Repeats Influence Structural DNA Properties Around Functional Annotations Associated with 3D Organization and Transcription
Abstract
1. Introduction
2. Materials and Methods
2.1. Genomic Maps
2.2. Structural DNA Properties
2.3. Reference Models for Dinucleotide Contents
2.4. Reference Models for Repeat Content
2.5. Local Environments
2.6. Peak Calling
2.7. Correlation
3. Results
3.1. Correlations Between Structural Properties & Functional Annotations
3.2. Peaks in Structural Properties Around Functional Annotations
3.3. Influences of Dinucleotides & Repeats
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
DNA | Deoxyribonucleic Aacid |
HS | Homo sapiens |
MM | Mus musculus |
TR | Tandem repeat |
L1 | Line 1 |
CTCF | CCCTC-binding factor |
TAD | Topologically associating domain |
TF | Transcription factor |
References
- Jacob, F.; Monod, J. Genetic regulatory mechanisms in the synthesis of proteins. J. Mol. Biol. 1961, 3, 318–356. [Google Scholar] [CrossRef] [PubMed]
- Luppino, J.M.; Joyce, E.F. Single cell analysis pushes the boundaries of TAD formation and function. Curr. Opin. Genet. Dev. 2020, 61, 25–31. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Martin, E.W.; Sung, M.H. Challenges of Decoding Transcription Factor Dynamics in Terms of Gene Regulation. Cells 2018, 7, 132. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Oberbeckmann, E.; Quililan, K.; Cramer, P.; Oudelaar, A.M. In vitro reconstitution of chromatin domains shows a role for nucleosome positioning in 3D genome organization. Nat. Genet. 2024, 56, 483–492. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Gorkin, D.U.; Leung, D.; Ren, B. The 3D genome in transcriptional regulation and pluripotency. Cell Stem Cell 2014, 14, 762–775. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Deng, S.; Feng, Y.; Pauklin, S. 3D chromatin architecture and transcription regulation in cancer. J. Hematol. Oncol. 2022, 15, 49. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Misteli, T. The Self-Organizing Genome: Principles of Genome Architecture and Function. Cell 2020, 183, 28–45. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Rajderkar, S.; Barozzi, I.; Zhu, Y.; Hu, R.; Zhang, Y.; Li, B.; Alcaina Caro, A.; Fukuda-Yuzawa, Y.; Kelman, G.; Akeza, A.; et al. Topologically associating domain boundaries are required for normal genome function. Commun. Biol. 2023, 6, 435. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Fudenberg, G.; Imakaev, M.; Lu, C.; Goloborodko, A.; Abdennur, N.; Mirny, L.A. Formation of Chromosomal Domains by Loop Extrusion. Cell Rep. 2016, 15, 2038–2049. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Todolli, S.; Perez, P.J.; Clauvelin, N.; Olson, W.K. Contributions of Sequence to the Higher-Order Structures of DNA. Biophys. J. 2017, 112, 416–426. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Struhl, K.; Segal, E. Determinants of nucleosome positioning. Nat. Struct. Mol. Biol. 2013, 20, 267–273. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Liu, G.; Liu, G.-J.; Tan, J.-X.; Lin, H. DNA physical properties outperform sequence compositional information in classifying nucleosome-enriched and -depleted regions. Genomics 2019, 111, 1167–1175. [Google Scholar] [CrossRef]
- Schnepf, M.; von Reutern, M.; Ludwig, C.; Jung, C.; Gaul, U. Transcription Factor Binding Affinities and DNA Shape Readout. iScience 2020, 23, 101694. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Murthy, S.; Dey, U.; Olymon, K.; Abbas, E.; Yella, V.R.; Kumar, A. Discerning the Role of DNA Sequence, Shape, and Flexibility in Recognition by Drosophila Transcription Factors. ACS Chem. Biol. 2024, 19, 1533–1543. [Google Scholar] [CrossRef] [PubMed]
- Zhou, T.; Shen, N.; Yang, L.; Abe, N.; Horton, J.; Mann, R.S.; Bussemaker, H.J.; Gordân, R.; Rohs, R. Quantitative modeling of transcription factor binding specificities using DNA shape. Proc. Natl. Acad. Sci. USA 2015, 112, 4654–4659. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Marathe, A.; Bansal, M. An ensemble of B-DNA dinucleotide geometries lead to characteristic nucleosomal DNA structure and provide plasticity required for gene expression. BMC Struct. Biol. 2011, 11, 1. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Pedone, F.; Santoni, D. Preferential nucleosome occupancy at high values of DNA helical rise. DNA Res. 2012, 19, 81–90. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Yella, V.R.; Bhimsaria, D.; Ghoshdastidar, D.; Rodríguez-Martínez, J.A.; Ansari, A.Z.; Bansal, M. Flexibility and structure of flanking DNA impact transcription factor affinity for its core motif. Nucleic Acids Res. 2018, 46, 11883–11897. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Kahn, J.D. DNA, flexibly flexible. Biophys. J. 2014, 107, 282–284. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Heddi, B.; Oguey, C.; Lavelle, C.; Foloppe, N.; Hartmann, B. Intrinsic flexibility of B-DNA: The experimental TRX scale. Nucleic. Acids Res. 2010, 38, 1034–1047. [Google Scholar] [CrossRef]
- Tolstorukov, M.Y.; Colasanti, A.V.; McCandlish, D.M.; Olson, W.K.; Zhurkin, V.B. A novel roll-and-slide mechanism of DNA folding in chromatin: Implications for nucleosome positioning. J. Mol. Biol. 2007, 371, 725–738. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Camilloni, G.; Caserta, M.; Amadei, A.; Di Mauro, E. The conformation of constitutive DNA interaction sites for eukaryotic DNA topoisomerase I on intrinsically curved DNAs. Biochim. Biophys. Acta 1991, 1129, 73–82. [Google Scholar] [CrossRef] [PubMed]
- Martínez-García, P.M.; García-Torres, M.; Divina, F.; Terrón-Bautista, J.; Delgado-Sainz, I.; Gómez-Vela, F.; Cortés-Ledesma, F. Genome-wide prediction of topoisomerase IIβ binding by architectural factors and chromatin accessibility. PLoS Comput. Biol. 2021, 17, e1007814. [Google Scholar] [CrossRef]
- Mourad, R.; Ginalski, K.; Legube, G.; Cuvier, O. Predicting double-strand DNA breaks using epigenome marks or DNA at kilobase resolution. Genome Biol. 2018, 19, 34. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Karolak, A.; Levatić, J.; Supek, F. A framework for mutational signature analysis based on DNA shape parameters. PLoS ONE 2022, 17, e0262495. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Rube, H.T.; Rastogi, C.; Kribelbauer, J.F.; Bussemaker, H.J. A unified approach for quantifying and interpreting DNA shape readout by transcription factors. Mol. Syst. Biol. 2018, 14, e7902. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Hoyt, S.J.; Storer, J.M.; Hartley, G.A.; Grady, P.G.S.; Gershman, A.; de Lima, L.G.; Limouse, C.; Halabian, R.; Wojenski, L.; Rodriguez, M.; et al. From telomere to telomere: The transcriptional and epigenetic state of human repeat elements. Science 2022, 376, eabk3112. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Prokopov, D.; Tunbak, H.; Leddy, E.; Drylie, B.; Camera, F.; Deniz, Ö. Transposable elements as genome regulators in normal and malignant haematopoiesis. Blood Cancer J. 2025, 15, 87. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Jurka, J.; Milosavljevic, A. Reconstruction and analysis of human Alu genes. J. Mol. Evol. 1991, 32, 105–121. [Google Scholar] [CrossRef] [PubMed]
- Hellmann-Blumberg, U.; Hintz, M.F.; Gatewood, J.M.; Schmid, C.W. Developmental differences in methylation of human Alu repeats. Mol. Cell Biol. 1993, 13, 4523–4530. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Kim, T.M.; Hong, S.J.; Rhyu, M.G. Periodic explosive expansion of human retroelements associated with the evolution of the hominoid primate. J. Korean Med. Sci. 2004, 19, 177–185. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Polak, P.; Domany, E. Alu elements contain many binding sites for transcription factors and may play a role in regulation of developmental processes. BMC Genom. 2006, 7, 133. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Ferrari, R.; de Llobet Cucalon, L.I.; Di Vona, C.; Le Dilly, F.; Vidal, E.; Lioutas, A.; Oliete, J.Q.; Jochem, L.; Cutts, E.; Dieci, G.; et al. TFIIIC Binding to Alu Elements Controls Gene Expression via Chromatin Looping and Histone Acetylation. Mol. Cell 2020, 77, 475–487.e11. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Englander, E.W.; Howard, B.H. Nucleosome positioning by human Alu elements in chromatin. J. Biol. Chem. 1995, 270, 10091–10096. [Google Scholar] [CrossRef] [PubMed]
- Graham, T.; Boissinot, S. The genomic distribution of L1 elements: The role of insertion bias and natural selection. J. Biomed. Biotechnol. 2006, 2006, 75327. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Matsuo, M.; Cristofari, G. LINE-1, the NORth star of nucleolar organization. Genes Dev. 2025, 39, 183–185. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Tang, S.J. Chromatin Organization by Repetitive Elements (CORE): A Genomic Principle for the Higher-Order Structure of Chromosomes. Genes 2011, 2, 502–515. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Lu, J.Y.; Chang, L.; Li, T.; Wang, T.; Yin, Y.; Zhan, G.; Han, X.; Zhang, K.; Tao, Y.; Percharde, M.; et al. Homotypic clustering of L1 and B1/Alu repeats compartmentalizes the 3D genome. Cell Res. 2021, 31, 613–630. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Lu, J.Y.; Chang, L.; Li, T.; Wang, T.; Yin, Y.; Zhan, G.; Zhang, K.; Percharde, M.; Wang, L.; Peng, Q.; et al. L1 and B1 repeats blueprint the spatial organization of chromatin. bioRxiv 2019. [Google Scholar] [CrossRef]
- Horton, C.A.; Alexandari, A.M.; Hayes, M.G.B.; Marklund, E.; Schaepe, J.M.; Aditham, A.K.; Shah, N.; Suzuki, P.H.; Shrikumar, A.; Afek, A.; et al. Short tandem repeats bind transcription factors to tune eukaryotic gene expression. Science 2023, 381, eadd1250. [Google Scholar] [CrossRef] [PubMed]
- Gemayel, R.; Cho, J.; Boeynaems, S.; Verstrepen, K.J. Beyond junk-variable tandem repeats as facilitators of rapid evolution of regulatory and coding sequences. Genes 2012, 3, 461–480. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Kaplan, N.; Moore, I.K.; Fondufe-Mittendorf, Y.; Gossett, A.J.; Tillo, D.; Field, Y.; LeProust, E.M.; Hughes, T.R.; Lieb, J.D.; Widom, J.; et al. The DNA-encoded nucleosome organization of a eukaryotic genome. Nature 2009, 458, 362–366. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Castellanos, M.; Mothi, N.; Muñoz, V. Eukaryotic transcription factors can track and control their target genes using DNA antennas. Nat. Commun. 2020, 11, 540. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Fotsing, S.F.; Margoliash, J.; Wang, C.; Saini, S.; Yanicky, R.; Shleizer-Burko, S.; Goren, A.; Gymrek, M. The impact of short tandem repeat variation on gene expression. Nat. Genet. 2019, 51, 1652–1659. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Haws, S.A.; Simandi, Z.; Barnett, R.J.; Phillips-Cremins, J.E. 3D genome, on repeat: Higher-order folding principles of the heterochromatinized repetitive genome. Cell 2022, 185, 2690–2707. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Hikmat, W.M.; Sievers, A.; Hausmann, M.; Hildenbrand, G. Peculiar k-mer Spectra Are Correlated with 3D Contact Frequencies and Breakpoint Regions in the Human Genome. Genes 2024, 15, 1247. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Clark, K.; Karsch-Mizrachi, I.; Lipman, D.J.; Ostell, J.; Sayers, E.W. GenBank. Nucleic Acids Res. 2016, 44, D67–D72. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Smit, A.F.A.; Hubley, R.; Green, P. RepeatMasker Open-4.0. 2013–2015. Available online: http://www.repeatmasker.org (accessed on 1 May 2024).
- Dyer, S.C.; Austine-Orimoloye, O.; Azov, A.G.; Barba, M.; Barnes, I.; Barrera-Enriquez, V.P.; Becker, A.; Bennett, R.; Beracochea, M.; Berry, A.; et al. Ensembl 2025. Nucleic Acids Res. 2025, 53, D948–D957. [Google Scholar] [CrossRef] [PubMed]
- Dixon, J.R.; Selvaraj, S.; Yue, F.; Kim, A.; Li, Y.; Shen, Y.; Hu, M.; Liu, J.S.; Ren, B. Topological domains in mammalian genomes identified by analysis of chromatin interactions. Nature 2012, 485, 376–380. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Song, F.; Zhang, B.; Zhang, L.; Xu, J.; Kuang, D.; Li, D.; Choudhary, M.N.K.; Li, Y.; Hu, M.; et al. The 3D Genome Browser: A web-based browser for visualizing 3D genome organization and long-range chromatin interactions. Genome Biol. 2018, 19, 151. [Google Scholar] [CrossRef]
- Friedel, M.; Nikolajewa, S.; Suehnel, J.; Wilhelm, T. DiProGB: The Dinucleotide Properties Genome Browser. Bioinformatics 2009, 25, 2603–2604. [Google Scholar] [CrossRef]
- Pearson, K. Vii. note on regression and inheritance in the case of two parents. Proc. R. Soc. Lond. 1895, 58, 240–242. [Google Scholar] [CrossRef]
- Sievers, A.; Sauer, L.; Bisch, M.; Sprengel, J.; Hausmann, M.; Hildenbrand, G. Moderation of Structural DNA Properties by Coupled Dinucleotide Contents in Eukaryotes. Genes 2023, 14, 755. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Tsirigos, A.; Rigoutsos, I. Alu and b1 repeats have been selectively retained in the upstream and intronic regions of genes of specific functional classes. PLoS Comput. Biol. 2009, 5, e1000610. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Suter, B.; Schnappauf, G.; Thoma, F. Poly(dA dT) sequences exist as rigid DNA structures in nucleosome-free yeast promoters in vivo. Nucleic Acids Res. 2000, 28, 4083–4089. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Chuang, H.M.; Reifenberger, J.G.; Cao, H.; Dorfman, K.D. Sequence-Dependent Persistence Length of Long DNA. Phys. Rev. Lett. 2017, 119, 227802. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
Property Model | Genes (HS) | Genes (MM) | Promoter (HS) | Promoter (MM) | Enhancer (HS) | Enhancer (MM) | CTCF Binding Site (HS) | CTCF Binding Site (MM) |
---|---|---|---|---|---|---|---|---|
Twist (1) | −0.37 ± 0.17 | −0.44 ± 0.17 | −0.57 ± 0.19 | −0.48 ± 0.14 | −0.21 ± 0.16 | −0.54 ± 0.11 | −0.42 ± 0.24 | −0.63 ± 0.12 |
Twist (88) | −0.5 ± 0.17 | −0.47 ± 0.14 | −0.56 ± 0.16 | −0.45 ± 0.18 | −0.46 ± 0.18 | −0.6 ± 0.15 | −0.76 ± 0.1 | −0.72 ± 0.1 |
Twist (61) | −0.47 ± 0.2 | −0.44 ± 0.22 | −0.63 ± 0.18 | −0.41 ± 0.17 | −0.41 ± 0.17 | −0.38 ± 0.13 | −0.56 ± 0.17 | −0.57 ± 0.16 |
Roll (63) | 0.54 ± 0.15 | 0.54 ± 0.14 | 0.55 ± 0.12 | 0.5 ± 0.17 | 0.42 ± 0.15 | 0.57 ± 0.1 | 0.74 ± 0.12 | 0.68 ± 0.09 |
Roll (90) | 0.51 ± 0.16 | 0.52 ± 0.24 | 0.63 ± 0.16 | 0.51 ± 0.18 | 0.39 ± 0.16 | 0.59 ± 0.15 | 0.76 ± 0.06 | 0.65 ± 0.13 |
Roll (94) | 0.57 ± 0.15 | 0.49 ± 0.15 | 0.54 ± 0.16 | 0.45 ± 0.14 | 0.35 ± 0.13 | 0.53 ± 0.16 | 0.8 ± 0.08 | 0.71 ± 0.07 |
Tilt (62) | 0.47 ± 0.14 | 0.46 ± 0.12 | 0.5 ± 0.13 | 0.48 ± 0.14 | 0.36 ± 0.17 | 0.52 ± 0.19 | 0.71 ± 0.1 | 0.65 ± 0.13 |
Tilt (89) | −0.44 ± 0.17 | −0.52 ± 0.18 | −0.52 ± 0.15 | −0.53 ± 0.14 | −0.39 ± 0.14 | −0.58 ± 0.07 | −0.73 ± 0.1 | −0.66 ± 0.11 |
Tilt (93) | 0.49 ± 0.16 | 0.47 ± 0.19 | 0.61 ± 0.15 | 0.55 ± 0.17 | 0.36 ± 0.12 | 0.56 ± 0.12 | 0.75 ± 0.08 | 0.67 ± 0.1 |
Slide (28) | 0.4 ± 0.2 | 0.45 ± 0.17 | 0.57 ± 0.17 | 0.37 ± 0.14 | 0.3 ± 0.14 | 0.42 ± 0.21 | 0.58 ± 0.16 | 0.53 ± 0.18 |
Slide (65) | 0.46 ± 0.16 | 0.49 ± 0.15 | 0.47 ± 0.14 | 0.51 ± 0.14 | 0.41 ± 0.13 | 0.63 ± 0.11 | 0.73 ± 0.11 | 0.71 ± 0.09 |
Slide (91) | 0.5 ± 0.17 | 0.52 ± 0.14 | 0.52 ± 0.16 | 0.48 ± 0.16 | 0.38 ± 0.14 | 0.61 ± 0.12 | 0.73 ± 0.1 | 0.67 ± 0.11 |
Shift (30) | −0.42 ± 0.17 | −0.45 ± 0.15 | −0.51 ± 0.21 | −0.48 ± 0.16 | −0.32 ± 0.16 | −0.69 ± 0.11 | −0.75 ± 0.09 | −0.68 ± 0.09 |
Shift (64) | 0.38 ± 0.18 | 0.26 ± 0.2 | 0.39 ± 0.15 | 0.22 ± 0.2 | 0.36 ± 0.18 | 0.4 ± 0.15 | 0.61 ± 0.13 | 0.48 ± 0.16 |
Shift (95) | −0.32 ± 0.22 | −0.43 ± 0.17 | −0.5 ± 0.13 | −0.44 ± 0.11 | −0.45 ± 0.13 | −0.51 ± 0.12 | −0.64 ± 0.07 | −0.57 ± 0.12 |
Rise (3) | 0.42 ± 0.15 | 0.46 ± 0.16 | 0.54 ± 0.18 | 0.5 ± 0.16 | 0.37 ± 0.17 | 0.55 ± 0.16 | 0.76 ± 0.07 | 0.68 ± 0.09 |
Rise (32) | 0.5 ± 0.16 | 0.48 ± 0.18 | 0.51 ± 0.17 | 0.45 ± 0.2 | 0.38 ± 0.16 | 0.62 ± 0.14 | 0.72 ± 0.17 | 0.67 ± 0.12 |
Rise (66) | 0.44 ± 0.16 | 0.47 ± 0.21 | 0.57 ± 0.22 | 0.43 ± 0.14 | 0.39 ± 0.15 | 0.53 ± 0.14 | 0.75 ± 0.1 | 0.68 ± 0.1 |
Major Groove Width (7) | 0.49 ± 0.14 | 0.49 ± 0.19 | 0.54 ± 0.14 | 0.53 ± 0.17 | 0.34 ± 0.17 | 0.58 ± 0.1 | 0.79 ± 0.1 | 0.66 ± 0.12 |
Major Groove Depth (8) | −0.42 ± 0.17 | −0.49 ± 0.17 | −0.52 ± 0.14 | −0.48 ± 0.18 | −0.27 ± 0.16 | −0.57 ± 0.16 | −0.71 ± 0.08 | −0.68 ± 0.1 |
Minor Groove Width (11) | −0.38 ± 0.19 | −0.5 ± 0.18 | −0.56 ± 0.13 | −0.49 ± 0.18 | −0.34 ± 0.17 | −0.52 ± 0.1 | −0.72 ± 0.1 | −0.63 ± 0.14 |
Minor Groove Depth (12) | 0.3 ± 0.17 | 0.06 ± 0.17 | 0.37 ± 0.2 | 0.01 ± 0.16 | 0.26 ± 0.21 | 0.03 ± 0.2 | 0.52 ± 0.17 | 0.05 ± 0.17 |
Persistance Length (15) | 0.44 ± 0.13 | 0.55 ± 0.14 | 0.52 ± 0.19 | 0.43 ± 0.12 | 0.39 ± 0.15 | 0.6 ± 0.15 | 0.76 ± 0.1 | 0.67 ± 0.12 |
Slide stiffness (67) | −0.53 ± 0.16 | −0.51 ± 0.12 | −0.54 ± 0.16 | −0.51 ± 0.12 | −0.38 ± 0.18 | −0.61 ± 0.11 | −0.74 ± 0.09 | −0.72 ± 0.09 |
Shift stiffness (68) | 0.34 ± 0.19 | 0.36 ± 0.18 | 0.4 ± 0.15 | 0.25 ± 0.17 | 0.29 ± 0.16 | 0.11 ± 0.18 | 0.41 ± 0.17 | 0.21 ± 0.2 |
Roll stiffness (69) | 0.42 ± 0.19 | 0.48 ± 0.13 | 0.5 ± 0.12 | 0.47 ± 0.13 | 0.34 ± 0.19 | 0.68 ± 0.09 | 0.68 ± 0.13 | 0.71 ± 0.11 |
Tilt stiffness (70) | 0.51 ± 0.12 | 0.54 ± 0.11 | 0.59 ± 0.1 | 0.46 ± 0.22 | 0.38 ± 0.14 | 0.55 ± 0.14 | 0.69 ± 0.13 | 0.61 ± 0.13 |
Twist stiffness (71) | −0.45 ± 0.2 | −0.36 ± 0.17 | −0.46 ± 0.18 | −0.42 ± 0.22 | −0.21 ± 0.15 | −0.47 ± 0.2 | −0.67 ± 0.12 | −0.61 ± 0.11 |
Rise stiffness (107) | 0.38 ± 0.17 | 0.4 ± 0.25 | 0.45 ± 0.15 | 0.49 ± 0.16 | 0.28 ± 0.19 | 0.47 ± 0.16 | 0.72 ± 0.11 | 0.57 ± 0.14 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sievers, A.; Hausmann, M.; Hildenbrand, G. Repeats Influence Structural DNA Properties Around Functional Annotations Associated with 3D Organization and Transcription. Genes 2025, 16, 1082. https://doi.org/10.3390/genes16091082
Sievers A, Hausmann M, Hildenbrand G. Repeats Influence Structural DNA Properties Around Functional Annotations Associated with 3D Organization and Transcription. Genes. 2025; 16(9):1082. https://doi.org/10.3390/genes16091082
Chicago/Turabian StyleSievers, Aaron, Michael Hausmann, and Georg Hildenbrand. 2025. "Repeats Influence Structural DNA Properties Around Functional Annotations Associated with 3D Organization and Transcription" Genes 16, no. 9: 1082. https://doi.org/10.3390/genes16091082
APA StyleSievers, A., Hausmann, M., & Hildenbrand, G. (2025). Repeats Influence Structural DNA Properties Around Functional Annotations Associated with 3D Organization and Transcription. Genes, 16(9), 1082. https://doi.org/10.3390/genes16091082