Genetic and Epigenetic Factors in Ulcerative Colitis: A Narrative Literature Review
Abstract
1. Introduction
2. Pathophysiology
2.1. Dysregulated Immune Response and Disrupted Epithelial Barrier in Individuals with UC
2.2. Signaling Pathways
2.3. Gut Microbiota
3. Genetics and Epigenetics in Individuals with UC
3.1. Monogenic UC
3.2. GWAS Studies on Ulcerative Colitis
3.3. Rare Variants
3.4. HLA Genes
3.5. Epigenetics in UC
3.5.1. DNA Methylation
3.5.2. Histone Modifications
Histone Methylation
Histone Acetylation
3.5.3. MicroRNA
3.5.4. Long Non-Coding RNAs
4. Importance of Genetic Variants in Personalized Therapies
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Verstockt, B.; Bressler, B.; Martinez-Lozano, H.; McGovern, D.; Silverberg, M.S. Time to Revisit Disease Classification in Inflammatory Bowel Disease: Is the Current Classification of Inflammatory Bowel Disease Good Enough for Optimal Clinical Management? Gastroenterology 2022, 162, 1370–1382. [Google Scholar] [CrossRef] [PubMed]
- Valean, D.; Zaharie, R.; Taulean, R.; Usatiuc, L.; Zaharie, F. Recent Trends in Non-Invasive Methods of Diagnosis and Evaluation of Inflammatory Bowel Disease: A Short Review. Int. J. Mol. Sci. 2024, 25, 2077. [Google Scholar] [CrossRef] [PubMed]
- Kaplan, G.G.; Windsor, J.W. The four epidemiological stages in the global evolution of inflammatory bowel disease. Nat. Rev. Gastroenterol. Hepatol. 2021, 18, 56–66. [Google Scholar] [CrossRef]
- Agrawal, M.; Jess, T. Implications of the changing epidemiology of inflammatory bowel disease in a changing world. United Eur. Gastroenterol. J. 2022, 10, 1113–1120. [Google Scholar] [CrossRef]
- Barreiro-de Acosta, M.; Molero, A.; Artime, E.; Diaz-Cerezo, S.; Lizan, L.; de Paz, H.D.; Martin-Arranz, M.D. Epidemiological, Clinical, Patient-Reported and Economic Burden of Inflammatory Bowel Disease (Ulcerative colitis and Crohn’s disease) in Spain: A Systematic Review. Adv. Ther. 2023, 40, 1975–2014. [Google Scholar] [CrossRef]
- Ng, S.C.; Shi, H.Y.; Hamidi, N.; Underwood, F.E.; Tang, W.; Benchimol, E.I.; Panaccione, R.; Ghosh, S.; Wu, J.C.Y.; Chan, F.K.L.; et al. Worldwide incidence and prevalence of inflammatory bowel disease in the 21st century: A systematic review of population-based studies. Lancet 2017, 390, 2769–2778. [Google Scholar] [CrossRef]
- Collaborators, G.B.D.I.B.D. The global, regional, and national burden of inflammatory bowel disease in 195 countries and territories, 1990-2017: A systematic analysis for the Global Burden of Disease Study 2017. Lancet Gastroenterol. Hepatol. 2020, 5, 17–30. [Google Scholar] [CrossRef]
- Kaplan, G.G. The global burden of IBD: From 2015 to 2025. Nat. Rev. Gastroenterol. Hepatol. 2015, 12, 720–727. [Google Scholar] [CrossRef]
- Zhang, Z.; Du, N.; Xu, C.M.; Chen, W.; Ting Ting, C.; Xiao, Y. Global, regional, and national burden of inflammatory bowel disease in persons aged 60–89 years from 1992 to 2021. BMC Gastroenterol. 2025, 25, 425. [Google Scholar] [CrossRef]
- Cohen, R.D.; Yu, A.P.; Wu, E.Q.; Xie, J.; Mulani, P.M.; Chao, J. Systematic review: The costs of ulcerative colitis in Western countries. Aliment. Pharmacol. Ther. 2010, 31, 693–707. [Google Scholar] [CrossRef] [PubMed]
- Pakdin, M.; Zarei, L.; Bagheri Lankarani, K.; Ghahramani, S. The cost of illness analysis of inflammatory bowel disease. BMC Gastroenterol. 2023, 23, 21. [Google Scholar] [CrossRef]
- Yu, A.P.; Cabanilla, L.A.; Wu, E.Q.; Mulani, P.M.; Chao, J. The costs of Crohn’s disease in the United States and other Western countries: A systematic review. Curr. Med. Res. Opin. 2008, 24, 319–328. [Google Scholar] [CrossRef] [PubMed]
- Ramos, G.P.; Papadakis, K.A. Mechanisms of Disease: Inflammatory Bowel Diseases. Mayo Clin. Proc. 2019, 94, 155–165. [Google Scholar] [CrossRef] [PubMed]
- Borowitz, S.M. The epidemiology of inflammatory bowel disease: Clues to pathogenesis? Front. Pediatr. 2022, 10, 1103713. [Google Scholar] [CrossRef]
- Jans, D.; Cleynen, I. The genetics of non-monogenic IBD. Hum. Genet. 2023, 142, 669–682. [Google Scholar] [CrossRef]
- Furey, T.S.; Sethupathy, P.; Sheikh, S.Z. Redefining the IBDs using genome-scale molecular phenotyping. Nat. Rev. Gastroenterol. Hepatol. 2019, 16, 296–311. [Google Scholar] [CrossRef]
- Porter, R.J.; Kalla, R.; Ho, G.T. Ulcerative colitis: Recent advances in the understanding of disease pathogenesis. F1000Research 2020, 9, 294. [Google Scholar] [CrossRef] [PubMed]
- Kondo, K.; Ono, Y.; Ohfuji, S.; Watanabe, K.; Yamagami, H.; Watanabe, M.; Nishiwaki, Y.; Fukushima, W.; Hirota, Y.; Suzuki, Y.; et al. Smoking and drinking habits relating to development of ulcerative colitis in Japanese: A multicenter case-control study. JGH Open 2023, 7, 61–67. [Google Scholar] [CrossRef]
- Yuan, S.; Chen, J.; Ruan, X.; Sun, Y.; Zhang, K.; Wang, X.; Li, X.; Gill, D.; Burgess, S.; Giovannucci, E.; et al. Smoking, alcohol consumption, and 24 gastrointestinal diseases: Mendelian randomization analysis. Elife 2023, 12, e84051. [Google Scholar] [CrossRef]
- Lynch, W.D.; Hsu, R. Ulcerative Colitis. In StatPearls; StatPearls: Treasure Island, FL, USA, 2023. [Google Scholar]
- Muzammil, M.A.; Fariha, F.; Patel, T.; Sohail, R.; Kumar, M.; Khan, E.; Khanam, B.; Kumar, S.; Khatri, M.; Varrassi, G.; et al. Advancements in Inflammatory Bowel Disease: A Narrative Review of Diagnostics, Management, Epidemiology, Prevalence, Patient Outcomes, Quality of Life, and Clinical Presentation. Cureus 2023, 15, e41120. [Google Scholar] [CrossRef]
- Andersen, V.; Bennike, T.B.; Bang, C.; Rioux, J.D.; Hebert-Milette, I.; Sato, T.; Hansen, A.K.; Nielsen, O.H. Investigating the Crime Scene-Molecular Signatures in Inflammatory Bowel Disease. Int. J. Mol. Sci. 2023, 24, 11217. [Google Scholar] [CrossRef] [PubMed]
- Kaenkumchorn, T.; Wahbeh, G. Ulcerative Colitis: Making the Diagnosis. Gastroenterol. Clin. N. Am. 2020, 49, 655–669. [Google Scholar] [CrossRef] [PubMed]
- Vespa, E.; D’Amico, F.; Sollai, M.; Allocca, M.; Furfaro, F.; Zilli, A.; Dal Buono, A.; Gabbiadini, R.; Danese, S.; Fiorino, G. Histological Scores in Patients with Inflammatory Bowel Diseases: The State of the Art. J. Clin. Med. 2022, 11, 939. [Google Scholar] [CrossRef]
- Kobayashi, T.; Siegmund, B.; Le Berre, C.; Wei, S.C.; Ferrante, M.; Shen, B.; Bernstein, C.N.; Danese, S.; Peyrin-Biroulet, L.; Hibi, T. Ulcerative colitis. Nat. Rev. Dis. Primers 2020, 6, 74. [Google Scholar] [CrossRef]
- M’Koma, A.E. Inflammatory Bowel Disease: Clinical Diagnosis and Surgical Treatment-Overview. Medicina 2022, 58, 567. [Google Scholar] [CrossRef]
- Dai, N.; Haidar, O.; Askari, A.; Segal, J.P. Colectomy rates in ulcerative colitis: A systematic review and meta-analysis. Dig. Liver Dis. 2023, 55, 13–20. [Google Scholar] [CrossRef]
- Calvez, V.; Puca, P.; Di Vincenzo, F.; Del Gaudio, A.; Bartocci, B.; Murgiano, M.; Iaccarino, J.; Parand, E.; Napolitano, D.; Pugliese, D.; et al. Novel Insights into the Pathogenesis of Inflammatory Bowel Diseases. Biomedicines 2025, 13, 305. [Google Scholar] [CrossRef]
- Fu, M.; Wang, Q.W.; Liu, Y.R.; Chen, S.J. The role of the three major intestinal barriers in ulcerative colitis in the elderly. Ageing Res. Rev. 2025, 108, 102752. [Google Scholar] [CrossRef]
- Kaluzna, A.; Olczyk, P.; Komosinska-Vassev, K. The Role of Innate and Adaptive Immune Cells in the Pathogenesis and Development of the Inflammatory Response in Ulcerative Colitis. J. Clin. Med. 2022, 11, 400. [Google Scholar] [CrossRef] [PubMed]
- Liang, Y.; Li, Y.; Lee, C.; Yu, Z.; Chen, C.; Liang, C. Ulcerative colitis: Molecular insights and intervention therapy. Mol. Biomed. 2024, 5, 42. [Google Scholar] [CrossRef]
- Qu, F.; Xu, B.; Kang, H.; Wang, H.; Ji, J.; Pang, L.; Wu, Y.; Zhou, Z. The role of macrophage polarization in ulcerative colitis and its treatment. Microb. Pathog. 2025, 199, 107227. [Google Scholar] [CrossRef]
- Shimomori, Y.; Yokoyama, Y.; Kurumi, H.; Akita, K.; Kazama, T.; Hayashi, Y.; Mizukami, K.; Nakase, H. Unraveling the complexity of ulcerative colitis: Insights into cytokine dysregulation and targeted therapies. EXCLI J. 2025, 24, 638–658. [Google Scholar] [CrossRef]
- Hu, W.; Fang, T.; Zhou, M.; Chen, X. Identification of hub genes and immune infiltration in ulcerative colitis using bioinformatics. Sci. Rep. 2023, 13, 6039. [Google Scholar] [CrossRef]
- Roda, G.; Marocchi, M.; Sartini, A.; Roda, E. Cytokine Networks in Ulcerative Colitis. Ulcers 2011, 2011, 391787. [Google Scholar] [CrossRef]
- Sands, B.E.; Kaplan, G.G. The role of TNFalpha in ulcerative colitis. J. Clin. Pharmacol. 2007, 47, 930–941. [Google Scholar] [CrossRef]
- Shaban, S.F.; Abdel-Fattah, E.A.; Ali, M.M.; Dessouky, A.A. An Overview of the Involvement of Tumor Necrosis Factor Alpha in the Pathogenesis of Ulcerative Colitis. IJCBS 2023, 24, 1361–1366. [Google Scholar]
- Wu, M.; Liu, D.; Xiong, X.; Su, Q.; Xiang, Y.; Shen, L.; An, Z.; Yang, X. Analysis of the molecular mechanisms of ulcerative colitis and atherosclerosis by microarray data. Sci. Rep. 2025, 15, 10715. [Google Scholar] [CrossRef] [PubMed]
- Zhang, M.; Li, X.; Zhang, Q.; Yang, J.; Liu, G. Roles of macrophages on ulcerative colitis and colitis-associated colorectal cancer. Front. Immunol. 2023, 14, 1103617. [Google Scholar] [CrossRef]
- Nakase, H.; Sato, N.; Mizuno, N.; Ikawa, Y. The influence of cytokines on the complex pathology of ulcerative colitis. Autoimmun. Rev. 2022, 21, 103017. [Google Scholar] [CrossRef]
- Guo, X.Y.; Liu, X.J.; Hao, J.Y. Gut microbiota in ulcerative colitis: Insights on pathogenesis and treatment. J. Dig. Dis. 2020, 21, 147–159. [Google Scholar] [CrossRef]
- Wang, J.; Li, L.; Chen, P.; He, C.; Niu, X. Exploration and verification a 13-gene diagnostic framework for ulcerative colitis across multiple platforms via machine learning algorithms. Sci. Rep. 2024, 14, 15009. [Google Scholar] [CrossRef] [PubMed]
- UniProt: The Universal Protein Knowledgebase in 2023. Available online: https://www.uniprot.org/ (accessed on 29 June 2023).
- Esenturk, G.; Konac, E. Genetic and epigenetic signaling pathways and their clinical outcomes in inflammatory bowel disease. Injector 2025, 4, 8–18. [Google Scholar]
- Hsu, C.Y.; Mustafa, M.A.; Moath Omar, T.; Taher, S.G.; Ubaid, M.; Gilmanova, N.S.; Nasrat Abdulraheem, M.; Saadh, M.J.; Athab, A.H.; Mirzaei, R.; et al. Gut instinct: Harnessing the power of probiotics to tame pathogenic signaling pathways in ulcerative colitis. Front. Med. 2024, 11, 1396789. [Google Scholar] [CrossRef]
- Yuan, Y.; Wang, F.; Liu, X.; Shuai, B.; Fan, H. The Role of AMPK Signaling in Ulcerative Colitis. Drug Des. Dev. Ther. 2023, 17, 3855–3875. [Google Scholar] [CrossRef]
- Xue, J.C.; Yuan, S.; Hou, X.T.; Meng, H.; Liu, B.H.; Cheng, W.W.; Zhao, M.; Li, H.B.; Guo, X.F.; Di, C.; et al. Natural products modulate NLRP3 in ulcerative colitis. Front. Pharmacol. 2023, 14, 1265825. [Google Scholar] [CrossRef]
- Ning, H.; Liu, J.; Tan, J.; Yi, M.; Lin, X. The role of the Notch signalling pathway in the pathogenesis of ulcerative colitis: From the perspective of intestinal mucosal barrier. Front. Med. 2023, 10, 1333531. [Google Scholar] [CrossRef] [PubMed]
- Swirkosz, G.; Szczygiel, A.; Logon, K.; Wrzesniewska, M.; Gomulka, K. The Role of the Microbiome in the Pathogenesis and Treatment of Ulcerative Colitis-A Literature Review. Biomedicines 2023, 11, 3144. [Google Scholar] [CrossRef]
- Hosseini Jazani, N.; Shahabi, S. Gut microbiota, dysbiosis and immune system; A brief review. J. Res. Appl. Basic Med. Sci. 2019, 5, 77–81. [Google Scholar]
- Nemoto, H.; Kataoka, K.; Ishikawa, H.; Ikata, K.; Arimochi, H.; Iwasaki, T.; Ohnishi, Y.; Kuwahara, T.; Yasutomo, K. Reduced diversity and imbalance of fecal microbiota in patients with ulcerative colitis. Dig. Dis. Sci. 2012, 57, 2955–2964. [Google Scholar] [CrossRef] [PubMed]
- Martinez, K.B.; Pierre, J.F.; Chang, E.B. The Gut Microbiota: The Gateway to Improved Metabolism. Gastroenterol. Clin. N. Am. 2016, 45, 601–614. [Google Scholar] [CrossRef]
- Yang, Q.H.; Zhang, C.N. Comparative study on the pathogenesis of Crohn’s disease and ulcerative colitis. World J. Gastroenterol. 2025, 31, 106406. [Google Scholar] [CrossRef] [PubMed]
- Kmiec, Z.; Cyman, M.; Slebioda, T.J. Cells of the innate and adaptive immunity and their interactions in inflammatory bowel disease. Adv. Med. Sci. 2017, 62, 1–16. [Google Scholar] [CrossRef]
- Ho, S.M.; Lewis, J.D.; Mayer, E.A.; Plevy, S.E.; Chuang, E.; Rappaport, S.M.; Croitoru, K.; Korzenik, J.R.; Krischer, J.; Hyams, J.S.; et al. Challenges in IBD Research: Environmental Triggers. Inflamm. Bowel Dis. 2019, 25, S13–S23. [Google Scholar] [CrossRef]
- Xu, L.; Lochhead, P.; Ko, Y.; Claggett, B.; Leong, R.W.; Ananthakrishnan, A.N. Systematic review with meta-analysis: Breastfeeding and the risk of Crohn’s disease and ulcerative colitis. Aliment. Pharmacol. Ther. 2017, 46, 780–789. [Google Scholar] [CrossRef]
- Papoutsopoulou, S.; Satsangi, J.; Campbell, B.J.; Probert, C.S. Review article: Impact of cigarette smoking on intestinal inflammation-direct and indirect mechanisms. Aliment. Pharmacol. Ther. 2020, 51, 1268–1285. [Google Scholar] [CrossRef]
- To, N.; Ford, A.C.; Gracie, D.J. Systematic review with meta-analysis: The effect of tobacco smoking on the natural history of ulcerative colitis. Aliment. Pharmacol. Ther. 2016, 44, 117–126. [Google Scholar] [CrossRef]
- Murgiano, M.; Bartocci, B.; Puca, P.; di Vincenzo, F.; Del Gaudio, A.; Papa, A.; Cammarota, G.; Gasbarrini, A.; Scaldaferri, F.; Lopetuso, L.R. Gut Microbiota Modulation in IBD: From the Old Paradigm to Revolutionary Tools. Int. J. Mol. Sci. 2025, 26, 3059. [Google Scholar] [CrossRef]
- Vardi, I.; Chermesh, I.; Werner, L.; Barel, O.; Freund, T.; McCourt, C.; Fisher, Y.; Pinsker, M.; Javasky, E.; Weiss, B.; et al. Monogenic Inflammatory Bowel Disease: It’s Never Too Late to Make a Diagnosis. Front. Immunol. 2020, 11, 1775. [Google Scholar] [CrossRef] [PubMed]
- Loddo, I.; Romano, C. Inflammatory Bowel Disease: Genetics, Epigenetics, and Pathogenesis. Front. Immunol. 2015, 6, 551. [Google Scholar] [CrossRef]
- Andrews, A.R.; Putra, J. Special Considerations in Pediatric Inflammatory Bowel Disease Pathology. Diagnostics 2025, 15, 831. [Google Scholar] [CrossRef] [PubMed]
- McGovern, D.P.; Kugathasan, S.; Cho, J.H. Genetics of Inflammatory Bowel Diseases. Gastroenterology 2015, 149, 1163–1176. [Google Scholar] [CrossRef]
- Cerezo, M.; Sollis, E.; Ji, Y.; Lewis, E.; Abid, A.; Bircan, K.O.; Hall, P.; Hayhurst, J.; John, S.; Mosaku, A.; et al. NHGRI-EBI GWAS Catalog. Nucleic Acids Res. 2025, 53, D998–D1005. [Google Scholar] [CrossRef] [PubMed]
- Annese, V. Genetics and epigenetics of IBD. Pharmacol. Res. 2020, 159, 104892. [Google Scholar] [CrossRef] [PubMed]
- Caliendo, G.; D’Elia, G.; Makker, J.; Passariello, L.; Albanese, L.; Molinari, A.M.; Vietri, M.T. Biological, genetic and epigenetic markers in ulcerative colitis. Adv. Med. Sci. 2023, 68, 386–395. [Google Scholar] [CrossRef]
- Anderson, C.A.; Boucher, G.; Lees, C.W.; Franke, A.; D’Amato, M.; Taylor, K.D.; Lee, J.C.; Goyette, P.; Imielinski, M.; Latiano, A.; et al. Meta-analysis identifies 29 additional ulcerative colitis risk loci, increasing the number of confirmed associations to 47. Nat. Genet. 2011, 43, 246–252. [Google Scholar] [CrossRef] [PubMed]
- Asano, K.; Matsushita, T.; Umeno, J.; Hosono, N.; Takahashi, A.; Kawaguchi, T.; Matsumoto, T.; Matsui, T.; Kakuta, Y.; Kinouchi, Y.; et al. A genome-wide association study identifies three new susceptibility loci for ulcerative colitis in the Japanese population. Nat. Genet. 2009, 41, 1325–1329. [Google Scholar] [CrossRef]
- de Lange, K.M.; Moutsianas, L.; Lee, J.C.; Lamb, C.A.; Luo, Y.; Kennedy, N.A.; Jostins, L.; Rice, D.L.; Gutierrez-Achury, J.; Ji, S.G.; et al. Genome-wide association study implicates immune activation of multiple integrin genes in inflammatory bowel disease. Nat. Genet. 2017, 49, 256–261. [Google Scholar] [CrossRef]
- Franke, A.; Balschun, T.; Karlsen, T.H.; Sventoraityte, J.; Nikolaus, S.; Mayr, G.; Domingues, F.S.; Albrecht, M.; Nothnagel, M.; Ellinghaus, D.; et al. Sequence variants in IL10, ARPC2 and multiple other loci contribute to ulcerative colitis susceptibility. Nat. Genet. 2008, 40, 1319–1323. [Google Scholar] [CrossRef]
- Franke, A.; Balschun, T.; Sina, C.; Ellinghaus, D.; Hasler, R.; Mayr, G.; Albrecht, M.; Wittig, M.; Buchert, E.; Nikolaus, S.; et al. Genome-wide association study for ulcerative colitis identifies risk loci at 7q22 and 22q13 (IL17REL). Nat. Genet. 2010, 42, 292–294. [Google Scholar] [CrossRef]
- Garcia-Etxebarria, K.; Merino, O.; Gaite-Reguero, A.; Rodrigues, P.M.; Herrarte, A.; Etxart, A.; Ellinghaus, D.; Alonso-Galan, H.; Franke, A.; Marigorta, U.M.; et al. Local genetic variation of inflammatory bowel disease in Basque population and its effect in risk prediction. Sci. Rep. 2022, 12, 3386. [Google Scholar] [CrossRef]
- Haritunians, T.; Taylor, K.D.; Targan, S.R.; Dubinsky, M.; Ippoliti, A.; Kwon, S.; Guo, X.; Melmed, G.Y.; Berel, D.; Mengesha, E.; et al. Genetic predictors of medically refractory ulcerative colitis. Inflamm. Bowel Dis. 2010, 16, 1830–1840. [Google Scholar] [CrossRef] [PubMed]
- Jiang, L.; Zheng, Z.; Fang, H.; Yang, J. A generalized linear mixed model association tool for biobank-scale data. Nat. Genet. 2021, 53, 1616–1621. [Google Scholar] [CrossRef]
- Jostins, L.; Ripke, S.; Weersma, R.K.; Duerr, R.H.; McGovern, D.P.; Hui, K.Y.; Lee, J.C.; Schumm, L.P.; Sharma, Y.; Anderson, C.A.; et al. Host-microbe interactions have shaped the genetic architecture of inflammatory bowel disease. Nature 2012, 491, 119–124. [Google Scholar] [CrossRef]
- Julia, A.; Domenech, E.; Chaparro, M.; Garcia-Sanchez, V.; Gomollon, F.; Panes, J.; Manosa, M.; Barreiro-De Acosta, M.; Gutierrez, A.; Garcia-Planella, E.; et al. A genome-wide association study identifies a novel locus at 6q22.1 associated with ulcerative colitis. Hum. Mol. Genet. 2014, 23, 6927–6934. [Google Scholar] [CrossRef]
- Juyal, G.; Negi, S.; Sood, A.; Gupta, A.; Prasad, P.; Senapati, S.; Zaneveld, J.; Singh, S.; Midha, V.; van Sommeren, S.; et al. Genome-wide association scan in north Indians reveals three novel HLA-independent risk loci for ulcerative colitis. Gut 2015, 64, 571–579. [Google Scholar] [CrossRef]
- Khrom, M.; Li, D.; Naito, T.; Lee, H.S.; Botwin, G.J.; Potdar, A.A.; Boucher, G.; Consortium, N.I.B.D.G.; International Inflammatory Bowel Disease Genetics, C.; Yang, S.; et al. Sex-Dimorphic Analyses Identify Novel and Sex-Specific Genetic Associations in Inflammatory Bowel Disease. Inflamm. Bowel Dis. 2023, 29, 1622–1632. [Google Scholar] [CrossRef]
- Liu, J.Z.; van Sommeren, S.; Huang, H.; Ng, S.C.; Alberts, R.; Takahashi, A.; Ripke, S.; Lee, J.C.; Jostins, L.; Shah, T.; et al. Association analyses identify 38 susceptibility loci for inflammatory bowel disease and highlight shared genetic risk across populations. Nat. Genet. 2015, 47, 979–986. [Google Scholar] [CrossRef] [PubMed]
- Liu, Z.; Liu, R.; Gao, H.; Jung, S.; Gao, X.; Sun, R.; Liu, X.; Kim, Y.; Lee, H.S.; Kawai, Y.; et al. Genetic architecture of the inflammatory bowel diseases across East Asian and European ancestries. Nat. Genet. 2023, 55, 796–806. [Google Scholar] [CrossRef]
- Loya, H.; Kalantzis, G.; Cooper, F.; Palamara, P.F. A scalable variational inference approach for increased mixed-model association power. Nat. Genet. 2025, 57, 461–468. [Google Scholar] [CrossRef]
- Luo, Y.; de Lange, K.M.; Jostins, L.; Moutsianas, L.; Randall, J.; Kennedy, N.A.; Lamb, C.A.; McCarthy, S.; Ahmad, T.; Edwards, C.; et al. Exploring the genetic architecture of inflammatory bowel disease by whole-genome sequencing identifies association at ADCY7. Nat. Genet. 2017, 49, 186–192. [Google Scholar] [CrossRef] [PubMed]
- McGovern, D.P.; Gardet, A.; Torkvist, L.; Goyette, P.; Essers, J.; Taylor, K.D.; Neale, B.M.; Ong, R.T.; Lagace, C.; Li, C.; et al. Genome-wide association identifies multiple ulcerative colitis susceptibility loci. Nat. Genet. 2010, 42, 332–337. [Google Scholar] [CrossRef]
- Ostrowski, J.; Paziewska, A.; Lazowska, I.; Ambrozkiewicz, F.; Goryca, K.; Kulecka, M.; Rawa, T.; Karczmarski, J.; Dabrowska, M.; Zeber-Lubecka, N.; et al. Genetic architecture differences between pediatric and adult-onset inflammatory bowel diseases in the Polish population. Sci. Rep. 2016, 6, 39831. [Google Scholar] [CrossRef]
- Sakaue, S.; Kanai, M.; Tanigawa, Y.; Karjalainen, J.; Kurki, M.; Koshiba, S.; Narita, A.; Konuma, T.; Yamamoto, K.; Akiyama, M.; et al. A cross-population atlas of genetic associations for 220 human phenotypes. Nat. Genet. 2021, 53, 1415–1424. [Google Scholar] [CrossRef] [PubMed]
- Silverberg, M.S.; Cho, J.H.; Rioux, J.D.; McGovern, D.P.; Wu, J.; Annese, V.; Achkar, J.P.; Goyette, P.; Scott, R.; Xu, W.; et al. Ulcerative colitis-risk loci on chromosomes 1p36 and 12q15 found by genome-wide association study. Nat. Genet. 2009, 41, 216–220. [Google Scholar] [CrossRef] [PubMed]
- Verma, A.; Huffman, J.E.; Rodriguez, A.; Conery, M.; Liu, M.; Ho, Y.L.; Kim, Y.; Heise, D.A.; Guare, L.; Panickan, V.A.; et al. Diversity and scale: Genetic architecture of 2068 traits in the VA Million Veteran Program. Science 2024, 385, eadj1182. [Google Scholar] [CrossRef]
- Yang, S.K.; Hong, M.; Zhao, W.; Jung, Y.; Tayebi, N.; Ye, B.D.; Kim, K.J.; Park, S.H.; Lee, I.; Shin, H.D.; et al. Genome-wide association study of ulcerative colitis in Koreans suggests extensive overlapping of genetic susceptibility with Caucasians. Inflamm. Bowel Dis. 2013, 19, 954–966. [Google Scholar] [CrossRef]
- Ye, B.D.; Choi, H.; Hong, M.; Yun, W.J.; Low, H.Q.; Haritunians, T.; Kim, K.J.; Park, S.H.; Lee, I.; Bang, S.Y.; et al. Identification of Ten Additional Susceptibility Loci for Ulcerative Colitis Through Immunochip Analysis in Koreans. Inflamm. Bowel Dis. 2016, 22, 13–19. [Google Scholar] [CrossRef]
- Zeng, Y.; Suo, C.; Yao, S.; Lu, D.; Larsson, H.; D’Onofrio, B.M.; Lichtenstein, P.; Fang, F.; Valdimarsdottir, U.A.; Song, H. Genetic Associations Between Stress-Related Disorders and Autoimmune Disease. Am. J. Psychiatry 2023, 180, 294–304. [Google Scholar] [CrossRef]
- Consortium, U.I.G.; Barrett, J.C.; Lee, J.C.; Lees, C.W.; Prescott, N.J.; Anderson, C.A.; Phillips, A.; Wesley, E.; Parnell, K.; Zhang, H.; et al. Genome-wide association study of ulcerative colitis identifies three new susceptibility loci, including the HNF4A region. Nat. Genet. 2009, 41, 1330–1334. [Google Scholar] [CrossRef]
- Sazonovs, A.; Stevens, C.R.; Venkataraman, G.R.; Yuan, K.; Avila, B.; Abreu, M.T.; Ahmad, T.; Allez, M.; Ananthakrishnan, A.N.; Atzmon, G.; et al. Large-scale sequencing identifies multiple genes and rare variants associated with Crohn’s disease susceptibility. Nat. Genet. 2022, 54, 1275–1283. [Google Scholar] [CrossRef]
- Visschedijk, M.C.; Alberts, R.; Mucha, S.; Deelen, P.; de Jong, D.J.; Pierik, M.; Spekhorst, L.M.; Imhann, F.; van der Meulen-de Jong, A.E.; van der Woude, C.J.; et al. Pooled Resequencing of 122 Ulcerative Colitis Genes in a Large Dutch Cohort Suggests Population-Specific Associations of Rare Variants in MUC2. PLoS ONE 2016, 11, e0159609. [Google Scholar] [CrossRef] [PubMed]
- Wu, D.; Chen, D.; Shi, W.; Liu, W.; Zhou, W.; Qian, J. Whole Exome Sequencing Identifies Two Novel Mutations in a Patient with UC Associated with PSC and SSA. Can. J. Gastroenterol. Hepatol. 2021, 2021, 9936932. [Google Scholar] [CrossRef]
- Gettler, K.; Levantovsky, R.; Moscati, A.; Giri, M.; Wu, Y.; Hsu, N.Y.; Chuang, L.S.; Sazonovs, A.; Venkateswaran, S.; Korie, U.; et al. Common and Rare Variant Prediction and Penetrance of IBD in a Large, Multi-ethnic, Health System-based Biobank Cohort. Gastroenterology 2021, 160, 1546–1557. [Google Scholar] [CrossRef] [PubMed]
- Onoufriadis, A.; Stone, K.; Katsiamides, A.; Amar, A.; Omar, Y.; de Lange, K.M.; Taylor, K.; Barrett, J.C.; Pollok, R.; Hayee, B.; et al. Exome Sequencing and Genotyping Identify a Rare Variant in NLRP7 Gene Associated with Ulcerative Colitis. J. Crohns Colitis 2018, 12, 321–326. [Google Scholar] [CrossRef]
- El Hadad, J.; Schreiner, P.; Vavricka, S.R.; Greuter, T. The Genetics of Inflammatory Bowel Disease. Mol. Diagn. Ther. 2024, 28, 27–35. [Google Scholar] [CrossRef] [PubMed]
- Maksic, M.; Corovic, I.; Maksic, T.; Zivic, J.; Zivic, M.; Zdravkovic, N.; Begovic, A.; Medovic, M.; Kralj, D.; Todorovic, Z.; et al. Molecular Insight into the Role of HLA Genotypes in Immunogenicity and Secondary Refractoriness to Anti-TNF Therapy in IBD Patients. Int. J. Mol. Sci. 2025, 26, 7274. [Google Scholar] [CrossRef]
- Nowak, J.K.; Glapa-Nowak, A.; Banaszkiewicz, A.; Iwanczak, B.; Kwiecien, J.; Szaflarska-Poplawska, A.; Grzybowska-Chlebowczyk, U.; Osiecki, M.; Kierkus, J.; Holubiec, M.; et al. HLA-DQA1*05 Associates with Extensive Ulcerative Colitis at Diagnosis: An Observational Study in Children. Genes 2021, 12, 1934. [Google Scholar] [CrossRef]
- Okamoto, D.; Kawai, Y.; Kakuta, Y.; Naito, T.; Torisu, T.; Hirano, A.; Umeno, J.; Fuyuno, Y.; Li, D.; Nakano, T.; et al. Genetic Analysis of Ulcerative Colitis in Japanese Individuals Using Population-specific SNP Array. Inflamm. Bowel Dis. 2020, 26, 1177–1187. [Google Scholar] [CrossRef]
- Venkateswaran, S.; Prince, J.; Cutler, D.J.; Marigorta, U.M.; Okou, D.T.; Prahalad, S.; Mack, D.; Boyle, B.; Walters, T.; Griffiths, A.; et al. Enhanced Contribution of HLA in Pediatric Onset Ulcerative Colitis. Inflamm. Bowel Dis. 2018, 24, 829–838. [Google Scholar] [CrossRef]
- Quigley, E.M. Epigenetics: Filling in the ‘heritability gap’ and identifying gene-environment interactions in ulcerative colitis. Genome Med. 2012, 4, 72. [Google Scholar] [CrossRef]
- Bernstein, B.E.; Meissner, A.; Lander, E.S. The mammalian epigenome. Cell 2007, 128, 669–681. [Google Scholar] [CrossRef]
- Yan, L.; Gu, C.; Gao, S.; Wei, B. Epigenetic regulation and therapeutic strategies in ulcerative colitis. Front. Genet. 2023, 14, 1302886. [Google Scholar] [CrossRef]
- Zeng, Z.; Mukherjee, A.; Zhang, H. From Genetics to Epigenetics, Roles of Epigenetics in Inflammatory Bowel Disease. Front. Genet. 2019, 10, 1017. [Google Scholar] [CrossRef]
- Zob, D.L.; Augustin, I.; Caba, L.; Panzaru, M.C.; Popa, S.; Popa, A.D.; Florea, L.; Gorduza, E.V. Genomics and Epigenomics in the Molecular Biology of Melanoma-A Prerequisite for Biomarkers Studies. Int. J. Mol. Sci. 2022, 24, 716. [Google Scholar] [CrossRef]
- Leng, X.Y.; Yang, J.; Fan, H.; Chen, Q.Y.; Cheng, B.J.; He, H.X.; Gao, F.; Zhu, F.; Yu, T.; Liu, Y.J. JMJD3/H3K27me3 epigenetic modification regulates Th17/Treg cell differentiation in ulcerative colitis. Int. Immunopharmacol. 2022, 110, 109000. [Google Scholar] [CrossRef]
- Moein, S.; Vaghari-Tabari, M.; Qujeq, D.; Majidinia, M.; Nabavi, S.M.; Yousefi, B. MiRNAs and inflammatory bowel disease: An interesting new story. J. Cell. Physiol. 2019, 234, 3277–3293. [Google Scholar] [CrossRef] [PubMed]
- Sharma, S.; Xiao, L.; Wang, J.Y. HuR and Its Interactions with Noncoding RNAs in Gut Epithelium Homeostasis and Diseases. Front. Biosci. (Landmark Ed.) 2023, 28, 262. [Google Scholar] [CrossRef] [PubMed]
- Sibia, C.F.; Quaglio, A.E.V.; Oliveira, E.C.S.; Pereira, J.N.; Ariede, J.R.; Lapa, R.M.L.; Severino, F.E.; Reis, P.P.; Sassaki, L.Y.; Saad-Hossne, R. microRNA-mRNA Networks Linked to Inflammation and Immune System Regulation in Inflammatory Bowel Disease. Biomedicines 2024, 12, 422. [Google Scholar] [CrossRef]
- Ma, L.; Hou, C.; Yang, H.; Chen, Q.; Lyu, W.; Wang, Z.; Wang, J.; Xiao, Y. Multi-omics analysis reveals the interaction of gut microbiome and host microRNAs in ulcerative colitis. Ann. Med. 2023, 55, 2261477. [Google Scholar] [CrossRef]
- Soroosh, A.; Rankin, C.R.; Polytarchou, C.; Lokhandwala, Z.A.; Patel, A.; Chang, L.; Pothoulakis, C.; Iliopoulos, D.; Padua, D.M. miR-24 Is Elevated in Ulcerative Colitis Patients and Regulates Intestinal Epithelial Barrier Function. Am. J. Pathol. 2019, 189, 1763–1774. [Google Scholar] [CrossRef]
- Liu, S.; Zhang, S.; Lv, X.; Lu, J.; Ren, C.; Zeng, Z.; Zheng, L.; Zhou, X.; Fu, H.; Zhou, D.; et al. Limonin ameliorates ulcerative colitis by regulating STAT3/miR-214 signaling pathway. Int. Immunopharmacol. 2019, 75, 105768. [Google Scholar] [CrossRef] [PubMed]
- Ray, M.K.; Fenton, C.G.; Paulssen, R.H. Novel long non-coding RNAs of relevance for ulcerative colitis pathogenesis. Noncoding RNA Res. 2022, 7, 40–47. [Google Scholar] [CrossRef]
- Hu, Y.; Lu, Y.; Fang, Y.; Zhang, Q.; Zheng, Z.; Zheng, X.; Ye, X.; Chen, Y.; Ding, J.; Yang, J. Role of long non-coding RNA in inflammatory bowel disease. Front. Immunol. 2024, 15, 1406538. [Google Scholar] [CrossRef] [PubMed]
- Wu, W.; Li, X.; Zhou, Z.; He, H.; Pang, C.; Ye, S.; Quan, J.H. METTL14 regulates inflammation in ulcerative colitis via the lncRNA DHRS4-AS1/miR-206/A3AR axis. Cell Biol. Toxicol. 2024, 40, 95. [Google Scholar] [CrossRef]
- Bek, S.; Nielsen, J.V.; Bojesen, A.B.; Franke, A.; Bank, S.; Vogel, U.; Andersen, V. Systematic review: Genetic biomarkers associated with anti-TNF treatment response in inflammatory bowel diseases. Aliment. Pharmacol. Ther. 2016, 44, 554–567. [Google Scholar] [CrossRef]
- Prieto-Perez, R.; Almoguera, B.; Cabaleiro, T.; Hakonarson, H.; Abad-Santos, F. Association between Genetic Polymorphisms and Response to Anti-TNFs in Patients with Inflammatory Bowel Disease. Int. J. Mol. Sci. 2016, 17, 225. [Google Scholar] [CrossRef]
- Salvador-Martin, S.; Pujol-Muncunill, G.; Bossacoma, F.; Navas-Lopez, V.M.; Gallego-Fernandez, C.; Segarra, O.; Clemente, S.; Munoz-Codoceo, R.; Viada, J.; Magallares, L.; et al. Pharmacogenetics of trough serum anti-TNF levels in paediatric inflammatory bowel disease. Br. J. Clin. Pharmacol. 2021, 87, 447–457. [Google Scholar] [CrossRef]
- Eltantawy, N.; El-Zayyadi, I.A.E.; Elberry, A.A.; Salah, L.M.; Abdelrahim, M.E.A.; Kassem, A.B. A review article of inflammatory bowel disease treatment and pharmacogenomics. Beni-Suef Univ. J. Basic. Appl. Sci. 2023, 12, 35. [Google Scholar] [CrossRef]
- Grover, N.; Bhatia, P.; Kumar, A.; Singh, M.; Lad, D.; Mandavdhare, H.S.; Samanta, J.; Prasad, K.K.; Dutta, U.; Sharma, V. TPMT and NUDT15 polymorphisms in thiopurine induced leucopenia in inflammatory bowel disease: A prospective study from India. BMC Gastroenterol. 2021, 21, 327. [Google Scholar] [CrossRef] [PubMed]
- Qu, Y.T.; Ding, J.Y.; Pan, W.; Liu, F.R.; Dong, A.L. Perspectives in clinical research on Azathioprine for steroid-dependent ulcerative colitis. Front. Med. 2025, 12, 1551906. [Google Scholar] [CrossRef]
Variant and Risk Allele (rs) | p-Value | OR | CI | Gene | References |
---|---|---|---|---|---|
rs9271209-? | 2 × 10−85 | - | - | HLA-DRB1, HLA-DQA1 | [79] |
rs76901167-? | 2 × 10−94 | - | - | HLA-DRB1, HLA-DQA1 | |
rs113653754-C | 1 × 10−86 | 1.3593605 | - | HLA-DQA1, HLA-DQB1 | |
rs9268877-? | 4 × 10−23 | - | - | HLA-DRB9 | [91] |
rs9271366-G | 1 × 10−18 | 2.1 | [1.78–2.48] | HLA-DRB1, HLA-DQA1 | [88] |
rs9268853-T | 1 × 10−55 | 1.4 | [1.34–1.47] | HLA-DRB9 | [67] |
rs2395185-G | 5 × 10−22 | 1.92 | [1.68–2.19] | HLA-DRB9 | [68] |
rs9268923-C | 4 × 10−15 | 1.45 | [1.33–1.59] | HLA-DRB9 | [71] |
rs2395185-? | 1 × 10−16 | 1.52 | - | HLA-DRB9 | [86] |
rs6927022-A | 5 × 10−133 | 1.444 | [1.387–1.503] | HLA-DQA1 | [75] |
rs2395185-G | 9 × 10−23 | 1.49 | [NR] | HLA-DRB9 | [83] |
rs9268877-T | 6 × 10−18 | 1.45 | [1.33–1.58] | HLA-DRB9 | [70] |
rs6927022-? | 5 × 10−65 | - | - | HLA-DQA1 | [69] |
rs117506082-G | 4 × 10−88 | 3.39 | [2.99–3.83] | HCG27, HLA-C | [100] |
rs2239805-C | 1 × 10−10 | 0.839 | [0.796–0.885] | HLA-DRA | [78] |
rs2239805-C | 7 × 10−9 | 0.895 | [0.862–0.929] | HLA-DRA | |
rs9274238-A | 6 × 10−14 | - | [0.23–0.38] | HLA-DQB1 | [81] |
rs147732109-A | 2 × 10−16 | - | [0.96–1.56] | HLA-DRB6, HLA-DRB1 | [85] |
rs9271511-? | 1 × 10−158 | - | [0.32–0.37] | HLA-DRB1, HLA-DQA1 | [80] |
HLA-DRB1*0103-? | 2 × 10−13 | 6.9418 | [6.43–7.46] | - | [101] |
HLA-DRB1*1301-? | 7 × 10−8 | 2.1073 | [1.84–2.38] | - |
Variant and Risk Allele (rs) | Gene | Therapy Observations | References |
---|---|---|---|
rs10889677 | IL23R | positive response to infliximab | [118] |
rs11209032 | |||
rs1004819-AA | |||
rs2201841-GC | |||
rs1495965-CC | |||
rs1343151-AA | IL23R | decreased response to infliximab | |
rs7517847-GC | |||
rs11465804-CC | |||
rs10489629-CC | |||
rs5030728-A | TLR4 | positive response to infliximab | [119] |
rs11465996 | LY96 | subtherapeutic infliximab levels | |
rs5030728-GG | TLR4 | subtherapeutic infliximab levels | |
rs3397-T | TNFRSF1B | non-response to infliximab | |
rs2569190-A | CD14 | lack of response to infliximab and adalimumab | |
HLA-DRB10103 | HLA-DRB1 | immunogenicity to infliximab | [98] |
HLA-DQA105 | HLA-DQA1 | increased anti-drug antibody formation therapy failure | |
NUDT15 | azathioprine-induced leukopenia | [120,121,122] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Caba, L.; Florea, A.; Cianga, P.; Drug, V.; Popescu, R.; Mihai, C.; Ciobanu, C.-G.; Iacob, V.V.; Florea, L.; Gorduza, E.V. Genetic and Epigenetic Factors in Ulcerative Colitis: A Narrative Literature Review. Genes 2025, 16, 1085. https://doi.org/10.3390/genes16091085
Caba L, Florea A, Cianga P, Drug V, Popescu R, Mihai C, Ciobanu C-G, Iacob VV, Florea L, Gorduza EV. Genetic and Epigenetic Factors in Ulcerative Colitis: A Narrative Literature Review. Genes. 2025; 16(9):1085. https://doi.org/10.3390/genes16091085
Chicago/Turabian StyleCaba, Lavinia, Andreea Florea, Petru Cianga, Vasile Drug, Roxana Popescu, Catalina Mihai, Cristian-Gabriel Ciobanu, Vlad Victor Iacob, Laura Florea, and Eusebiu Vlad Gorduza. 2025. "Genetic and Epigenetic Factors in Ulcerative Colitis: A Narrative Literature Review" Genes 16, no. 9: 1085. https://doi.org/10.3390/genes16091085
APA StyleCaba, L., Florea, A., Cianga, P., Drug, V., Popescu, R., Mihai, C., Ciobanu, C.-G., Iacob, V. V., Florea, L., & Gorduza, E. V. (2025). Genetic and Epigenetic Factors in Ulcerative Colitis: A Narrative Literature Review. Genes, 16(9), 1085. https://doi.org/10.3390/genes16091085