Relation between ADIPOQ Gene Polymorphisms and Type 2 Diabetes
Abstract
:1. Introduction
2. Subjects and Methods
2.1. Ethnics
2.2. Subjects
Groups | N | Sex (Male/Female) | Age (years) | BMI (kg/m2) | Glucose (mmol/L) | TG (mmol/L) | TC (mmol/L) | HDL-C (mmol/L) | LDL-C (mmol/L) |
---|---|---|---|---|---|---|---|---|---|
T2DM group | 340 | 240/100 | 54.2 ± 11.2 | 24.7 ± 2.4 | 5.44 ± 0.41 | 1.77 ± 0.21 | 2.90 ± 0.69 | 0.88 ± 0.21 | 1.44 ± 0.41 |
Control group | 340 | 244/96 | 54.1 ± 10.4 | 23.1 ± 1.6 | 4.26 ± 0.43 | 1.43 ± 0.15 | 2.56 ± 0.54 | 0.94 ± 0.20 | 1.20 ± 0.31 |
p | 0.901 | 0.432 | <0.001 | <0.001 | <0.001 | <0.001 | 0.771 | <0.001 |
2.3. Phenotype Measurements
2.4. Genetic Analysis
2.5. Statistical Analysis
3. Results
Groups | N | SNP | Genotypes (n, %) | p-Value | Allele | OR (95% CI) | p-Value | |||
---|---|---|---|---|---|---|---|---|---|---|
rs182052 | AA | AG | GG | |||||||
T2DM group | 340 | 66 (19.41) | 172 (50.59) | 102 (30.0) | 0.034 | 304 (0.450) | 376 (0.550) | 1.28 (1.05–1.59) | 0.022 | |
Control group | 340 | 57 (16.76) | 151 (44.41) | 132 (38.82) | 265 (0.390) | 415 (0.610) | ||||
rs1501299 | AA | AG | GG | |||||||
T2DM group | 340 | 57 (16.76) | 202 (59.41) | 81 (23.82) | 0.021 | 316 (0.466) | 314 (0.534) | 1.31 (1.04–1.65) | 0.002 | |
Control group | 340 | 55 (16.18) | 172 (50.59) | 113 (33.24) | 282 (0.410) | 398 (0.590) | ||||
rs7627128 | AA | AC | CC | |||||||
T2DM group | 340 | 42 (12.35) | 197 (57.94) | 101 (29.71) | <0.001 | 281 (0.410) | 399 (0.590) | 1.43 (1.17–1.98) | 0.002 | |
Control group | 340 | 37 (10.88) | 153 (45.00) | 150 (44.12) | 227 (0.330) | 453 (0.670) |
Variables | Case (n, Frequency) | Control (n, Frequency) | p-Value | OR (95% CI) |
---|---|---|---|---|
A-A-C | 252 (0.37) | 242 (0.36) | 0.531 | 1.05 (0.84–1.27) |
A-A-T | 64 (0.09) | 33 (0.05) | <0.001 | 2.10 (1.44–2.90) |
G-A-T | 151 (0.22) | 205 (0.30) | <0.001 | 0.66 (0.54–0.81) |
G-G-C | 15 (0.02) | 16 (0.02) | 0.966 | 0.98 (0.55–1.75) |
G-G-T | 191 (0.28) | 177 (0.26) | 0.221 | 1.12 (0.91–1.35) |
4. Discussion
5. Limitations
6. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Abate, N.; Chandalia, M.; Satija, P.; Adams-Huet, B.; Grundy, S.M.; Sandeep, S.; Radha, V.; Deepa, R.; Mohan, V. ENPP1/PC-1 K121Q polymorphism and genetic susceptibility to type 2 diabetes. Diabetes 2005, 54, 1207–1213. [Google Scholar] [CrossRef] [PubMed]
- Zheng, Y.Y.; Xie, X.; Ma, Y.T.; Yang, Y.N.; Fu, Z.Y.; Li, X.M.; Ma, X.; Chen, B.D.; Liu, F. Relationship between type 2 diabetes mellitus and a novel polymorphism C698T in C5L2 in the Chinese Han population. Endocrine 2012, 41, 296–301. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.P.; Hung, W.C.; Yu, T.H.; Chiu, C.A.; Lu, L.F.; Chung, F.M.; Hung, C.H.; Shin, S.J.; Chen, H.J.; Lee, Y.J. Genetic variation in the G-50T polymorphism of the cytochrome P450 epoxygenase CYP2J2 gene and the risk of younger onset type 2 diabetes among Chinese population: Potential interaction with body mass index and family history. Exp. Clin. Endocrinol. Diabetes 2010, 118, 346–352. [Google Scholar] [CrossRef] [PubMed]
- Maier-Moore, J.S.; Canas, C.A.; Tobon, G.; Arango, A.; Anaya, J.M.; Scofield, R.H. The CCR5 delta 32 polymorphism (rs333) is not associated with Sjogren’s syndrome or Type 1 Diabetes in Colombians. Clin. Immunol. 2013, 148, 206–208. [Google Scholar] [CrossRef] [PubMed]
- Mokubo, A.; Tanaka, Y.; Nakajima, K.; Watada, H.; Hirose, T.; Kawasumi, M.; Sakai, K.; Kanazawa, A.; Maeda, S.; Hosokawa, K.; et al. Chemotactic cytokine receptor 5 (CCR5) gene promoter polymorphism (59029A/G) is associated with diabetic nephropathy in Japanese patients with type 2 diabetes: A 10-year longitudinal study. Diabetes Res. Clin. Pract. 2006, 73, 89–94. [Google Scholar] [CrossRef] [PubMed]
- Antonopoulos, A.S.; Margaritis, M.; Coutinho, P.; Shirodaria, C.; Psarros, C.; Herdman, L.; Sanna, F.; de Silva, R.; Petrou, M.; Sayeed, R.; et al. Adiponectin as a link between type 2 diabetes mellitus and vascular NADPH-oxidase activity in the human arterial wall: The regulatory role of perivascular adipose tissue. Diabetes 2015, 64, 2207–2219. [Google Scholar] [CrossRef] [PubMed]
- Alkhateeb, A.; Al-Azzam, S.; Zyadine, R.; Abuarqoub, D. Genetic association of adiponectin with type 2 diabetes in Jordanian Arab population. Gene 2013, 512, 61–63. [Google Scholar] [CrossRef] [PubMed]
- Behre, C.J.; Brohall, G.; Hulthe, J.; Fagerberg, B. Serum adiponectin in a population sample of 64-year-old women in relation to glucose tolerance, family history of diabetes, autoimmunity, insulin sensitivity, C-peptide, and inflammation. Metabolism 2006, 55, 188–194. [Google Scholar] [CrossRef] [PubMed]
- Beltcheva, O.; Boyadzhieva, M.; Angelova, O.; Mitev, V.; Kaneva, R.; Atanasova, I. The rs266729 single-nucleotide polymorphism in the adiponectin gene shows association with gestational diabetes. Arch. Gynecol. Obstet. 2014, 289, 743–748. [Google Scholar] [CrossRef] [PubMed]
- Cox, A.J.; Lambird, J.E.; An, S.S.; Register, T.C.; Langefeld, C.D.; Carr, J.J.; Freedman, B.I.; Bowden, D.W. Variants in adiponectin signaling pathway genes show little association with subclinical CVD in the diabetes heart study. Obesity 2013, 21, E456–E462. [Google Scholar] [CrossRef] [PubMed]
- Hamilton, M.P.; Gore, M.O.; Ayers, C.R.; Xinyu, W.; McGuire, D.K.; Scherer, P.E. Adiponectin and cardiovascular risk profile in patients with type 2 diabetes mellitus: Parameters associated with adiponectin complex distribution. Diab. Vasc. Dis. Res. 2011, 8, 190–194. [Google Scholar] [CrossRef] [PubMed]
- Hivert, M.F.; Manning, A.K.; McAteer, J.B.; Florez, J.C.; Dupuis, J.; Fox, C.S.; O’Donnell, C.J.; Cupples, L.A.; Meigs, J.B. Common variants in the adiponectin gene (ADIPOQ) associated with plasma adiponectin levels, type 2 diabetes, and diabetes-related quantitative traits: The Framingham Offspring Study. Diabetes 2008, 57, 3353–3359. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.Y.; Yang, Z.J.; Zhou, C.W.; Wang, X.M.; Qian, Y.; Xu, J.; Wang, B.; Wu, J. Adiponectin-11377CG gene polymorphism and type 2 diabetes mellitus in the Chinese population: A meta-analysis of 6425 subjects. PLoS ONE 2013, 8, e61153. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Li, X.; Shi, L.; Yang, M.; Yang, Y.; Tao, W.; Shi, L.; Xiong, Y.; Zhang, Y.; Yao, Y. Association of adiponectin SNP+45 and SNP+276 with type 2 diabetes in Han Chinese populations: A meta-analysis of 26 case-control studies. PLoS ONE 2011, 6, e19686. [Google Scholar] [CrossRef] [PubMed]
- Peters, K.E.; Beilby, J.; Cadby, G.; Warrington, N.M.; Bruce, D.G.; Davis, W.A.; Davis, T.M.; Wiltshire, S.; Knuiman, M.; McQuillan, B.M.; et al. A comprehensive investigation of variants in genes encoding adiponectin (ADIPOQ) and its receptors (ADIPOR1/R2), and their association with serum adiponectin, type 2 diabetes, insulin resistance and the metabolic syndrome. BMC Med. Genet. 2013. [Google Scholar] [CrossRef]
- Dai, C.F.; Xie, X.; Yang, Y.N.; Li, X.M.; Zheng, Y.Y.; Fu, Z.Y.; Liu, F.; Chen, B.D.; Gai, M.T.; Ma, Y.T. Relationship between CYP17A1 genetic polymorphism and coronary artery disease in a Chinese Han population. Lipids Health Dis. 2015. [Google Scholar] [CrossRef] [PubMed]
- Zheng, Y.Y.; Xie, X.; Ma, Y.T.; Yang, Y.N.; Fu, Z.Y.; Li, X.M.; Ma, X.; Chen, B.D.; Liu, F. A novel polymorphism (901G > a) of C5L2 gene is associated with coronary artery disease in Chinese Han and Uyghur population. Lipids Health Dis. 2013. [Google Scholar] [CrossRef] [PubMed]
- Xie, X.; Ma, Y.T.; Fu, Z.Y.; Yang, Y.N.; Ma, X.; Chen, B.D.; Wang, Y.H.; Liu, F. Association of polymorphisms of PTGS2 and CYP8A1 with myocardial infarction. Clin. Chem. Lab. Med. 2009, 47, 347–352. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Zhang, Z.; He, Z.; Tang, W.; Li, T.; Zeng, Z.; He, L.; Shi, Y. A partition-ligation-combination-subdivision EM algorithm for haplotype inference with multiallelic markers: Update of the SHEsis (http://analysis.bio-x.cn). Cell Res. 2009, 19, 519–523. [Google Scholar] [CrossRef] [PubMed]
- Shi, Y.Y.; He, L. SHEsis, a powerful software platform for analyses of linkage disequilibrium, haplotype construction, and genetic association at polymorphism loci. Cell Res. 2005, 15, 97–98. [Google Scholar] [CrossRef] [PubMed]
- Zhai, Y.; Zhao, J.; You, H.; Pang, C.; Yin, L.; Guo, T.; Feng, T.; Wang, C.; Gao, K.; Luo, X.; et al. Association of the rs11196218 polymorphism in TCF7L2 with type 2 diabetes mellitus in Asian population. Meta Gene 2014, 2, 332–341. [Google Scholar] [CrossRef] [PubMed]
- Khan, I.A.; Movva, S.; Shaik, N.A.; Chava, S.; Jahan, P.; Mukkavali, K.K.; Kamineni, V.; Hasan, Q.; Rao, P. Investigation of Calpain 10 (rs2975760) gene polymorphism in Asian Indians with Gestational Diabetes Mellitus. Meta Gene 2014, 2, 299–306. [Google Scholar] [CrossRef] [PubMed]
- Ma, Z.J.; Chen, R.; Ren, H.Z.; Guo, X.; Chen, J.G.; Chen, L.M.; 2011 Collaborative Innovation Center of Tianjin for Medical Epigenetics. Endothelial nitric oxide synthase (eNOS) 4b/a polymorphism and the risk of diabetic nephropathy in type 2 diabetes mellitus: A meta-analysis. Meta Gene 2014, 2, 50–62. [Google Scholar] [CrossRef] [PubMed]
- Kaur, R.; Matharoo, K.; Sharma, R.; Bhanwer, A.J. C-reactive protein + 1059 G > C polymorphism in type 2 diabetes and coronary artery disease patients. Meta Gene 2013, 1, 82–92. [Google Scholar] [CrossRef] [PubMed]
- Bener, A.; Zirie, M.; Al-Hamaq, A.; Nawaz, Z.; Samson, N.; Mohammad, R. Impact of the Pro12Ala polymorphism of the PPARgamma2 gene on diabetes and obesity in a highly consanguineous population. Indian J. Endocrinol. Metab. 2015, 19, 77–83. [Google Scholar] [CrossRef] [PubMed]
- Ramya, K.; Ayyappa, K.A.; Ghosh, S.; Mohan, V.; Radha, V. Genetic association of ADIPOQ gene variants with type 2 diabetes, obesity and serum adiponectin levels in south Indian population. Gene 2013, 532, 253–262. [Google Scholar] [CrossRef] [PubMed]
- Chung, H.F.; Long, K.Z.; Hsu, C.C.; Mamun, A.A.; Chiu, Y.F.; Tu, H.P.; Chen, P.S.; Jhang, H.R.; Hwang, S.J.; Huang, M.C. Adiponectin gene (ADIPOQ) polymorphisms correlate with the progression of nephropathy in Taiwanese male patients with type 2 diabetes. Diabetes Res. Clin. Pract. 2014, 105, 261–270. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Du, W.; Li, Q.; Lu, Y.; Yu, X.; Ye, X.; Gao, Y.; Ma, J.; Cheng, J.; Cao, Y.; Du, J.; et al. Genetic variants in ADIPOQ gene and the risk of type 2 diabetes: A case-control study of Chinese Han population. Endocrine 2011, 40, 413–422. [Google Scholar] [CrossRef] [PubMed]
© 2015 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, Z.-P.; Zhang, M.; Gao, J.; Zhou, G.-Y.; Li, S.-Q.; An, Z.-M. Relation between ADIPOQ Gene Polymorphisms and Type 2 Diabetes. Genes 2015, 6, 512-519. https://doi.org/10.3390/genes6030512
Li Z-P, Zhang M, Gao J, Zhou G-Y, Li S-Q, An Z-M. Relation between ADIPOQ Gene Polymorphisms and Type 2 Diabetes. Genes. 2015; 6(3):512-519. https://doi.org/10.3390/genes6030512
Chicago/Turabian StyleLi, Zhi-Peng, Mei Zhang, Jie Gao, Guo-Yan Zhou, Shuang-Qing Li, and Zhen-Mei An. 2015. "Relation between ADIPOQ Gene Polymorphisms and Type 2 Diabetes" Genes 6, no. 3: 512-519. https://doi.org/10.3390/genes6030512
APA StyleLi, Z.-P., Zhang, M., Gao, J., Zhou, G.-Y., Li, S.-Q., & An, Z.-M. (2015). Relation between ADIPOQ Gene Polymorphisms and Type 2 Diabetes. Genes, 6(3), 512-519. https://doi.org/10.3390/genes6030512