RNA Polymerase I Dysfunction Underlying Craniofacial Syndromes: Integrated Genetic Analysis Reveals Parallels to 22q11.2 Deletion Syndrome
Abstract
1. Introduction
2. POLR1A Gene, Protein, and Function
3. Methods
- Case Identification
- Literature Review
- Integrated Genetic Analysis
- Structural Modeling
- Data Synthesis and Analysis
4. Results
4.1. Table of Pol I-Associated Disorders and Case Report
4.1.1. Anchoring Case
4.1.2. Table of Pol 1 Related Clinical Disorders
4.2. Molecular Analysis: POLR1A Protein and Gene Interactions
4.2.1. Protein–Protein Interactions and Literature Review of Associated Proteins
4.2.2. Gene–Gene Interactions and Literature Review of Associated Genes
4.2.3. POLR1A Protein Structure and Function
5. Review of POLR1A Gene-Related Disorder and Other Associated Ribosomopathies
5.1. Acrofacial Dysostosis, Cincinnati-Type
5.2. Treacher–Collins Syndrome
5.3. The TWIST1 Gene and Saethre–Chotzen Syndrome
5.4. Sweeney–Cox Syndrome
6. Discussion
7. Conclusions
Author Contributions
Funding
Institutional Review Board
Informed Consent
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Shprintzen, R.J.; Goldberg, R.B.; Lewin, M.L.; Sidoti, E.J.; Berkman, M.D.; Argamaso, R.V.; Young, D. A new syndrome involving cleft palate, cardiac anomalies, typical facies, and learning disabilities: Velo-cardio-facial syndrome. Cleft Palate J. 1978, 15, 56–62. [Google Scholar]
- Shprintzen, R.J.; Goldberg, R.B.; Young, D.; Wolford, L. The velo-cardio-facial syndrome: A clinical and genetic analysis. Pediatrics 1981, 67, 167–172. [Google Scholar] [CrossRef]
- Jones, T.L.; Baxter, M.A.; Khanduja, V. A quick guide to survey research. Ann. R. Coll. Surg. Engl. 2013, 95, 5–7. [Google Scholar] [CrossRef] [PubMed]
- Butler, M.G.; Mowrey, P. Should the 3C (craniocerebellocardiac) syndrome be included in the spectrum of velocardiofacial syndrome and DiGeorge sequence? J. Med. Genet. 1996, 33, 719–720. [Google Scholar] [CrossRef] [PubMed]
- Lynch, D.R.; McDonald-McGinn, D.M.; Zackai, E.H.; Emanuel, B.S.; Driscoll, D.A.; Whitaker, L.A.; Fischbeck, K.H. Cerebellar atrophy in a patient with velocardiofacial syndrome. J. Med. Genet. 1995, 32, 561–563. [Google Scholar] [CrossRef] [PubMed]
- Butler, M.G.; Oyetunji, A.; Manzardo, A.M. Age Distribution, Comorbidities and Risk Factors for Thrombosis in Prader-Willi Syndrome. Genes 2020, 11, 67. [Google Scholar] [CrossRef]
- Smallwood, K.; Watt, K.E.N.; Ide, S.; Baltrunaite, K.; Brunswick, C.; Inskeep, K.; Capannari, C.; Adam, M.P.; Begtrup, A.; Bertola, D.R.; et al. POLR1A variants underlie phenotypic heterogeneity in craniofacial, neural, and cardiac anomalies. Am. J. Hum. Genet. 2023, 110, 809–825. [Google Scholar] [CrossRef]
- Seither, P.; Coy, J.F.; Pouska, A.; Grummt, I. Molecular cloning and characterization of the cDNA encoding the largest subunit of mouse RNA polymerase I. Mol. Gen. Genet. 1997, 255, 180–186. [Google Scholar] [CrossRef]
- O’Leary, N.A.; Wright, M.W.; Brister, J.R.; Ciufo, S.; Haddad, D.; McVeigh, R.; Rajput, B.; Robbertse, B.; Smith-White, B.; Ako-Adjei, D.; et al. Reference sequence (RefSeq) database at NCBI: Current status, taxonomic expansion, and functional annotation. Nucleic Acids Res. 2016, 44, D733–D745. [Google Scholar] [CrossRef]
- Russell, J.; Zomerdijk, J.C. The RNA polymerase I transcription machinery. Biochem. Soc. Symp. 2006, 73, 203–216. [Google Scholar] [CrossRef]
- McStay, B. Nucleolar organizer regions: Genomic “dark matter” requiring illumination. Genes Dev. 2016, 30, 1598–1610. [Google Scholar] [CrossRef]
- Thomson, E.; Ferreira-Cerca, S.; Hurt, E. Eukaryotic ribosome biogenesis at a glance. J. Cell Sci. 2013, 126 Pt 21, 4815–4821. [Google Scholar] [CrossRef]
- Boulon, S.; Westman, B.J.; Hutten, S.; Boisvert, F.M.; Lamond, A.I. The nucleolus under stress. Mol. Cell 2010, 40, 216–227. [Google Scholar] [CrossRef] [PubMed]
- Grandori, C.; Gomez-Roman, N.; Felton-Edkins, Z.A.; Ngouenet, C.; Galloway, D.A.; Eisenman, R.N.; White, R.J. c-Myc binds to human ribosomal DNA and stimulates transcription of rRNA genes by RNA polymerase I. Nat. Cell Biol. 2005, 7, 311–318. [Google Scholar] [CrossRef] [PubMed]
- Mills, E.W.; Green, R. Ribosomopathies: There’s strength in numbers. Science 2017, 358, eaan2755. [Google Scholar] [CrossRef]
- Weaver, K.N.; Watt, K.E.; Hufnagel, R.B.; Navajas Acedo, J.; Linscott, L.L.; Sund, K.L.; Bender, P.L.; König, R.; Lourenco, C.M.; Hehr, U.; et al. Acrofacial Dysostosis, Cincinnati Type, a Mandibulofacial Dysostosis Syndrome with Limb Anomalies, Is Caused by POLR1A Dysfunction. Am. J. Hum. Genet. 2015, 96, 765–774. [Google Scholar] [CrossRef]
- Vanderver, A.; Prust, M.; Tonduti, D.; Mochel, F.; Hussey, H.M.; Helman, G.; Garbern, J.; Eichler, F.; Labauge, P.; Aubourg, P.; et al. GLIA Consortium Case definition and classification of leukodystrophies and leukoencephalopathies. Mol. Genet. Metab. 2015, 114, 494–500. [Google Scholar] [CrossRef]
- Szklarczyk, D.; Kirsch, R.; Koutrouli, M.; Nastou, K.; Mehryary, F.; Hachilif, R.; Gable, A.L.; Fang, T.; Doncheva, N.T.; Pyysalo, S.; et al. The STRING database in 2023: Protein-protein association networks and functional enrichment analyses for any sequenced genome of interest. Nucleic Acids Res. 2023, 51, D638–D646. [Google Scholar] [CrossRef]
- Zhao, D.; Liu, W.; Chen, K.; Wu, Z.; Yang, H.; Xu, Y. Structure of the human RNA polymerase I elongation complex. Cell Discov. 2021, 7, 97. [Google Scholar] [CrossRef] [PubMed]
- Misiaszek, A.D.; Girbig, M.; Grötsch, H.; Baudin, F.; Murciano, B.; Lafita, A.; Müller, C.W. Cryo-EM structures of human RNA polymerase I. Nat. Struct. Mol. Biol. 2021, 28, 997–1008. [Google Scholar] [CrossRef]
- Trainor, P.A.; Dixon, J.; Dixon, M.J. Treacher Collins syndrome: Etiology, pathogenesis and prevention. Eur. J. Hum. Genet. 2009, 17, 275–283. [Google Scholar] [CrossRef]
- Dixon, M.J.; Read, A.P.; Donnai, D.; Colley, A.; Dixon, J.; Williamson, R. The gene for Treacher Collins syndrome maps to the long arm of chromosome 5. Am. J. Hum. Genet. 1991, 49, 17–22. [Google Scholar] [PubMed]
- Vincent, M.; Geneviève, D.; Ostertag, A.; Marlin, S.; Lacombe, D.; Martin-Coignard, D.; Coubes, C.; David, A.; Lyonnet, S.; Vilain, C.; et al. Treacher Collins syndrome: A clinical and molecular study based on a large series of patients. Genet. Med. 2016, 18, 49–56. [Google Scholar] [CrossRef] [PubMed]
- Dixon, J.; Jones, N.C.; Sandell, L.L.; Jayasinghe, S.M.; Crane, J.; Rey, J.P.; Dixon, M.J.; Trainor, P.A. Tcof1/Treacle is required for neural crest cell formation and proliferation deficiencies that cause craniofacial abnormalities. Proc. Natl. Acad. Sci. USA 2006, 103, 13403–13408. [Google Scholar] [CrossRef]
- Qin, Q.; Xu, Y.; He, T.; Qin, C.; Xu, J. Normal and disease-related biological functions of Twist1 and underlying molecular mechanisms. Cell Res. 2012, 22, 90106. [Google Scholar] [CrossRef]
- Bourgeois, P.; Stoetzel, C.; Bolcato-Bellemin, A.L.; Mattei, M.G.; Perrin-Schmitt, F. The human H-twist gene is located at 7p21 and encodes a B-HLH protein that is 96% similar to its murine M-twist counterpart. Mamm. Genome 1996, 7, 915–917. [Google Scholar] [CrossRef]
- Shishido, E.; Higashijima, S.; Emori, Y.; Saigo, K. Two FGF-receptor homologues of Drosophila: One is expressed in mesodermal primordium in earlyembryos. Development 1993, 117, 751–761. [Google Scholar] [CrossRef]
- Wang, S.M.; Coljee, V.W.; Pignolo, R.J.; Rotenberg, M.O.; Cristofalo, V.J.; Sierra, F. Cloning of the human twist gene: Its expression is retained in adult mesodermally-derived tissues. Gene 1997, 187, 83–92. [Google Scholar] [CrossRef]
- Yang, J.; Mani, S.A.; Donaher, J.L.; Ramaswamy, S.; Itzykson, R.A.; Come, C.; Savagner, P.; Gitelman, I.; Richardson, A.; Weinberg, R.A. Twist, a master regulator of morphogenesis, plays an essential role in tumor metastasis. Cell 2004, 117, 927–939. [Google Scholar] [CrossRef]
- Stasinopoulos, I.A.; Mironchik, Y.; Raman, A.; Wildes, F.; Winnard, P., Jr.; Raman, V. HOXA5-twist interaction alters p53 homeostasis in breast cancer cells. J. Biol. Chem. 2005, 280, 2294–2299. [Google Scholar] [CrossRef] [PubMed]
- Niesner, U.; Albrecht, I.; Janke, M.; Doebis, C.; Loddenkemper, C.; Lexberg, M.H.; Eulenburg, K.; Kreher, S.; Koeck, J.; Baumgrass, R.; et al. Autoregulation of Th1-mediated inflammation by twist1. J. Exp. Med. 2008, 205, 1889–1901. [Google Scholar] [CrossRef]
- Wilkie, A.O.; Morriss-Kay, G.M. Genetics of craniofacial development and malformation. Nat. Rev. Genet. 2001, 2, 458–468. [Google Scholar] [CrossRef] [PubMed]
- Ciurea, A.V.; Toader, C. Genetics of craniosynostosis: Review of the literature. J. Med. Life 2009, 2, 5–17. [Google Scholar] [PubMed]
- Agochukwu, N.B.; Solomon, B.D.; Muenke, M. Impact of genetics on the diagnosis and clinical management of syndromic craniosynostoses. Child’s Nerv. Syst. 2012, 28, 1447–1463. [Google Scholar] [CrossRef] [PubMed]
- Jabs, E.W. TWIST1 and the Saethre-Chotzen syndrome. In Inborn Errors of Development: The Molecular Basis of Clinical Disorders of Morphogenesis, 2nd ed.; Epstein, C.J., Erickson, R.P., Wynshaw-Boris, A., Eds.; Oxford University Press: Melbourne, Australia, 2008; pp. 474–481. [Google Scholar]
- El Ghouzzi, V.; Lajeunie, E.; Le Merrer, M.; Cormier-Daire, V.; Renier, D.; Munnich, A.; Bonaventure, J. Mutations within or upstream of the basic helix-loop-helix domain of the TWIST gene are specific to Saethre-Chotzen syndrome. Eur. J. Hum. Genet. 1999, 7, 27–33. [Google Scholar] [CrossRef]
- El Ghouzzi, V.; Legeai-Mallet, L.; Aresta, S.; Benoist, C.; Munnich, A.; de Gunzburg, J.; Bonaventure, J. Saethre-Chotzen mutations cause TWIST protein degradation or impaired nuclear location. Hum. Mol. Genet. 2000, 9, 813–819. [Google Scholar] [CrossRef]
- Yousfi, M.; Lasmoles, F.; El Ghouzzi, V.; Marie, P.J. Twist haploinsufficiency in Saethre-Chotzen syndrome induces calvarial osteoblast apoptosis due to increased TNFα expression and caspase-2 activation. Hum. Mol. Genet. 2002, 11, 359–369. [Google Scholar] [CrossRef]
- Guenou, H.; Kaabeche, K.; Mée, S.L.; Marie, P.J. A role for fibroblast growth factor receptor-2 in the altered osteoblast phenotype induced by Twist haploinsufficiency in the Saethre-Chotzen syndrome. Hum. Mol. Genet. 2005, 14, 1429–1439. [Google Scholar] [CrossRef]
- Cai, J.; Shoo, B.A.; Sorauf, T.; Jabs, E.W. A novel mutation in the TWIST gene, implicated in Saethre-Chotzen syndrome, is found in the original case of Robinow-Sorauf syndrome. Clin. Genet. 2003, 64, 79–82. [Google Scholar] [CrossRef]
- Thakur, A.R.; Naikmasur, V.G. A case of Robinow-Sorauf syndrome (Craniosynostosis-Bifid Hallux Syndrome): The allelic variant of the Saethre-Chotzen syndrome. Indian J. Dent. 2014, 5, 96–99. [Google Scholar] [CrossRef]
- Kim, S.; Twigg, S.R.F.; Scanlon, V.A.; Chandra, A.; Hansen, T.J.; Alsubait, A.; Fenwick, A.L.; McGowan, S.J.; Lord, H.; Lester, T.; et al. Localized TWIST1 and TWIST2 basic domain substitutions cause four distinct human diseases that can be modeled in Caenorhabditis elegans. Hum. Mol. Genet. 2017, 26, 2118–2132. [Google Scholar] [CrossRef]
- Schaefer, E.; Collet, C.; Genevieve, D.; Vincent, M.; Lohmann, D.R.; Sanchez, E.; Bolender, C.; Eliot, M.M.; Nürnberg, G.; Passos-Bueno, M.R.; et al. Autosomal recessive POLR1D mutation with decrease of TCOF1 mRNA is responsible for Treacher Collins syndrome. Genet. Med. 2014, 16, 720–724. [Google Scholar] [CrossRef]
- Schömig-Spingler, M.; Schmid, M.; Brosi, W.; Grimm, T. Chromosome 7 short arm deletion, 7p21→pter. Hum. Genet. 1986, 74, 323–325. [Google Scholar] [CrossRef] [PubMed]
- Kosan, C.; Kunz, J. Identification and characterization of the gene TWIST NEIGHBOR (TWISTNB) located in the microdeletion syndrome 7p21 region. Cytogenet. Genome Res. 2002, 97, 167–170. [Google Scholar] [CrossRef] [PubMed]
- Johnson, D.; Horsley, S.W.; Moloney, D.M.; Oldridge, M.; Twigg, S.R.; Walsh, S.; Barrow, M.; Njølstad, P.R.; Kunz, J.; Ashworth, G.J.; et al. A comprehensive screen for TWIST mutations in patients with craniosynostosis identifies a new microdeletion syndrome of chromosome band 7p21.1. Am. J. Hum. Genet. 1998, 63, 1282–1293. [Google Scholar] [CrossRef] [PubMed]
Acrofacial-Dysostosis, Cincinnati Type (616462) | Saethre–Chotzen (101400) | Sweeney–Cox (617746) | Robinow–Sorauf (180750) | Treacher–Collins 2,3, and 4 (613717, 248390, and 248390) | Clinical Report at 3 Months of Age | Overlapping Clinical Findings | |
---|---|---|---|---|---|---|---|
Inheritance | -Autosomal Dominant | -Autosomal Dominant | -Autosomal Dominant | -Autosomal Dominant | -Autosomal Dominant | -Autosomal Dominant | -Autosomal Dominant |
Growth | -Short stature -Low weight -Failure to thrive | -Short stature | -Short stature -Low weight -Failure to thrive | -Short stature -Low weight and failure to thrive | |||
Head | -Microcephaly -Trigonocephaly | -Brachycephaly -Acrocephaly | -Flattened occiput -Brachycephaly | -Cranial deformity | -Mis-shaped head -Cranial deformity | ||
Neck | -Wide neck | ||||||
Face | -Mild to severe midface hypoplasia -Mild to severe micrognathia -Hypoplastic zygomatic arches -Hypoplastic maxilla -Hypoplastic Mandible -Absent mandibular rami | -Flat face -High, flat forehead -Low frontal hairline -Maxillary hypoplasia -Facial asymmetry | -Prominent metopic ridge -Low hairline -Widow’s peak -Midface hypoplasia -Micrognathia, mild | -Zygomatic complex hypoplasia -Mandibular hypoplasia -Malar hypoplasia -Scalp hair onto lateral cheek | -Facial anomaly -Low hairline -Micrognathia | -Abnormal, low frontal or scalp hairline -Facial bone hypoplasia -Jawbone defect -micrognathia | |
Ears | -Large ears -Microtia -Thickened helices -Low-set ears -Anteriorly placed ears -Anotia with conductive hearing loss -Sensorineural hearing loss -Preauricular pits | -Long, prominent ear crus -Small ears -Low-set ears -Atpical cartilage deformity -Deafness | -Small ears -Low-set ears -Cupped ears -Overfolded helices -Upturned lobes -Narrow external ear canals -Hearing loss, bilateral | -Malformation of auricle -Microtia -Conductive hearing loss | -Small, malformed ears -Small ear canals -Low-set ears -Hearing loss | -Low-set, abnormal size, and malformed ears -Hearing loss/deafness -Abnormal ear canals | |
Eyes | -Downslanting palpebral fissures -Upslanting palpebral fissures -Epicanthal folds -Mild to severe hypertelorism -Telecanthus -Eyelid clefts -Eyelid coloboma -Ablepharon -Ptosis -Inferiorly displaced orbits | -Shallow orbits -Hypertelorism -Plagiocephaly -Strabismus -Bupthalmos -Ptosis -S-shaped blepharoptosis -Lacrimal Duct abnormalities | -Hypertelorism -Upper eyelid colobomas -Deficient bony orbits -Pseudoproptosis -Small globes | -Shallow orbits -Hypertelorism -Plagiocephaly -Strabismus | -Downslanting of palpebral fissure -Coloboma | -Severe hypertelorism -Coloboma -Right eye Telecanthus | -Telecanthus -Colobomas -Hypertelorism -Orbital defects -Strabismus -Slanted palpebral fissures -Ptosis |
Nose | -Broad, flat nasal bridge -Short nose -Upturned nasal tip -Anteverted nares -Hypoplastic alae nasi -Choanal atresia | -Thin, long pointed nose -Beaked nose | -Wide nasal bridge -Broad tip -Hypoplastic alae nasi -Choanal atresia -Short and low columella -Short philtrum | -Long, pointed nose | -Choanal atresia/stenosis | -Abnormal hypoplastic alae -Choanal anomalies | |
Mouth | -High-arched palate -Cleft palate | -Narrow palate -Cleft palate | -Small mouth -Cleft-palate -High-arched palate | -Cleft palate | -Abnormal palate with cleft | ||
Cardiovascular | -Patent ductus arteriosus -Atrial septal defect -Patent foramen ovale -Hypertrophic cardiomyopathy | -Congenital defects -Hypertension | -Atrial cardiac defect | -Cardiac defects | |||
Skull | -Microcephaly -Metopic craniosynostosis -Partial acalvaria | -Late closing fontanelles -Craniosynostosis of coronal, lamboid, or metopic structures -Acrocephaly -Parietal foramina | -Small frontal bones -Thickened frontal bones -Wide anterior fontanel -Fusion of occipito-mastoid suture | -Acalvaria -Craniosynostosis | -Skull defects -Craniosynostosis | ||
Abdomen/GU/Pelvis | -Dysplastic acetabulae -Feeding problems | -Small Ilia -Small ischia | -GERD -Imperforate anus -Absent spleen -Cryptorchidism | -Cryptorchidism -Gastric tube placement | -Cryptorchidism -GI defects | ||
Chest | -Short clavicle -Convex medial margins of scapulae | ||||||
Limbs | -Short, bowed forearms -Radial aplasia -Bowed femurs -Flared metaphyses of lower extremities -Delayed ossification of epiphyses | -Radioulnar synostosis | |||||
Hands | -Short broad digits -Preaxial polydactyly -Adducted thumb with bifid distal phalanx -Fifth finger clinodactyly and short medial phalanx | -Syndactyly, mild and often in second or third fingers -Bifid terminal phalanges -Brachydactyly -Fifth finger clinodactyly | -Long fingers -Relatively short and fixed flexion of distal phalanges -Cutaneous syndactyly | -Syndactyly -Digital anomalies | |||
Feet | -Short toes -Triphalangeal halluces -Overriding toes -Club feet | -Absent first metatarsal -Syndactyly -Hallux vagus | -Cutaneous syndactyly | -Broad great toes -Duplicated distal toe phalanx | -Syndactyly -Digital anomalies | ||
Neurologic | -Hypotonia -Global developmental delay -Motor delay -Delayed or absent speech -Infantile spasms -Epilepsy -Cavum septum pellicidum | -Global developmental delay | -Developmental and learning disability -Speech delay -Small cerebellum -Hypoplastic facial nerves | -Motor delay -Speech delay | -Global developmental delay -Speech and motor delay -CNS anomalies | ||
Other | -Asymmetric thumb nails | -Increased risk of breast cancer | -Generalized hirsutism -Abnormal hair distribution on back and ankles | ||||
Molecular genetics | -POLR1A | -TWIST1 | -TWIST1 | -TWIST1 | -POLR1D (2) -POLR1C (3) -POLR1B (4) | -POLR1A | -POLR1A -TWIST1 |
Biological Process | CIN A | Strength B | Signal C | FDR D |
Transcription by RNA polymerase I | 5 of 25 | 2.55 | 4.37 | 3.76 × 10−9 |
RNA polymerase I preinitiation complex assembly | 2 of 10 | 2.55 | 1.08 | 0.0108 |
Nucleolus organization | 2 of 15 | 2.38 | 0.93 | 0.0194 |
rRNA transcription | 2 of 21 | 2.23 | 0.81 | 0.0328 |
ncRNA transcription | 3 of 38 | 2.15 | 1.57 | 0.00097 |
DNA-templated transcription, initiation | 3 of 131 | 1.61 | 0.8 | 0.0239 |
Transcription, DNA-templated | 11 of 518 | 1.58 | 3.44 | 7.37 × 10−14 |
Transcription by RNA polymerase II | 4 of 357 | 1.3 | 0.76 | 0.0172 |
Molecular Function | CIN | Strength | Signal | FDR |
DNA-directed 5-3 RNA polymerase activity | 6 of 29 | 2.57 | 5.29 | 4.52 × 10−11 |
DNA binding | 9 of 2498 | 0.81 | 0.71 | 0.00026 |
Nucleic acid binding | 10 of 4003 | 0.65 | 0.53 | 0.00067 |
Cellular Component | CIN | Strength | Signal | FDR |
RNA polymerase I complex | 10 of 13 | 3.14 | 13.65 | 1.06 × 10−26 |
RNA polymerase III complex | 5 of 19 | 2.67 | 5.09 | 1.79 × 10−10 |
RNA polymerase II, core complex | 4 of 15 | 2.68 | 3.96 | 3.46 × 10−18 |
Nucleolus | 11 of 996 | 1.3 | 2.22 | 2.01 × 10−12 |
Nucleoplasm | 11 of 4169 | 0.67 | 0.63 | 6.08 × 10−6 |
Fibrillar center | 3 of 145 | 1.57 | 1.04 | 0.0058 |
Reactome Pathway | CIN | Strength | Signal | FDR |
RNA polymerase I transcription termination | 9 of 30 | 2.73 | 10.01 | 7.16 × 10−21 |
RNA polymerase III chain elongation | 4 of 17 | 2.62 | 3.82 | 5.95 × 10−8 |
RNA polymerase I transcription initiation | 10 of 46 | 2.59 | 10.13 | 3.67 × 10−22 |
Signaling by FGFR2 IIIa | 4 of 19 | 2.58 | 3.73 | 8.12 × 10−8 |
RNA Polymerase III transcription termination | 4 of 22 | 2.51 | 3.6 | 1.27 × 10−7 |
Abortive elongation of HIV-1 transcript in absence of Tat | 4 of 23 | 2.49 | 3.57 | 1.39 × 10−7 |
RNA Polymerase I promoter escape | 10 of 59 | 2.48 | 9.46 | 1.75 × 10−21 |
MicroRNA (miRNA) biogenesis | 4 of 24 | 2.47 | 3.54 | 1.52 × 10−7 |
B-WICH complex positively regulates rRNA expression | 9 of 59 | 2.44 | 8.29 | 8.31 × 10−19 |
RNA Polymerase III transcription initiation from type 2 promoter | 4 of 26 | 2.44 | 3.47 | 1.92 × 10−7 |
FGFR2 alternative splicing | 4 of 26 | 2.44 | 3.47 | 1.92 × 10−7 |
Phenotype | CIN | Strength | Signal | FDR |
Branchial fistula | 2 of 6 | 2.78 | 0.99 | 0.0161 |
Lower eyelid coloboma | 2 of 8 | 2.65 | 0.94 | 0.0194 |
Multiple enchondromatosis | 2 of 9 | 2.6 | 0.92 | 0.0211 |
Choanal stenosis | 3 of 21 | 2.41 | 1.35 | 0.0032 |
Narrow internal auditory canal | 2 of 14 | 2.41 | 0.84 | 0.0297 |
Short face | 2 of 16 | 2.35 | 0.81 | 0.0329 |
Facial cleft | 2 of 16 | 2.35 | 0.81 | 0.0329 |
Eyelid coloboma | 3 of 30 | 2.25 | 1.27 | 0.0043 |
Rectovaginal fistula | 2 of 20 | 2.25 | 0.79 | 0.0356 |
Thyroid hypoplasia | 2 of 21 | 2.23 | 0.79 | 0.0356 |
Absent eyelashes | 2 of 26 | 2.14 | 0.73 | 0.0447 |
Glossoptosis | 2 of 26 | 2.14 | 0.73 | 0.0447 |
Hypoplasia of the zygomatic bone | 2 of 29 | 2.09 | 0.71 | 0.0477 |
Hypoplasia of the thymus | 2 of 30 | 2.08 | 0.71 | 0.0477 |
Blepharospasm | 2 of 32 | 2.05 | 0.70 | 0.0492 |
Preauricular skin tag | 3 of 51 | 2.02 | 1.06 | 0.0096 |
Abnormal periauricular region morphology | 3 of 77 | 1.84 | 0.90 | 0.0181 |
Choanal atresia | 3 of 101 | 1.73 | 0.79 | 0.0279 |
Hypoplasia of the maxilla | 3 of 104 | 1.71 | 0.79 | 0.0279 |
Microtia | 3 of 113 | 1.68 | 0.77 | 0.0297 |
Abnormality of the maxilla | 3 of 118 | 1.66 | 0.77 | 0.0297 |
Cleft upper lip | 3 of 144 | 1.57 | 0.72 | 0.0356 |
Cleft lip | 3 of 183 | 1.47 | 0.64 | 0.0477 |
Narrow mouth | 3 of 198 | 1.43 | 0.63 | 0.0495 |
Gene | Protein Function/Role 1 | Pathways/Interactions 2 | Associated Disorders 3 |
---|---|---|---|
POLR1F (TWISTNB) | Subunit of RNA polymerase I; enables DNA-directed 5′–3′ RNA polymerase activity; essential for rRNA precursor synthesis and protein production. | Associates with RRN3/TIF-IA; may recruit Pol I to rDNA promoters. | Inflammatory bowel disease 2; Saethre–Chotzen syndrome |
RRN3 | RNA Pol I transcription factor; enables core promoter sequence-specific DNA binding; regulates transcription initiation; negative regulation of p53-mediated apoptosis. | Associates with POLR1A; nucleolar localization. | Childhood-onset neurodegeneration with brain atrophy; Treacher–Collins syndrome 1 (potential) |
POLR1D | Component of RNA polymerase I and III complexes; synthesizes rRNA precursors and small RNAs. | Core Pol I/Pol III subunit. | Treacher–Collins syndrome 1 and 2 |
POLR2L | Subunit of RNA polymerase II; synthesizes mRNA; contains zinc-binding domain. | RNA Pol II complex. | Cockayne syndrome; Hyperparathyroidism 2 with jaw tumors |
POLR1H | Subunit of RNA polymerase I; contains zinc-binding motifs; involved in proofreading nascent RNA and regulation of cell proliferation. | Functions in Pol I error correction. | Gastric cancer; Seckel syndrome |
POLR2K | Small subunit of RNA polymerase II; involved in mRNA synthesis. | RNA Pol II complex. | Immunodeficiency 26; Primary ciliary dyskinesia |
POLR1E | Facilitates Pol I initiation complex formation by mediating Pol I–UBTF interaction; contributes to DNA binding and Pol I transcription. | Pol I initiation factor binding. | Primary hyperoxaluria; Diamond–Blackfan anemia |
POLR2F | Sixth largest Pol II subunit; mRNA synthesis. | RNA Pol II complex. | Peripheral demyelinating neuropathy, central dysmyelination, Waardenburg syndrome, Hirschsprung disease |
POLR2H | Essential Pol II subunit; contributes to Pol I and II activity; synthesizes rRNA, mRNA, small RNAs (e.g., 5S rRNA, tRNAs). | Shared between Pol I and Pol II. | Progressive leukoencephalopathy with ovarian failure |
POLR1B | Core catalytic subunit of RNA Pol I active center; works with POLR1A in nucleotide addition, proofreading, and backtracking. | Coordinates Mg2+ with POLR1A; proofreading via POLR1H. | Treacher–Collins syndrome 1 and 4 |
Category | Gene | Function/Role 1 | Associated Disorders 2 |
---|---|---|---|
Binding | CIT | Serine/threonine kinase important for cytokinesis; works with KIF14 at central spindle. | Bipolar disorder, schizophrenia |
Binding | NOLC1 | Nucleolar protein connecting RNA Pol I to ribosomal processing enzymes; monoubiquitinated by BCR complex and associates with TCOF1; essential for neural crest specification. | Neural crest development |
Binding | PARP1 | Poly(ADP-ribosyl) transferase; DNA-dependent chromatin enzyme regulating proliferation, differentiation, tumor suppression, and DNA repair. | Fanconi anemia, type 1 diabetes mellitus |
Binding | ASB7 | Ankyrin repeat protein with SOCS-box motif; bridges substrate-binding and E3 ubiquitin ligases; regulates protein turnover via ubiquitination. | |
Binding | RRN3 | RNA Pol I core promoter factor; initiates transcription (described in Table 1). | Childhood-onset neurodegeneration, Treacher–Collins syndrome 1 (potential) |
Binding | LMBR1L | Transmembrane protein; involved in receptor-mediated endocytosis and signal transduction; localizes to ER and plasma membrane. | |
Binding | BRCA1 | Nuclear phosphoprotein; tumor suppressor; forms BASC complex with Pol II; regulates transcription, DNA repair, and recombination. | Hereditary breast and ovarian cancer |
Binding + Co-expression | Histone genes (H2A, H2B, H3, H4, H1) | Core nucleosome proteins; package DNA into chromatin; H1 compacts DNA into higher-order structures. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Silvey, S.; Lovell, S.; Butler, M.G. RNA Polymerase I Dysfunction Underlying Craniofacial Syndromes: Integrated Genetic Analysis Reveals Parallels to 22q11.2 Deletion Syndrome. Genes 2025, 16, 1063. https://doi.org/10.3390/genes16091063
Silvey S, Lovell S, Butler MG. RNA Polymerase I Dysfunction Underlying Craniofacial Syndromes: Integrated Genetic Analysis Reveals Parallels to 22q11.2 Deletion Syndrome. Genes. 2025; 16(9):1063. https://doi.org/10.3390/genes16091063
Chicago/Turabian StyleSilvey, Spencer, Scott Lovell, and Merlin G. Butler. 2025. "RNA Polymerase I Dysfunction Underlying Craniofacial Syndromes: Integrated Genetic Analysis Reveals Parallels to 22q11.2 Deletion Syndrome" Genes 16, no. 9: 1063. https://doi.org/10.3390/genes16091063
APA StyleSilvey, S., Lovell, S., & Butler, M. G. (2025). RNA Polymerase I Dysfunction Underlying Craniofacial Syndromes: Integrated Genetic Analysis Reveals Parallels to 22q11.2 Deletion Syndrome. Genes, 16(9), 1063. https://doi.org/10.3390/genes16091063