The Polymorphism of Metabolic and Immune Mechanisms Controlling Genes in Type 2 Diabetes Mellitus
Abstract
1. Introduction
2. Materials and Methods
2.1. Patient Selection
2.2. Inclusion and Exclusion Criteria in the Study
- Male or female participants aged 52 to 70 years.
- Participants with a confirmed diagnosis of T2DM by the International Diabetes Federation (IDF) 2005: abdominal obesity and two additional components: increased triglyceride (TG) levels > 1.7 mmol/L or medication to lower TG levels; low-density lipoprotein (LDL) levels < 1.03 mmol/L in men and <1.29 mmol/L in women, or specific medication; target fasting plasma glucose (FPG) > 5.6 mmol/L, or a prior diagnosis of T2DM; hypertension (blood pressure ≥130/85 mmHg), or antihypertensive medication. Body mass index (BMI) > 30 kg/m2.
- Willingness to participate in the study and ability to provide informed consent.
- Exclusion Criteria
- Male or female participants aged less than 52 or greater than 70 years of age.
- A severe course of T2DM, with a target glycated hemoglobin (HbA1c) level > 7.0% and FPG > 7.0 mmol/L two hours after meals (or >9.0 mmol/L) [21].
- Chronic renal disease, heart failure, liver dysfunction, or malignancy.
- Inability or unwillingness to participate in the study or sign an informed consent form.
- Inclusion criteria for control subjects:
- Normoglycemic individuals, male or female, with no history of glucose intolerance or family history of diabetes.
- Aged 52 to 70 years.
- HbA1c < 6.4% or normal oral glucose tolerance test.
- BMI < 30 kg/m2.
- Willingness to participate voluntarily in the study and ability to sign an informed consent form.
2.3. Biochemical Measurements
2.4. Physical Examination
2.5. PCR Technique
2.6. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
ADIPOQ | adiponectin |
ADIPOR-1 | type 1 receptor for adiponectin |
ADIPOR-2 | type 2 receptor for adiponectin |
AP-1 | activating protein type 1 |
CI | confidence interval |
FFAs | free fatty acids |
GRS | genetic risk scores |
HbA1c | glycated hemoglobin |
HDL | high density lipoproteins |
IDF | International Diabetes Federation |
IL6 | Interleukin-6 |
IOTF WHO | World Health Organisation’s International Obesity Group |
LPS | lipopolysaccharides |
MS | Metabolic syndrome |
NF-κB | nuclear factor kappa B |
NTF | nuclear transcription factors |
OGTT | oral glucose tolerance test |
OR | odds ratio criterion |
PPAR | peroxisome proliferator-activated receptor |
RT-PCR | Real-time polymerase chain reaction |
SNP | single nucleotide polymorphisms |
T2DM | Type 2 diabetes mellitus |
TGs | triglycerides |
TLR4 | toll-like receptor type 4 |
TNFα | tumor necrosis factor-alpha |
References
- Bochkareva, L.A.; Nedosugova, L.V.; Petunina, N.A.; Tel’nova, M.E.; Goncharova, E.V. Some mechanisms of inflammation development in type 2 diabetes mellitus. Diabetes Mellit. 2021, 24, 334–341. (In Russian) [Google Scholar] [CrossRef]
- Sun, H.; Saeedi, P.; Karuranga, S.; Pinkepank, M.; Ogurtsova, K.; Duncan, B.B.; Stein, C.; Basit, A.; Chan, J.C.N.; Mbanya, J.C.; et al. IDF Diabetes Atlas: Global, regional and country-level diabetes prevalence estimates for 2021 and projections for 2045. Diabetes Res. Clin. Pract. 2022, 183, 109119. [Google Scholar] [CrossRef]
- Oleksa, P.; Żuraw, D.; Jasiński, K.; Sobczyk, M.; Porzak, M.; Sodolska, A.; Haczkur-Pawłowska, K. Drugs and chemical sustances inducing diabetes—Review of the literature. Prospect. Pharm. Sci. 2024, 22, 7–17. [Google Scholar] [CrossRef]
- Ametov, A.S.; Kamynina, L.L.; Akhmedova, Z.G. Type 2 diabetes mellitus: Clinical aspects of genetics, nutrigenetics, and pharmacogenetics. Ther. Arch. 2015, 87, 124–131. (In Russian) [Google Scholar] [CrossRef] [PubMed]
- Romantsova, T.R.; Sych, Y.P. Immunometabolism and metainflammation in obesity. Obes. Metab. 2019, 16, 3–17. (In Russian) [Google Scholar] [CrossRef]
- Reilly, S.M.; Saltiel, A.R. A complex role for adipose tissue macrophages. Nature Rev. Endocrinol. 2014, 10, 193–194. [Google Scholar] [CrossRef] [PubMed]
- Pyrina, I.; Chung, K.J.; Michailidou, Z.; Koutsilieris, M.; Chavakis, T.; Chatzigeorgiou, A. Fate of Adipose Progenitor Cells in Obesity-Related Chronic Inflammation. Front. Cell Dev. Biol. 2020, 8, 644. [Google Scholar] [CrossRef]
- Stafeev, Y.S.; Menshikov, M.Y.; Tsokolaeva, Z.I.; Parfenova, E.V.; Shestakova, M.V. Molecular mechanisms of latent inflammation in metabolic syndrome. The probable role of sirtuins and peroxisome proliferation activation receptors (review). Biochemistry 2015, 80, 1480–1492. [Google Scholar]
- Holvoet, P. Relations between metabolic syndrome, oxidative stress and inflammation and cardiovascular disease. Verh. K. Acad. Geneeskd. Belg. 2008, 70, 193–219. [Google Scholar] [PubMed]
- Rasin, M.S. Peroxisome proliferator-activated receptors-γ and hypertension: Lessons of the history of researches. Ther. Arch. 2013, 85, 118–123. (In Russian) [Google Scholar]
- Khrapova, M.V.; Dushkin, M.I. Stress-mediated mechanisms of metabolic syndrome development: The role of peroxisome proliferator activated receptors. Ateroscleroz 2011, 7, 23–43. (In Russian) [Google Scholar]
- Rasin, M.S. Peroxysome proliferator-activated receptors and their coactivator—pgc-1α—in physiology and pathology of myocardium. Russ. J. Cardiol. 2014, 11, 88–92. (In Russian) [Google Scholar] [CrossRef]
- Kononenko, I.V.; Smirnova, O.M. PPARγ—predstavitel’ semeystva yadernykh steroidnykh retseptorov. Diabetes Mellit. 2005, 8, 74–77. (In Russian) [Google Scholar] [CrossRef]
- Shramko, I.I.; Ageeva, E.S.; Maliy, K.D.; Repinskaya, I.N.; Tarimov, C.O.; Fomochkina, I.I.; Kubishkin, A.V.; Ostapenko, O.V.; Gurtovaya, A.K.; Suman, S.; et al. Association of Adiponectin and Leptin Genetic Polymorphisms with Clinical Manifestations of Metabolic Syndrome. Med. Genet. 2022, 21, 8–12. (In Russian) [Google Scholar] [CrossRef]
- Banerjee, M.; Saxena, M. Genetic polymorphisms of cytokine genes in type 2 diabetes mellitus. World J. Diabetes 2014, 15, 493–504. [Google Scholar] [CrossRef] [PubMed]
- Tiis, R.P.; Osipova, L.P. Interleukin-6: It’s role in the organism, genetic polymorphism and significance in certain diseases (literature review). Med. Genet. 2022, 21, 14–27. (In Russian) [Google Scholar] [CrossRef]
- Neelofar, K.; Ahmad, J.; Ahmad, A.; Alam, K. Study of IL4-590C/T and IL6-174G/C Gene Polymorphisms in Type 2 Diabetic Patients with Chronic Kidney Disease in North Indian Population. J. Cell Biochem. 2017, 118, 1803–1809. [Google Scholar] [CrossRef] [PubMed]
- Isakova, Z.T.; Talaibekova, E.T.; Zhyrgalbekova, B.Z.; Mirrakhimov, E.M.; Aldasheva, N.M.; Aldashev, A.A. Gene-gene interactions and the contribution of polymorphic loci of the KCNJ11, ADIPOQ, omentin, leptin, TCF7L2 and PPARγ genes to the development of type 2 diabetes mellitus in the Kyrgyz population: A case-control genetic association study using MDR analysis. Probl. Endocrinol. 2018, 64, 216–225. (In Russian) [Google Scholar] [CrossRef]
- Chazova, I.E.; Shestakova, M.V.; Zhernakova, Y.V. Eurasian association of cardiology (EAC) guidelines for the prevention and treatment of cardiovascular diseases in patients with diabetes and prediabetes (2021). Eurasian Heart J. 2021, 2, 6–61. (In Russian) [Google Scholar] [CrossRef]
- Said, E.A.; Al-Reesi, I.; Al-Shizawi, N.; Jaju, S.; Al-Balushi, M.S.; Koh, C.Y.; Al-Jabri, A.A.; Jeyaseelan, L. Defining IL-6 levels in healthy individuals: A meta-analysis. J. Med. Virol. 2021, 93, 3915–3924. [Google Scholar] [CrossRef]
- Shakhbazidi, G.; Dunaeva, D.D.; Gordeeva, G.I. Diabetes Mellitus. Diagnosis, Classification, Compensation Criteria. Crime. Ther. J. 2006, 2, 62–66. [Google Scholar]
- The IDF consensus worldwide definition of the metabolic syndrome. Obes. Metab. 2005, 2, 47–49. (In Russian) [CrossRef]
- Dedov, I.I.; Mokrysheva, N.G.; Melnichenko, G.A.; Troshina, E.A.; Mazurina, N.V.; Ershova, E.V.; Komshilova, K.A.; Andreeva, E.N.; Antsiferov, M.B.; Bordan, N.S.; et al. Clinical recommendations «Gestational diabetes mellitus» of the Russian Ministry of Health. Version of the year 2024. Bull. Reprod. Health 2025, 4, 14–30. (In Russian) [Google Scholar] [CrossRef]
- Khodyrev, D.S.; Nikitin, A.G.; Brovkin, A.N.; Lavrikova, E.Y.E.; Lebedeva, N.O.; Vikulova, O.K.; Shamkhalova, M.S.; Shestakova, M.V.; Nosikov, V.V.; Averyanov, A.V. Association of polymorphisms of the ADIPOQ, ADIPOR1 and ADIPOR2 genes with type 2 diabetes mellitus. Diabetes Mellit. 2015, 18, 5–11. (In Russian) [Google Scholar] [CrossRef]
- Popko, K.; Gorska, E.; Demkow, U. Influence of interleukin-6 and G174C polymorphism in IL-6 gene on obesity and energy balance. Eur. J. Med. Res. 2010, 15 (Suppl. 2), 123. [Google Scholar] [CrossRef] [PubMed]
- Mansyur, M.A.; Bakri, S.; Patellongi, I.J.; Rahman, I.A. The association between metabolic syndrome components, low-grade systemic inflammation and insulin resistance in non-diabetic Indonesian adolescent male. Clin. Nutr. ESPEN 2020, 35, 69–74. [Google Scholar] [CrossRef] [PubMed]
- Widjaja, A.A.; Chothani, S.P.; Cook, S.A. Different roles of interleukin 6 and interleukin 11 in the liver: Implications for therapy. Hum Vaccin Immunother. 2020, 16, 2357–2362. [Google Scholar] [CrossRef]
- Puzikova, O.Z.; Churyukina, E.V.; Moskovkina, A.V.; Popova, V.A.; Afonin, A.A.; Kravchenko, L.V. Clinical and diagnostic significance of interleukin 6 as a marker of metabolic inflammation in adolescents with obesity. Russ. Med. Inq. 2024, 8, 421–426. [Google Scholar] [CrossRef]
- Sumerkina, V.A.; Telesheva, L.F.; Myakotina, D.E.; Zotova, M.A. The effect of leptin and adiponectin on the expression of cytokine genes IL-1b, IL-6, TNFα in lymphocytes. Russ. J. Immunol. 2024, 27, 427–432. [Google Scholar] [CrossRef]
- Nartikoeva, M.I. Studying the role of polymorphism of predictor genes in the development of metabolic syndrome in the personalized prevention of type 2 diabetes mellitus (literature review). Mod. Issues Biomed. 2021, 3, 25–45. [Google Scholar] [CrossRef]
- Kochetova, O.V.; Akhmadishina, L.Z.; Korytina, G.F.; Karpov, A.A.; Mustafina, O.E. Association of obesity susceptibility gene variants with metabolic syndrome in women. Obes. Metab. 2017, 14, 33–40. (In Russian) [Google Scholar] [CrossRef]
- Kalashnikova, C.E.; Shrayner, E.V.; Bystrova, V.I.; Lifshits, G.I. Genetic factors contributing to the development of metabolic syndrome. Pharmacogenetics Pharmacogenomics 2024, 2, 5–12. (In Russian) [Google Scholar] [CrossRef]
- Frayling, T.M. Genome-wide association studies: The good, the bad and the ugly. Clin. Med. 2014, 14, 428–431. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Liu, C.; Si, S.; Li, Y.; Li, W.; Yuan, T.; Xue, F. Genomic risk score provides predictive performance for type 2 diabetes in the UK biobank. Acta Diabetol. 2021, 58, 467–474. [Google Scholar] [CrossRef] [PubMed]
- Ershova, A.I.; Ivanova, A.A.; Kiseleva, A.V.; Sotnikova, E.A.; Meshkov, A.N.; Drapkina, O.M. From biobanking to personalized prevention of obesity, diabetes and metabolic syndrome. Cardiovasc. Ther. Prev. 2021, 20, 3123. [Google Scholar] [CrossRef]
- Hamid, Y.H.; Rose, C.S.; Urhammer, S.A.; Glümer, C.; Nolsøe, R.; Kristiansen, O.P.; Mandrup-Poulsen, T.; Borch-Johnsen, K.; Jorgensen, T.; Hansen, T.; et al. Variations of the interleukin-6 promoter associates with features of the metabolic syndrome in Caucasian Danes. Diabetologia 2005, 48, 251–260. [Google Scholar] [CrossRef]
Parameters | Standard Recommended Values [19] | Control Group | T2DM Patients | ||
---|---|---|---|---|---|
Me | Q1–Q3 | Me | Q1–Q3 | ||
Age(years) | - | 61 | 52–70 | 61 | 52–70 |
HbA1c (%) | 7 | 4.8 | 4.1–6.0 | 8.45 | 7.15–9.95 |
Fasting plasma glucose level (mmol/L) | 5.6–6.9 | 5.2 | 3.6–5.8 | 9.2 * | 6.1–11.1 |
Cholesterol (mol/L) | 4.9 | 4.6 | 3.6–6.2 | 5.1 | 4.6–7.3 |
IL-6 (pcmol/L) [20] | 5.2 | 4.22 | 2.45–7.78 | 8.1 | 6.5-8.5 |
BMI (kg/m2) | 25 | 24.6 | 21.4–28.9 | 33.9 * | 26.0–38.7 |
Systolic blood pressure (mmHg) | 120 | 110 | 90–118 | 130.0 * | 110–140 |
Diastolic blood pressure (mmHg) | 80 | 72 | 65–80 | 85.0 | 80.0–90.0 |
HbA1c (%) | Glucose (mol/L) | Cholesterol (mol/L) | IL-6, pcmol/l | ||
---|---|---|---|---|---|
Control group | 4.8 (4.1–6.0) | 5.2 (3.6–5.8) | 4.6 (3.6–6.2) | 4.22 (2.45-7.78) | |
T2DM patients depending on allelic combinations of gene polymorphism | |||||
+45 T/G (rs2241766) ADIPOQ | TT | 8.65 (6.8–10.2) | 9.4 (6.3–11.7) | 4.9 (4.2–7.9) | 6.3 (4.0–7.1) |
GT | 8.6 (6.8–10.3) | 8.8 (6.9–11.0) | 5.7 (4.8–7.3) | 5.3 (3.9–6.2) | |
GG | 8.9 (8.4–9.5) | 10.4 (6.1–12.0) | 5.4 (4.8–6.7) | 7.7 (5.9–7.3) | |
276 G/T (rs1501299) ADIPOQ | GG | 8.5 (6.5–9.9) | 10.2 (6.3–11.6) * | 5.3 (4.6–7.3) | 8.8 (6.9–9.0) |
GT | 8.6 (7.5–10.3) | 8.8 (6.1–10.7) | 5.6 (4.8–7.2) | 6.9 (3.3–7.0) | |
TT | 9.0 | 8.4 | 6.6 | 6.0 (4.8–6.3) | |
+102 T/G (rs2275737) ADIPOR1 | TT | 6.6 (6.1–8.4) | 6.6 (5.1–9.1) | 5.8 (4.7–6.8) | 7.9 (2.3–7.0) |
TG | 9.0 (7.2–10.5) * | 9.6 (7.9–11.8) | 5.6 (4.9–7.3) | 5.9 (2.1–6.0) | |
GG | 8.8 (8.3–9.9) | 9.8 (6.9–11.0) | 5.1 (4.6–6.2) | 6.8 (5.1–7.0) | |
– 106T/C (rs2275738) ADIPOR1 | TT | 8.7 (7.6–9.9) | 10.0 (6.2–11.3) * | 5.3 (4.8–6.7) | 8.0 (4.1–8.6) |
CT | 8.3 (6.8–10.0) | 9.2 (7.3–11.2) | 5.4 (4.4–7.8) | 8.9 (5.7–8.9) | |
CC | 9.0 (6.2–10.2) | 8.8 (6.3–10.7) | 6.2 (4.9–7.0) * | 7.7 (5.3–8.1) | |
+219 A/T (rs11061971) ADIPOR2 | AA | 8.8 (7.6–9.9) | 9.75 (7.9–11.3) | 5.7 (4.8–6.7) | 7.1 (4.9–7.7) |
AT | 8.7 (6.5–10.5) | 9.8 (5.8–11.7) | 5.2 (4.6–6.4) | 7.2 (6.1–8.2) | |
TT | 7.9 (6.7–9.0) | 8.3 (6.9–10.0) | 5.4 (4.9–6.5) | 5.1 (3.2–4.9) | |
+795 G/A (rs16928751) ADIPOR2 | GG | 8.4 (6.8–10.1) | 8.8 (6.1–11.3) | 4.9 (4.4–7.3) * | 9.1 (7.6–9.1) |
GA | 8.3 (6.2–10.5) | 7.9 (6.2–11.4) | 5.9 (5.4–10.5) | 10.3 (7.2–10.1) * | |
AA | 7.8 (6.0–8.5) | 9.5 (8.7–10.0) | 5.5 (4.3–6.3) | 9.1 (8.1–10.0) | |
+2548 G/A (rs7799039) LEP | GG | 8.4 (6.8–10.0) * | 9.2 (7.8–10.6) * | 5.2 (4.2–6.5) | 8.7 (6.1–8.0) |
GA | 8.8 (6.7–10.3) * | 9.4 (6.9–11.4) * | 5.6 (4.8–7.2) | 7.0 (6.1–7.8) | |
AA | 8.4 (6.8–9.5) * | 8.3 (6.1–11.2) | 4.9 (4.8–6.8) | 8.0 (5.1–8.0) | |
–174G/C (rs1800795) IL6 | CC | 9.4 (6.7–9.5) | 9.5 (6.9–11.3) | 5.4 (5.0–5.7) | 9.33 (4.56–18.2) |
GG | 8.4 (7.2–10.1) | 8.8 (6.2–10.3) | 5.4 (4.6–6.3) | 10.8 (4.6–17.5) |
BP Systolic (mmHg) | BP Diastolic (mmHg) | BMI (kg/m2) | ||
---|---|---|---|---|
Control group | 110 (90–118) | 72 (65–80) | 24.6 (21.4–28.9) | |
T2DM patients depending on allelic combinations of gene polymorphism | ||||
+45 T/G (rs2241766) ADIPOQ | TT | 130 (110–140) | 83 (80–90) | 33.2 (26.0–38.7) |
GT | 140 (110–155) | 85 (80–90) | 33.9 (27.3–40.0) | |
GG | 135 (106–150) | 90 (80–101) | 33.0 (26.7–34.3) | |
276 G/T (rs1501299) ADIPOQ | GG | 130 (110–145) | 85 (80–95) | 33.9 (29.1–36.3) |
GT | 130 (110–140) | 90 (80–95) | 33.6 (26.7–41.5) | |
TT | 130 | 80 | 33.9 | |
+102 T/G (rs2275737) ADIPOR1 | TT | 130.0 (120–150) | 80 (80–85) | 31.9 (27.8–34.3) |
TG | 130 (110–140) | 85 (80–90) | 34.1 (28.8–37.7) | |
GG | 140 (116–160) | 90 (87.5–100.5) | 36.5 (28.4–40.9) | |
–106T/C (rs2275738) ADIPOR1 | TT | 140 (105–160) | 90 (80–101) | 34.3 (26.7–40.0) |
CT | 130 (110–140) | 85 (80–90) | 34.7 (31.8–41.5) | |
CC | 130 (120–160) | 80 (80–100) | 28.3 (26.0–33.9) | |
+219 A/T (rs11061971) ADIPOR2 | AA | 125 (115–140) | 87.5 (75–101) | 34.3 (26.7–40.0) |
AT | 130 (130–155) | 80 (80–90) | 31.2 (26–36.6) | |
TT | 135 (123–140) | 87.5 (80–90) | 34.2 (30.9–40.8) | |
+795 G/A (rs16928751) ADIPOR2 | GG | 130 (110–140) | 82.5 (70–90) * | 32 (26–34.6) |
GA | 130 (110–130) | 85 (80–104) | 38.7 (33.5–41.5) * | |
AA | 140 (110–140) | 90 (75–90) | 30 (23–30.0) | |
+2548 G/A (rs7799039) LEP | GG | 157.5 (140.0–170.0) * | 85.0 (80.0–90.0) | 33.3 (27.3–34.7) |
GA | 130.0 (113.0–140.0) | 80.0 (80.0–95.5) | 33.2 (28.3–40.0) | |
AA | 130.0 (110.0–140.0) | 90.0 (70.0–90.0) | 33.9 (26.0–40.8) | |
–174G/C (rs1800795) IL6 | CC | 130 (120.0–147.5) | 80 (75.0–90.0) | 33.6 (32.3–35.1) |
GG | 140 (121.3–148.8) | 80 (80.0–90.0) | 33.9 (25.3–33.9) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shramko, I.; Ageeva, E.; Kubishkin, A.; Makalish, T.; Tarimov, C.; Bondar’, D. The Polymorphism of Metabolic and Immune Mechanisms Controlling Genes in Type 2 Diabetes Mellitus. Genes 2025, 16, 1116. https://doi.org/10.3390/genes16091116
Shramko I, Ageeva E, Kubishkin A, Makalish T, Tarimov C, Bondar’ D. The Polymorphism of Metabolic and Immune Mechanisms Controlling Genes in Type 2 Diabetes Mellitus. Genes. 2025; 16(9):1116. https://doi.org/10.3390/genes16091116
Chicago/Turabian StyleShramko, Iuliana, Elizaveta Ageeva, Anatolii Kubishkin, Tatyana Makalish, Cyrill Tarimov, and Dmitry Bondar’. 2025. "The Polymorphism of Metabolic and Immune Mechanisms Controlling Genes in Type 2 Diabetes Mellitus" Genes 16, no. 9: 1116. https://doi.org/10.3390/genes16091116
APA StyleShramko, I., Ageeva, E., Kubishkin, A., Makalish, T., Tarimov, C., & Bondar’, D. (2025). The Polymorphism of Metabolic and Immune Mechanisms Controlling Genes in Type 2 Diabetes Mellitus. Genes, 16(9), 1116. https://doi.org/10.3390/genes16091116