Next Article in Journal
Replication Checkpoint: Tuning and Coordination of Replication Forks in S Phase
Next Article in Special Issue
Lynch Syndrome: An Updated Review
Previous Article in Journal
Notch1 Activation Up-Regulates Pancreatic and Duodenal Homeobox-1
Previous Article in Special Issue
Altered Ca2+ Homeostasis and Endoplasmic Reticulum Stress in Myotonic Dystrophy Type 1 Muscle Cells
Review

Abnormal Base Excision Repair at Trinucleotide Repeats Associated with Diseases: A Tissue-Selective Mechanism

Programme of Translational Medicine and Neurogenetics, Institute of Genetics and Molecular and Cellular Biology (IGBMC), UMR 7104-CNRS/INSERM/Uds, 1 rue Laurent Fries, 67404 Illkirch, France
*
Author to whom correspondence should be addressed.
Genes 2013, 4(3), 375-387; https://doi.org/10.3390/genes4030375
Received: 2 May 2013 / Revised: 25 June 2013 / Accepted: 26 June 2013 / Published: 25 July 2013
(This article belongs to the Special Issue Microsatellite Instability)
More than fifteen genetic diseases, including Huntington’s disease, myotonic dystrophy 1, fragile X syndrome and Friedreich ataxia, are caused by the aberrant expansion of a trinucleotide repeat. The mutation is unstable and further expands in specific cells or tissues with time, which can accelerate disease progression. DNA damage and base excision repair (BER) are involved in repeat instability and might contribute to the tissue selectivity of the process. In this review, we will discuss the mechanisms of trinucleotide repeat instability, focusing more specifically on the role of BER. View Full-Text
Keywords: trinucleotide repeat diseases; instability; BER trinucleotide repeat diseases; instability; BER
Show Figures

Figure 1

MDPI and ACS Style

Goula, A.-V.; Merienne, K. Abnormal Base Excision Repair at Trinucleotide Repeats Associated with Diseases: A Tissue-Selective Mechanism. Genes 2013, 4, 375-387. https://doi.org/10.3390/genes4030375

AMA Style

Goula A-V, Merienne K. Abnormal Base Excision Repair at Trinucleotide Repeats Associated with Diseases: A Tissue-Selective Mechanism. Genes. 2013; 4(3):375-387. https://doi.org/10.3390/genes4030375

Chicago/Turabian Style

Goula, Agathi-Vasiliki; Merienne, Karine. 2013. "Abnormal Base Excision Repair at Trinucleotide Repeats Associated with Diseases: A Tissue-Selective Mechanism" Genes 4, no. 3: 375-387. https://doi.org/10.3390/genes4030375

Find Other Styles

Article Access Map by Country/Region

1
Only visits after 24 November 2015 are recorded.
Search more from Scilit
 
Search
Back to TopTop