination | Excellent coordination |
Error Test | 2016 | 2017 | Relative Error | Relational Degree | Mean Variance Ratio | Small Error Probability | ||
---|---|---|---|---|---|---|---|---|
City | Actual Value | Prediction Value | Actual Value | Prediction Value | ||||
Hangzhou | 0.757 | 0.726 | 0.773 | 0.755 | 0.041 | 0.674 | 0.231 | 1.000 |
Ningbo | 0.769 | 0.752 | 0.760 | 0.786 | 0.023 | 0.681 | 0.111 | 1.000 |
Wenzhou | 0.679 | 0.697 | 0.759 | 0.746 | 0.021 | 0.601 | 0.060 | 1.000 |
Jiaxing | 0.696 | 0.691 | 0.711 | 0.734 | 0.019 | 0.602 | 0.069 | 1.000 |
Huzhou | 0.655 | 0.659 | 0.677 | 0.698 | 0.011 | 0.633 | 0.061 | 1.000 |
Shaoxing | 0.704 | 0.703 | 0.733 | 0.742 | 0.029 | 0.738 | 0.152 | 1.000 |
Jinhua | 0.656 | 0.654 | 0.658 | 0.694 | 0.021 | 0.701 | 0.113 | 1.000 |
Quzhou | 0.544 | 0.532 | 0.547 | 0.565 | 0.009 | 0.704 | 0.072 | 1.000 |
Zhoushan | 0.513 | 0.518 | 0.546 | 0.539 | 0.051 | 0.727 | 0.310 | 0.953 |
Taizhou | 0.646 | 0.646 | 0.668 | 0.676 | 0.012 | 0.600 | 0.032 | 1.000 |
Lishui | 0.545 | 0.562 | 0.559 | 0.587 | 0.110 | 0.613 | 0.161 | 1.000 |
Year | 2018 | 2019 | 2020 | 2021 | 2022 | 2023 | 2024 | 2025 | 2026 | 2027 |
---|---|---|---|---|---|---|---|---|---|---|
Hangzhou | 0.8145 | 0.8236 | 0.8463 | 0.8792 | 0.9135 | 0.9490 | 0.9860 | 1.0244 | 1.0643 | 1.1058 |
Ningbo | 0.8227 | 0.8604 | 0.8999 | 0.9411 | 0.9842 | 1.0293 | 1.0765 | 1.1258 | 1.1774 | 1.2314 |
Wenzhou | 0.7991 | 0.8554 | 0.9157 | 0.9803 | 1.0494 | 1.1234 | 1.2026 | 1.2874 | 1.3782 | 1.4753 |
Jiaxing | 0.7796 | 0.8281 | 0.8795 | 0.9342 | 0.9922 | 1.0538 | 1.1193 | 1.1889 | 1.2627 | 1.3412 |
Huzhou | 0.7396 | 0.7832 | 0.8293 | 0.8782 | 0.9299 | 0.9847 | 1.0428 | 1.1042 | 1.1693 | 1.2382 |
Shaoxing | 0.7844 | 0.8282 | 0.8746 | 0.9235 | 0.9751 | 1.0296 | 1.0872 | 1.1480 | 1.2122 | 1.2800 |
Jinhua | 0.7387 | 0.7852 | 0.8347 | 0.8873 | 0.9432 | 1.0026 | 1.0657 | 1.1328 | 1.2042 | 1.2801 |
Quzhou | 0.6016 | 0.6400 | 0.6808 | 0.7243 | 0.7706 | 0.8198 | 0.8721 | 0.9278 | 0.9871 | 1.0501 |
Zhoushan | 0.5609 | 0.5831 | 0.6062 | 0.6303 | 0.6552 | 0.6812 | 0.7082 | 0.7363 | 0.7655 | 0.7958 |
Taizhou | 0.7086 | 0.7420 | 0.7770 | 0.8136 | 0.8519 | 0.8921 | 0.9341 | 0.9781 | 1.0242 | 1.0725 |
Lishui | 0.7003 | 0.7814 | 0.8718 | 0.9728 | 1.0854 | 1.2111 | 1.3514 | 1.5078 | 1.6824 | 1.8773 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jiang, B.; Ding, L.; Fang, X. Sustainable Development of New Urbanization from the Perspective of Coordination: A New Complex System of Urbanization‒Technology Innovation and the Atmospheric Environment. Atmosphere 2019, 10, 652. https://doi.org/10.3390/atmos10110652
Jiang B, Ding L, Fang X. Sustainable Development of New Urbanization from the Perspective of Coordination: A New Complex System of Urbanization‒Technology Innovation and the Atmospheric Environment. Atmosphere. 2019; 10(11):652. https://doi.org/10.3390/atmos10110652
Chicago/Turabian StyleJiang, Bin, Lei Ding, and Xuejuan Fang. 2019. "Sustainable Development of New Urbanization from the Perspective of Coordination: A New Complex System of Urbanization‒Technology Innovation and the Atmospheric Environment" Atmosphere 10, no. 11: 652. https://doi.org/10.3390/atmos10110652
APA StyleJiang, B., Ding, L., & Fang, X. (2019). Sustainable Development of New Urbanization from the Perspective of Coordination: A New Complex System of Urbanization‒Technology Innovation and the Atmospheric Environment. Atmosphere, 10(11), 652. https://doi.org/10.3390/atmos10110652