On Controls in Ancient Microbiome Studies, and Microbial Resilience in Ancient Samples
Abstract
1. Controls in Ancient Microbiome Studies
2. Considerations about Microbial Resilience in Ancient Samples
Author Contributions
Funding
Conflicts of Interest
References
- Eisenhofer, R.; Weyrich, L.S. Proper authentication of ancient DNA is still essential. Genes 2018, 9, 122. [Google Scholar] [CrossRef] [PubMed]
- Santiago-Rodriguez, T.M.; Fornaciari, G.; Luciani, S.; Toranzos, G.A.; Marota, I.; Giuffra, V.; Cano, R.J. Gut microbiome and putative resistome of inca and italian nobility mummies. Genes 2017, 8, 310. [Google Scholar] [CrossRef] [PubMed]
- Bokulich, N.A.; Kaehler, B.D.; Rideout, J.R.; Dillon, M.; Bolyen, E.; Knight, R.; Huttley, G.A.; Caporaso, J.G. Optimizing taxonomic classification of marker-gene amplicon sequences with QIIME 2’s q2-feature-classifier plugin. Microbiome 2018, 6, 90. [Google Scholar] [CrossRef] [PubMed]
- Velsko, I.M.; Frantz, L.A.F.; Herbig, A.; Larson, G.; Warinner, C. Selection of appropriate metagenome taxonomic classifiers for ancient microbiome research. bioRxiv 2018, 260042. [Google Scholar] [CrossRef]
- Menzel, P.; Ng, K.L.; Krogh, A. Fast and sensitive taxonomic classification for metagenomics with Kaiju. Nat. Commun. 2016, 7, 11257. [Google Scholar] [CrossRef] [PubMed]
- D’Auria, G.; Peris-Bondia, F.; Džunková, M.; Mira, A.; Collado, M.C.; Latorre, A.; Moya, A. Active and secreted IgA-coated bacterial fractions from the human gut reveal an under-represented microbiota core. Sci. Rep. 2013, 3, 3515. [Google Scholar] [CrossRef] [PubMed]
- Adler, C.J.; Dobney, K.; Weyrich, L.S.; Kaidonis, J.; Walker, A.W.; Haak, W.; Bradshaw, C.J.A.; Townsend, G.; Sołtysiak, A.; Alt, K.W.; et al. Sequencing ancient calcified dental plaque shows changes in oral microbiota with dietary shifts of the Neolithic and Industrial revolutions. Nat. Genet. 2013, 45, 450–455. [Google Scholar] [CrossRef] [PubMed]
- Rascovan, N.; Huynh, H.; Chouin, G.; Adekola, K.; Georges-Zimmermann, P.; Signoli, M.; Desfosses, Y.; Aboudharam, G.; Drancourt, M.; Desnues, C. Tracing back ancient oral microbiomes and oral pathogens using dental pulps from ancient teeth. npj Biofilms Microbiomes 2016, 2, 6. [Google Scholar] [CrossRef] [PubMed]
- Hallmaier-Wacker, L.K.; Lueert, S.; Roos, C.; Knauf, S. The impact of storage buffer, DNA extraction method, and polymerase on microbial analysis. Sci. Rep. 2018, 8, 6292. [Google Scholar] [CrossRef] [PubMed]
- Edmonds, K.; Williams, L. The Role of the Negative Control in Microbiome Analyses. FASEB J. 2017, 31, 940–943. [Google Scholar]
- Kim, D.; Hofstaedter, C.E.; Zhao, C.; Mattei, L.; Tanes, C.; Clarke, E.; Lauder, A.; Sherrill-Mix, S.; Chehoud, C.; Kelsen, J.; et al. Optimizing methods and dodging pitfalls in microbiome research. Microbiome 2017, 5, 52. [Google Scholar] [CrossRef] [PubMed]
- Plaza-Díaz, J.; Fernández-Caballero, J.Á.; Chueca, N.; García, F.; Gómez-Llorente, C.; Sáez-Lara, M.J.; Fontana, L.; Gil, Á. Pyrosequencing analysis reveals changes in intestinal microbiota of healthy adults who received a daily dose of immunomodulatory probiotic strains. Nutrients 2015, 7, 3999–4015. [Google Scholar] [CrossRef] [PubMed]
- Pérez-Santiago, J.; Gianella, S.; Massanella, M.; Spina, C.A.; Karris, M.Y.; Var, S.R.; Patel, D.; Jordan, P.S.; Young, J.A.; Little, S.J.; et al. Gut Lactobacillales are associated with higher CD4 and less microbial translocation during HIV infection. AIDS 2013, 27, 1921–1931. [Google Scholar] [CrossRef] [PubMed]
- Gupta, S.; Mohammed, M.; Ghosh, T.; Kanungo, S.; Nair, G.; Mande, S.S. Metagenome of the gut of a malnourished child. Gut Pathog. 2011, 3, 7. [Google Scholar] [CrossRef] [PubMed]
- Peris-Bondia, F.; Latorre, A.; Artacho, A.; Moya, A.; D’Auria, G. The active human gut microbiota differs from the total microbiota. PLoS ONE 2011, 6, e22448. [Google Scholar] [CrossRef] [PubMed]
- Sommer, M.O.A.; Church, G.M.; Dantas, G. The human microbiome harbors a diverse reservoir of antibiotic resistance genes. Virulence 2010, 1, 299–303. [Google Scholar] [CrossRef] [PubMed]
- Allali, I.; Delgado, S.; Marron, P.I.; Astudillo, A.; Yeh, J.J.; Ghazal, H.; Amzazi, S.; Keku, T.; Azcarate-Peril, M.A. Gut microbiome compositional and functional differences between tumor and non-tumor adjacent tissues from cohorts from the US and Spain. Gut Microbes 2015, 6, 161–172. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Ji, F.; Guo, J.; Shi, D.; Fang, D.; Li, L. Dysbiosis of small intestinal microbiota in liver cirrhosis and its association with etiology. Sci. Rep. 2016, 6, 34055. [Google Scholar] [CrossRef] [PubMed]
- Bashiardes, S.; Shapiro, H.; Rozin, S.; Shibolet, O.; Elinav, E. Non-alcoholic fatty liver and the gut microbiota. Mol. Metab. 2016, 5, 782–794. [Google Scholar] [CrossRef] [PubMed]
- Stearns, J.C.; Lynch, M.D.J.; Senadheera, D.B.; Tenenbaum, H.C.; Goldberg, M.B.; Cvitkovitch, D.G.; Croitoru, K.; Moreno-Hagelsieb, G.; Neufeld, J.D. Bacterial biogeography of the human digestive tract. Sci. Rep. 2011, 1, 170. [Google Scholar] [CrossRef] [PubMed]
- Rajilić-Stojanović, M.; de Vos, W.M. The first 1000 cultured species of the human gastrointestinal microbiota. FEMS Microbiol. Rev. 2014, 38, 996–1047. [Google Scholar] [CrossRef] [PubMed]
- Bull, M.J.; Plummer, N.T. Part 1: The Human Gut Microbiome in Health and Disease. Integr. Med. 2014, 13, 17–22. [Google Scholar]
- Struzycka, I. The oral microbiome in dental caries. Pol. J. Microbiol. 2014, 63, 127–135. [Google Scholar] [PubMed]
- The Human Microbiome Project Consortium; Huttenhower, C.; Gevers, D.; Knight, R.; Abubucker, S.; Badger, J.H.; Chinwalla, A.T.; Creasy, H.H.; Earl, A.M.; FitzGerald, M.G.; et al. Structure, function and diversity of the healthy human microbiome. Nature 2012, 486, 207–214. [Google Scholar] [CrossRef]
- Hartman, A.L.; Lough, D.M.; Barupal, D.K.; Fiehn, O.; Fishbein, T.; Zasloff, M.; Eisen, J.A. Human gut microbiome adopts an alternative state following small bowel transplantation. Proc. Natl. Acad. Sci. USA 2009, 106, 17187–17192. [Google Scholar] [CrossRef] [PubMed]
- Kuczynski, J.; Stombaugh, J.; Walters, W.A.; González, A.; Caporaso, J.G.; Knight, R. Using QIIME to analyze 16s rRNA gene sequences from microbial communities. Curr. Protoc. Microbiol. 2012, 27. [Google Scholar] [CrossRef]
- MacKelprang, R.; Burkert, A.; Haw, M.; Mahendrarajah, T.; Conaway, C.H.; Douglas, T.A.; Waldrop, M.P. Microbial survival strategies in ancient permafrost: Insights from metagenomics. ISME J. 2017, 11, 2305–2318. [Google Scholar] [CrossRef] [PubMed]
- Jónsson, H.; Ginolhac, A.; Schubert, M. mapDamage2.0: fast approximate Bayesian estimates of ancient DNA damage parameters. Bioinformatics 2013, 29, 1682–1684. [Google Scholar] [CrossRef] [PubMed]
- Kistler, L.; Ware, R.; Smith, O.; Collins, M.; Allaby, R.G. A new model for ancient DNA decay based on paleogenomic meta-analysis. Nucleic Acids Res. 2017, 45, 6310–6320. [Google Scholar] [CrossRef] [PubMed]
- Santiago-Rodriguez, T.M.; Fornaciari, G.; Luciani, S.; Dowd, S.E.; Toranzos, G.A.; Marota, I.; Cano, R.J. Natural mummification of the human gut preserves bacteriophage DNA. FEMS Microbiol. Lett. 2015, 363. [Google Scholar] [CrossRef] [PubMed]
Order (16S Data) | Mummy | Presence in Human Gut References | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
FI3 | FI9 | FI12 | NASD3 | NASD14 | NASD22 | NASD27 | NASD29 | Blank | ||
Sphingomonadales | <0.01 | 0.20 | 0.02 | 35.14 | 14.934 | 0.51 | 8.74 | 0.22 | 3.01 | [6,12] |
Pseudomonadales | <0.01 | 0.15 | <0.01 | 6.35 | 6.66 | 0.54 | 7.27 | 0.17 | 20.42 | [6,13,14] |
Lactobacillales | <0.01 | 0.12 | 0.01 | 2.87 | 2.76 | 3.65 | 5.98 | 0.34 | 0.10 | [12,13,15] |
Burkholderiales | <0.01 | <0.01 | 0.00 | 2.52 | 0.67 | 0.90 | 1.32 | 0.08 | 15.43 | [12,16] |
Caulobacteriales | <0.01 | 0.01 | 0.00 | 1.08 | 0.24 | 0.04 | 1.69 | 0.04 | 6.90 | [17] |
Neisseriales | <0.01 | 0.02 | <0.01 | <0.01 | 0.08 | <0.01 | <0.01 | <0.01 | 0.00 | [13,18] |
Rhodobacterales | <0.01 | 0.00 | 0.00 | 0.02 | 0.05 | 0.01 | 0.01 | <0.01 | 0.05 | [12,19] |
Xanthomonadales | <0.01 | 0.00 | 0.00 | 0.15 | 0.11 | 0.02 | 0.02 | 0.01 | 0.05 | [13,20] |
Sphingobacteriales | <0.01 | 0.00 | 0.00 | 0.00 | <0.01 | 0.19 | 0.05 | 0.02 | 0.03 | [12,21] |
Enterobacteriales | <0.01 | 0.00 | <0.01 | 0.10 | 0.01 | <0.01 | 0.25 | 0.00 | 7.01 | [12,13,21] |
Rhizobiales | 0.04 | 0.47 | 0.12 | 18.9 | 8.93 | 0.39 | 44.94 | 0.65 | 5.36 | [12,13] |
Bacillales | 96.82 | 0.36 | 0.01 | 7.30 | 29.66 | 14.81 | 2.91 | 23.83 | 9.91 | [13,15,21] |
Clostridiales | 0.04 | 97.65 | 99.6 | 4.10 | 19.79 | 34.00 | 9.49 | 73.93 | 17.34 | [12,13] |
Sample | Counts Prior Filtering | Counts after Filtering |
---|---|---|
Blank | 3824 | NA |
FI3 | 78,903 | 78,881 |
FI9 | 24,956 | 24,495 |
FI12 | 56,971 | 56,846 |
NASD3 | 32,086 | 14,768 |
NASD14 | 44,255 | 24,740 |
NASD22 | 60,266 | 55,727 |
NASD27 | 24,633 | 13,392 |
NASD29 | 101,517 | 100,028 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Santiago-Rodriguez, T.M.; Toranzos, G.A. On Controls in Ancient Microbiome Studies, and Microbial Resilience in Ancient Samples. Genes 2018, 9, 471. https://doi.org/10.3390/genes9100471
Santiago-Rodriguez TM, Toranzos GA. On Controls in Ancient Microbiome Studies, and Microbial Resilience in Ancient Samples. Genes. 2018; 9(10):471. https://doi.org/10.3390/genes9100471
Chicago/Turabian StyleSantiago-Rodriguez, Tasha M., and Gary A. Toranzos. 2018. "On Controls in Ancient Microbiome Studies, and Microbial Resilience in Ancient Samples" Genes 9, no. 10: 471. https://doi.org/10.3390/genes9100471
APA StyleSantiago-Rodriguez, T. M., & Toranzos, G. A. (2018). On Controls in Ancient Microbiome Studies, and Microbial Resilience in Ancient Samples. Genes, 9(10), 471. https://doi.org/10.3390/genes9100471