Replication of the GWAS-Identified GALNT13 rs10196189 Polymorphism in Relation to Speed–Power Elite Active Athlete Status and Multidimensional Phenotypic Differences in Chinese Han Males: A Pilot Study
Abstract
1. Introduction
2. Materials and Methods
2.1. Experimental Approach to the Problem
2.2. Subjects
2.3. Procedures
2.3.1. Genotyping
2.3.2. Body Composition and Bone Mineral Density
2.3.3. Musculoskeletal Ultrasound Assessment
2.3.4. Jump Performance
2.3.5. Sprint Performance
2.3.6. Maximal Isometric Strength
2.3.7. Lower-Limb Maximal Strength
2.3.8. Tissue-Specific Functional Prediction and Regulatory Mechanism Analysis
2.4. Statistical Analysis
3. Results
3.1. Genotype Distribution and Hardy–Weinberg Equilibrium Test
3.2. Population- and Sex-Level Differences in Allele Frequencies of rs10196189
3.3. Differences in Genotype and Allele Frequencies Between Athlete and Control Groups
3.4. Group Comparisons of Physical and Physiological Variables Between Athletes and Controls
3.5. Logistic Regression Analysis of Genotype and Athlete Status
3.6. Receiver Operating Characteristic (ROC) Curve Analysis
3.7. Association Between rs10196189 Genotype and Lower-Limb Performance, Body Composition, and Muscle Morphology
3.8. GALNT13 Tissue Expression Profile and Tissue-Specific Functional Network Analysis
3.8.1. GALNT13 Expression Patterns Across Tissues and Allele-Specific Regulatory Features
3.8.2. Functional Network Construction and Pathway Enrichment Analysis of GALNT13 in Neural and Skeletal Muscle Tissues
3.8.3. Integrated Functional Network and Enrichment Analysis
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
1RM | One repetition maximum |
Akt | Protein kinase B |
ANKRD10 | Ankyrin repeat domain 10 |
ASIC1 | Acid-sensing ion channel subunit 1 |
ATP1A2 | ATPase Na+/K+ transporting subunit alpha 2 |
AUC | Area under the curve |
B4GALNT1 | Beta-1,4-N-acetylgalactosaminyltransferase 1 |
BioGRID | Biological General Repository for Interaction Datasets |
BMD | Bone mineral density |
BMI | Body mass index |
CADM4 | Cell adhesion molecule 4 |
CDG | Congenital Disorders of Glycosylation |
ceRNA | Competing endogenous RNA |
ChEBI | Chemical Entities of Biological Interest |
CI | Confidence interval |
CMJ | Countermovement jump |
CNTROB | Centrobin, centrosomal BRCA2 interacting protein |
CNV | Copy number variation |
CRISPR | Clustered Regularly Interspaced Short Palindromic Repeats |
DJ | Drop jump |
DKK3 | Dickkopf WNT signaling pathway inhibitor 3 |
DNA | Deoxyribonucleic acid |
DNA-seq | DNA sequencing |
DXA | Dual-energy X-ray absorptiometry |
EC | Enzyme commission number |
EMT | Epithelial–mesenchymal transition |
eQTL | expression quantitative trait locus |
FDR | False discovery rate |
FUT10 | Fucosyltransferase 10 |
FUT2 | Fucosyltransferase 2 |
FUT3 | Fucosyltransferase 3 |
FZD4 | Frizzled class receptor 4 |
GALNT13 | Polypeptide N-acetylgalactosaminyltransferase 13 |
GALNT14 | Polypeptide N-acetylgalactosaminyltransferase 14 |
GNAO1 | G protein subunit alpha o1 |
gnomAD | Genome Aggregation Database |
GO | Gene Ontology |
GRIK2 | Glutamate ionotropic receptor kainate type subunit 2 |
GRIK3 | Glutamate ionotropic receptor kainate type subunit 3 |
GTEx | Genotype-Tissue Expression |
GWAS | Genome-wide association study |
HECTD2 | HECT domain E3 ubiquitin protein ligase 2 |
HWE | Hardy–Weinberg equilibrium |
IMTP | Isometric mid-thigh pull |
KANSL1 | KAT8 regulatory NSL complex subunit 1 |
kg | Kilograms |
KMT2A | Lysine methyltransferase 2A |
LTP | Long-term potentiation |
m | Meters |
MAF | Minor allele frequency |
MAN2A2 | Alpha-Mannosidase II |
MED12L | Mediator complex subunit 12 like |
mTOR | Mechanistic target of rapamycin |
MYO7A | Myosin VIIA |
NSCA-CPSS | National Strength and Conditioning Association-Certified Personal Sports Specialist |
NSCA-CSCS | National Strength and Conditioning Association-Certified Strength and Conditioning Specialist |
OR | Odds ratio |
PI3K | Phosphoinositide 3-kinase |
POFUT1 | Protein O-fucosyltransferase 1 |
PTPN21 | Protein tyrosine phosphatase non-receptor type 21 |
Rhea | Rhea: Expert-curated biochemical reactions database |
RNA | Ribonucleic acid |
ROC | Receiver operating characteristic |
SD | Standard deviation |
SHANK2 | SH3 and multiple ankyrin repeat domains 2 |
SJ | Squat jump |
SNARE | Soluble NSF attachment protein receptor |
SNPs | Single nucleotide polymorphisms |
SORCS1 | Sortilin-related VPS10 domain containing receptor 1 |
SOX2 | SRY-box transcription factor 2 |
SREBP-1 | Sterol Regulatory Element Binding Protein 1 |
STRING | Search Tool for the Retrieval of Interacting Genes/Proteins |
STXBP6 | Syntaxin binding protein 6 |
TF | Transferrin |
TGFβ2 | Transforming growth factor beta 2 |
TPM | Transcripts per million |
y | Years |
Appendix A
Appendix A.1
References
- Baker, J.; Young, B.W.; Mann, D. Advances in athlete development: Understanding conditions of and constraints on optimal practice. Curr. Opin. Psychol. 2017, 16, 24–27. [Google Scholar] [CrossRef]
- Macnamara, B.N.; Moreau, D.; Hambrick, D.Z. The relationship between deliberate practice and performance in sports: A meta-analysis. Perspect. Psychol. Sci. 2016, 11, 333–350. [Google Scholar] [CrossRef]
- Semenova, E.A.; Hall, E.C.R.; Ahmetov, I.I. Genes and athletic performance: The 2023 update. Genes 2023, 14, 1235. [Google Scholar] [CrossRef]
- Kim, S.; Misra, A. SNP genotyping: Technologies and biomedical applications. Annu. Rev. Biomed. Eng. 2007, 9, 289–320. [Google Scholar] [CrossRef] [PubMed]
- Wang, G.; Padmanabhan, S.; Mikami, E.; Fuku, N.; Masashi, T.; Motohiko, M.; Murakami, H.; Yu-Ching, C.; Mitchell, B.; Krista, A.G.; et al. GWAS of elite Jamaican, African American and Japanese sprint athletes. Med. Sci. Sports Exerc. 2014, 46, 596–598. [Google Scholar] [CrossRef]
- McAuley, A.B.T.; Hughes, D.C.; Tsaprouni, L.G.; Varley, I.; Suraci, B.; Bradley, B.; Baker, J.; Herbert, A.J.; Kelly, A.L. Genetic associations with acceleration, change of direction, jump height, and speed in English academy football players. J. Strength Cond. Res. 2024, 38, 350–359. [Google Scholar] [CrossRef]
- Wang, G.; Fuku, N.; Miyamoto-Mikami, E.; Tanaka, M.; Miyachi, M.; Murakami, H.; Mitchell, B.D.; Morrison, E.; Ahmetov, I.; Generozov, E.; et al. Multi-phase, multi-ethnic GWAS uncovers putative loci in predisposition to elite sprint and power performance, health and disease. Biol. Sport 2025, 42, 141–159. [Google Scholar] [CrossRef] [PubMed]
- Raman, J.; Guan, Y.; Perrine, C.L.; Gerken, T.A.; Tabak, L.A. UDP-N-acetyl-α-D-galactosamine:polypeptide N-acetylgalactosaminyltransferases: Completion of the family tree. Glycobiology 2012, 22, 768–777. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Iwasaki, H.; Wang, H.; Kudo, T.; Kalka, T.B.; Hennet, T.; Kubota, T.; Cheng, L.; Inaba, N.; Gotoh, M.; et al. Cloning and characterization of a new human UDP-N-acetyl-alpha-D-galactosamine:polypeptide N-acetylgalactosaminyltransferase, designated pp-GalNAc-T13, that is specifically expressed in neurons and synthesizes GalNAc alpha-serine/threonine antigen. J. Biol. Chem. 2003, 278, 573–584. [Google Scholar] [CrossRef]
- Lombardot, T.; Morgat, A.; Axelsen, K.B.; Aimo, L.; Hyka-Nouspikel, N.; Niknejad, A.; Ignatchenko, A.; Xenarios, I.; Coudert, E.; Redaschi, N.; et al. Updates in Rhea: SPARQLing biochemical reaction data. Nucleic Acids Res. 2019, 47, D596–D600. [Google Scholar] [CrossRef]
- Hastings, J.; Owen, G.; Dekker, A.; Ennis, M.; Kale, N.; Muthukrishnan, V.; Turner, S.; Swainston, N.; Mendes, P.; Steinbeck, C. ChEBI in 2016: Improved services and an expanding collection of metabolites. Nucleic Acids Res. 2016, 44, D1214–D1219. [Google Scholar] [CrossRef]
- Díaz Ramírez, J.; Álvarez-Herms, J.; Castañeda-Babarro, A.; Larruskain, J.; Ramírez de la Piscina, X.; Borisov, O.V.; Semenova, E.A.; Kostryukova, E.S.; Kulemin, N.A.; Andryushchenko, O.N.; et al. The GALNTL6 gene rs558129 polymorphism is associated with power performance. J. Strength Cond. Res. 2020, 34, 3031–3036. [Google Scholar] [CrossRef]
- Hussain, M.R.M.; Nasir, J.; Al-Aama, J.Y. Clinically significant missense variants in human GALNT3, GALNT8, GALNT12, and GALNT13 genes: Intriguing in silico findings. J. Cell. Biochem. 2014, 115, 313–327. [Google Scholar] [CrossRef]
- Murphy, J.; Caldwell, A.R.; Mesquida, C.; Ladell, A.J.; Encarnación-Martínez, A.; Tual, A.; Denys, A.; Cameron, B.; Van Hooren, B.; Parr, B.; et al. Estimating the replicability of sports and exercise science research. Sports Med. 2025. [Google Scholar] [CrossRef]
- Chiang, C.W.K.; Mangul, S.; Robles, C.; Sankararaman, S. A comprehensive map of genetic variation in the world’s largest ethnic group—Han Chinese. Mol. Biol. Evol. 2018, 35, 2736–2750. [Google Scholar] [CrossRef] [PubMed]
- Gao, Y.; Zhang, C.; Yuan, L.; Ling, Y.; Wang, X.; Liu, C.; Pan, Y.; Zhang, X.; Ma, X.; Wang, Y. PGG.Han: The Han Chinese genome database and analysis platform. Nucleic Acids Res. 2020, 48, D971–D976. [Google Scholar] [CrossRef] [PubMed]
- Wigginton, J.E.; Cutler, D.J.; Abecasis, G.R. A note on exact tests of Hardy–Weinberg equilibrium. Am. J. Hum. Genet. 2005, 76, 887–893. [Google Scholar] [CrossRef]
- Martinoli, C. Musculoskeletal ultrasound: Technical guidelines. Insights Imaging 2010, 1, 99–105. [Google Scholar] [CrossRef] [PubMed]
- Miller, T.A. NSCA’s Guide to Tests and Assessments; Human Kinetics: Champaign, IL, USA, 2012. [Google Scholar]
- GTEx Consortium. The Genotype-Tissue Expression (GTEx) project. Nat. Genet. 2013, 45, 580–585. [Google Scholar] [CrossRef]
- Greene, C.S.; Krishnan, A.; Wong, A.K.; Ricciotti, E.; Zelaya, R.A.; Himmelstein, D.S.; Zhang, R.; Hartmann, B.M.; Zaslavsky, E.; Sealfon, S.C.; et al. Understanding multicellular function and disease with human tissue-specific networks. Nat. Genet. 2015, 47, 569–576. [Google Scholar] [CrossRef]
- Kuleshov, M.V.; Jones, M.R.; Rouillard, A.D.; Fernandez, N.F.; Duan, Q.; Wang, Z.; Koplev, S.; Jenkins, S.L.; Jagodnik, K.M.; Lachmann, A.; et al. Enrichr: A comprehensive gene set enrichment analysis web server 2016 update. Nucleic Acids Res. 2016, 44, W90–W97. [Google Scholar] [CrossRef] [PubMed]
- Xie, Z.; Bailey, A.; Kuleshov, M.V.; Clarke, D.J.; Evangelista, J.E.; Jenkins, S.L.; Lachmann, A.; Wojciechowicz, M.L.; Kropiwnicki, E.; Jagodnik, K.M.; et al. Gene set knowledge discovery with Enrichr. Curr. Protoc. 2021, 1, e90. [Google Scholar] [CrossRef] [PubMed]
- Dad, R.; Malik, U.; Javed, A.; Minassian, B.A.; Hassan, M.J. Structural annotation of Beta-1,4-N-acetyl galactosaminyltransferase 1 (B4GALNT1) causing Hereditary Spastic Paraplegia 26. Gene 2017, 626, 258–263. [Google Scholar] [CrossRef]
- Szklarczyk, D.; Kirsch, R.; Koutrouli, M.; Nastou, K.; Mehryary, F.; Hachilif, R.; Gable, A.L.; Fang, T.; Doncheva, N.T.; Pyysalo, S.; et al. The STRING database in 2023: Protein-protein association networks and functional enrichment analyses for any sequenced genome of interest. Nucleic Acids Res. 2023, 51, D638–D646. [Google Scholar] [CrossRef]
- Oughtred, R.; Rust, J.; Chang, C.; Breitkreutz, B.J.; Stark, C.; Willems, A.; Boucher, L.; Leung, G.; Kolas, N.; Zhang, F.; et al. The BioGRID database: A comprehensive biomedical resource of curated protein, genetic, and chemical interactions. Protein Sci. 2021, 30, 187–200. [Google Scholar] [CrossRef]
- Treccarichi, S.; Vinci, M.; Cirnigliaro, L.; Messina, A.; Palmigiano, A.; Pettinato, F.; Musumeci, A.; Chiavetta, V.; Saccone, S.; Sturiale, L.; et al. MAN2A2-related glycosylation defects in autism and cognitive delay. Sci. Rep. 2025, 15, 24471. [Google Scholar] [CrossRef]
- Mahajan, S.; Ng, B.G.; AlAbdi, L.; Earnest, P.D.J.; Sosicka, P.; Patel, N.; Helaby, R.; Abdulwahab, F.; He, M.; Alkuraya, F.S.; et al. Homozygous truncating variant in MAN2A2 causes a novel congenital disorder of glycosylation with neurological involvement. J. Med. Genet. 2023, 60, 627–635. [Google Scholar] [CrossRef]
- Karczewski, K.J.; Francioli, L.C.; Tiao, G.; Cummings, B.B.; Alföldi, J.; Wang, Q.; Collins, R.L.; Laricchia, K.M.; Ganna, A.; Birnbaum, D.P.; et al. The mutational constraint spectrum quantified from variation in 141,456 humans. Nature 2020, 581, 434–443. [Google Scholar] [CrossRef]
- Zilmer, M.; Edmondson, A.C.; Khetarpal, S.A.; Alesi, V.; Zaki, M.S.; Rostasy, K.; Madsen, C.G.; Lepri, F.R.; Sinibaldi, L.; Cusmai, R.; et al. Novel congenital disorder of O-linked glycosylation caused by GALNT2 loss of function. Brain 2020, 143, 1114–1126. [Google Scholar] [CrossRef]
- Sun, Z.; Xue, H.; Wei, Y.; Wang, C.; Yu, R.; Wang, C.; Wang, S.; Xu, J.; Qian, M.; Meng, Q.; et al. Mucin O-glycosylating enzyme GALNT2 facilitates the malignant character of glioma by activating the EGFR/PI3K/Akt/mTOR axis. Clin. Sci. 2019, 133, 1167–1184. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Zhang, Y.; Deng, Z.; Song, C.; Yang, L.; Zhang, R.; Zhang, P.; Xiu, Y.; Su, Y.; Luo, J.; et al. Keratocan improves muscle wasting in sarcopenia by promoting skeletal muscle development and fast-twitch fibre synthesis. J. Cachexia Sarcopenia Muscle 2025, 16, e13724. [Google Scholar] [CrossRef]
- Foltz, S.J.; Luan, J.; Call, J.A.; Patel, A.; Peissig, K.B.; Fortunato, M.J.; Beedle, A.M. Four-week rapamycin treatment improves muscular dystrophy in a fukutin-deficient mouse model of dystroglycanopathy. Skelet. Muscle 2016, 6, 20. [Google Scholar] [CrossRef] [PubMed]
- Peter, S.; Ten Brinke, M.M.; Stedehouder, J.; Reinelt, C.M.; Wu, B.; Zhou, H.; Zhou, K.; Boele, H.J.; Kushner, S.A.; Lee, M.G.; et al. Dysfunctional cerebellar Purkinje cells contribute to autism-like behaviour in Shank2-deficient mice. Nat. Commun. 2016, 7, 12627. [Google Scholar] [CrossRef]
- Eltokhi, A.; Gonzalez-Lozano, M.A.; Oettl, L.L.; Rozov, A.; Pitzer, C.; Röth, R.; Berkel, S.; Hüser, M.; Harten, A.; Kelsch, W.; et al. Imbalanced post- and extrasynaptic SHANK2A functions during development affect social behavior in SHANK2-mediated neuropsychiatric disorders. Mol. Psychiatry 2021, 26, 6482–6504. [Google Scholar] [CrossRef] [PubMed]
- Cerrato, V.; Mercurio, S.; Leto, K.; Fucà, E.; Hoxha, E.; Bottes, S.; Pagin, M.; Milanese, M.; Ngan, C.Y.; Concina, G.; et al. Sox2 conditional mutation in mouse causes ataxic symptoms, cerebellar vermis hypoplasia, and postnatal defects of Bergmann glia. Glia 2018, 66, 1929–1946. [Google Scholar] [CrossRef] [PubMed]
- Feng, H.; Khalil, S.; Neubig, R.R.; Sidiropoulos, C. A mechanistic review on GNAO1-associated movement disorder. Neurobiol. Dis. 2018, 116, 131–141. [Google Scholar] [CrossRef]
- Ohi, K.; Shimada, T.; Yasuyama, T.; Kimura, K.; Uehara, T.; Kawasaki, Y. Spatial and temporal expression patterns of genes around nine neuroticism-associated loci. Prog. Neuropsychopharmacol. Biol. Psychiatry 2017, 77, 164–171. [Google Scholar] [CrossRef]
- Stolz, J.R.; Foote, K.M.; Veenstra-Knol, H.E.; Pfundt, R.; Ten Broeke, S.W.; de Leeuw, N.; Roht, L.; Pajusalu, S.; Part, R.; Rebane, I.; et al. Clustered mutations in the GRIK2 kainate receptor subunit gene underlie diverse neurodevelopmental disorders. Am. J. Hum. Genet. 2021, 108, 1692–1709. [Google Scholar] [CrossRef]
- Tuersong, T.; Yong, Y.X.; Chen, Y.; Li, P.S.; Shataer, S.; Shataer, M.; Ma, L.Y.; Yang, X.L. Integrating plasma circulating protein-centered multi-omics to identify potential therapeutic targets for Parkinsonian cognitive disorders. J. Transl. Med. 2025, 23, 535. [Google Scholar] [CrossRef]
- Vinci, M.; Costanza, C.; Galati Rando, R.; Treccarichi, S.; Saccone, S.; Carotenuto, M.; Roccella, M.; Calì, F.; Elia, M.; Vetri, L. STXBP6 gene mutation: A new form of SNAREopathy leads to developmental epileptic encephalopathy. Int. J. Mol. Sci. 2023, 24, 16436. [Google Scholar] [CrossRef]
- Liu, C.; Hu, Q.; Chen, Y.; Wu, L.; Liu, X.; Liang, D. Behavioral and gene expression analysis of stxbp6-knockout mice. Brain Sci. 2021, 11, 436. [Google Scholar] [CrossRef] [PubMed]
- Li, S.; Mecca, A.; Kim, J.; Caprara, G.A.; Wagner, E.L.; Du, T.T.; Petrov, L.; Xu, W.; Cui, R.; Rebustini, I.T.; et al. Myosin-VIIa is expressed in multiple isoforms and essential for tensioning the hair cell mechanotransduction complex. Nat. Commun. 2020, 11, 2066. [Google Scholar] [CrossRef]
- Yu, Z.; Wu, Y.J.; Wang, Y.Z.; Liu, D.S.; Song, X.L.; Jiang, Q.; Li, Y.; Zhang, S.; Xu, N.J.; Zhu, M.X.; et al. The acid-sensing ion channel ASIC1a mediates striatal synapse remodeling and procedural motor learning. Sci. Signal. 2018, 11, eaar4481. [Google Scholar] [CrossRef]
- Ribeiro, L.F.; Verpoort, B.; Nys, J.; Vennekens, K.M.; Wierda, K.D.; de Wit, J. SorCS1-mediated sorting in dendrites maintains neurexin axonal surface polarization required for synaptic function. PLoS Biol. 2019, 17, e3000466. [Google Scholar] [CrossRef]
- Kerimoglu, C.; Sakib, M.S.; Jain, G.; Benito, E.; Burkhardt, S.; Capece, V.; Kaurani, L.; Halder, R.; Agís-Balboa, R.C.; Stilling, R.; et al. KMT2A and KMT2B mediate memory function by affecting distinct genomic regions. Cell Rep. 2017, 20, 538–548. [Google Scholar] [CrossRef]
- Nizon, M.; Laugel, V.; Flanigan, K.M.; Pastore, M.; Waldrop, M.A.; Rosenfeld, J.A.; Marom, R.; Xiao, R.; Gerard, A.; Pichon, O.; et al. Variants in MED12L, encoding a subunit of the mediator kinase module, are responsible for intellectual disability associated with transcriptional defect. Genet. Med. 2019, 21, 2713–2722. [Google Scholar] [CrossRef]
- Li, T.; Lu, D.; Yao, C.; Li, T.; Dong, H.; Li, Z.; Xu, G.; Chen, J.; Zhang, H.; Yi, X.; et al. Kansl1 haploinsufficiency impairs autophagosome-lysosome fusion and links autophagic dysfunction with Koolen-de Vries syndrome in mice. Nat. Commun. 2022, 13, 931. [Google Scholar] [CrossRef]
- Zhang, C.; Lai, M.B.; Khandan, L.; Lee, L.A.; Chen, Z.; Junge, H.J. Norrin-induced Frizzled4 endocytosis and endo-lysosomal trafficking control retinal angiogenesis and barrier function. Nat. Commun. 2017, 8, 16050. [Google Scholar] [CrossRef]
- Zerafati-Jahromi, G.; Oxman, E.; Hoang, H.D.; Charng, W.L.; Kotla, T.; Yuan, W.; Ishibashi, K.; Sebaoui, S.; Luedtke, K.; Winrow, B.; et al. Sequence variants in HECTD1 result in a variable neurodevelopmental disorder. Am. J. Hum. Genet. 2025, 112, 537–553. [Google Scholar] [CrossRef] [PubMed]
- Chu, Y.D.; Fan, T.C.; Lai, M.W.; Yeh, C.T. GALNT14-mediated O-glycosylation on PHB2 serine-161 enhances cell growth, migration and drug resistance by activating IGF1R cascade in hepatoma cells. Cell Death Dis. 2022, 13, 956. [Google Scholar] [CrossRef] [PubMed]
- He, C.; Li, A.; Lai, Q.; Ding, J.; Yan, Q.; Liu, S.; Li, Q. The DDX39B/FUT3/TGFβR-I axis promotes tumor metastasis and EMT in colorectal cancer. Cell Death Dis. 2021, 12, 74. [Google Scholar] [CrossRef]
- Jiang, R.; Li, H.; Yang, J.; Shen, X.; Song, C.; Yang, Z.; Wang, X.; Huang, Y.; Lan, X.; Lei, C.; et al. circRNA profiling reveals an abundant circFUT10 that promotes adipocyte proliferation and inhibits adipocyte differentiation via sponging let-7. Mol. Ther. Nucleic Acids 2020, 20, 491–501. [Google Scholar] [CrossRef]
- Dong, C.; Zhang, Y.; Zeng, J.; Chong, S.; Liu, Y.; Bian, Z.; Fan, S.; Chen, X. FUT2 promotes colorectal cancer metastasis by reprogramming fatty acid metabolism via YAP/TAZ signaling and SREBP-1. Commun. Biol. 2024, 7, 1297. [Google Scholar] [CrossRef]
- Qian, Y.; Ma, Z.; Xu, Z.; Duan, Y.; Xiong, Y.; Xia, R.; Zhu, X.; Zhang, Z.; Tian, X.; Yin, H.; et al. Structural basis of Frizzled 4 in recognition of Dishevelled 2 unveils mechanism of WNT signaling activation. Nat. Commun. 2024, 15, 7644. [Google Scholar] [CrossRef]
- Truillet, C.; Cunningham, J.T.; Parker, M.F.L.; Huynh, L.T.; Conn, C.S.; Ruggero, D.; Lewis, J.S.; Evans, M.J. Noninvasive measurement of mTORC1 signaling with 89Zr-Transferrin. Clin. Cancer Res. 2017, 23, 3045–3052. [Google Scholar] [CrossRef]
- Liu, C.; Liang, X.; Wang, J.; Zheng, Q.; Zhao, Y.; Khan, M.N.; Liu, S.; Yan, Q. Protein O-fucosyltransferase 1 promotes trophoblast cell proliferation through activation of MAPK and PI3K/Akt signaling pathways. Biomed. Pharmacother. 2017, 88, 95–101. [Google Scholar] [CrossRef] [PubMed]
- Sampedro Castañeda, M.; Zanoteli, E.; Scalco, R.S.; Scaramuzzi, V.; Marques Caldas, V.; Conti Reed, U.; da Silva, A.M.S.; O’Callaghan, B.; Phadke, R.; Bugiardini, E.; et al. A novel ATP1A2 mutation in a patient with hypokalaemic periodic paralysis and CNS symptoms. Brain 2018, 141, 3308–3318. [Google Scholar] [CrossRef]
- Wang, Z.; Deng, M.; Xu, W.; Li, C.; Zheng, Z.; Li, J.; Liao, L.; Zhang, Q.; Bian, Y.; Li, R.; et al. DKK3 as a diagnostic marker and potential therapeutic target for sarcopenia in chronic obstructive pulmonary disease. Redox Biol. 2024, 78, 103434. [Google Scholar] [CrossRef] [PubMed]
- Chang, Y.; Zhu, J.; Li, X.; Deng, Y.; Lai, B.; Ma, Y.; Tong, J.; Liu, H.; Li, J.; Yang, C.; et al. Palmitoylation regulates myelination by modulating the ZDHHC3-Cadm4 axis in the central nervous system. Signal Transduct. Target. Ther. 2024, 9, 254. [Google Scholar] [CrossRef] [PubMed]
- Theodossiou, S.K.; Murray, J.B.; Hold, L.A.; Courtright, J.M.; Carper, A.M.; Schiele, N.R. Akt signaling is activated by TGFβ2 and impacts tenogenic induction of mesenchymal stem cells. Stem Cell Res. Ther. 2021, 12, 88. [Google Scholar] [CrossRef]
- Chen, L.; Qian, Z.; Zheng, Y.; Zhang, J.; Sun, J.; Zhou, C.; Xiao, H. Structural analysis of PTPN21 reveals a dominant-negative effect of the FERM domain on its phosphatase activity. Sci. Adv. 2024, 10, eadi7404. [Google Scholar] [CrossRef] [PubMed]
- Yu, J.; Chen, L.; Wang, G.; Qian, K.; Weng, H.; Yang, Z.; Zheng, H.; Lu, M. RBPMS inhibits bladder cancer metastasis by downregulating MYC pathway through alternative splicing of ANKRD10. Commun. Biol. 2025, 8, 367. [Google Scholar] [CrossRef]
- Ogungbenro, Y.A.; Tena, T.C.; Gaboriau, D.; Lalor, P.; Dockery, P.; Philipp, M.; Morrison, C.G. Centrobin controls primary ciliogenesis in vertebrates. J. Cell Biol. 2018, 217, 1205–1215. [Google Scholar] [CrossRef] [PubMed]
Group | Sample Size (n ) | Height (m) | Weight (kg) | BMI (kg·m−2) | Age (y) |
---|---|---|---|---|---|
Control | 139 | 1.801 ± 0.067 | 77.319 ± 9.774 | 23.81 ± 2.35 | 22.777 ± 3.769 |
Athletes | 49 | 1.807 ± 0.072 | 79.138 ± 7.283 | 24.274 ± 2.026 | 22.898 ± 4.459 |
SNP Locus | Genotype Distribution (n , %) | Allele Distribution (n, %) | HWE p | Observed MAF | Reference MAF |
---|---|---|---|---|---|
GALNT13 rs10196189 | AA = 125 (89.92) AG = 13 (9.35) GG = 1 (0.71) | A = 263 (94.60) G = 15 (5.39%) | 0.329 | 0.054 (G) | 0.0743 (G) |
Comparison | G_Han | A_Han | G_Pop | A_Pop | Chi-Square | p-Value |
---|---|---|---|---|---|---|
Han vs. Total | 15 | 263 | 28,960 | 123,206 | 32.6379 | 1.11 × 10−8 |
Han vs. African_American | 13,373 | 28,105 | 90.1368 | 2.22 × 10−21 | ||
Han vs. Amish | 260 | 650 | 62.9973 | 2.07 × 10−15 | ||
Han vs. Middle_Eastern | 80 | 214 | 47.5356 | 5.40 × 10−12 | ||
Han vs. South_Asian | 1164 | 3658 | 50.9074 | 9.68 × 10−13 | ||
Han vs. Remaining | 413 | 1697 | 32.6075 | 1.13 × 10−8 | ||
Han vs. Ashkenazi_Jewish | 624 | 2846 | 27.9504 | 1.25 × 10−7 | ||
Han vs. European_NonFinnish | 10,059 | 57,927 | 18.7074 | 1.52 × 10−5 | ||
Han vs. Admixed_American | 2046 | 13,238 | 14.4862 | 1.41 × 10−4 | ||
Han vs. East_Asian | 513 | 4675 | 5.5986 | 1.80 × 10−2 | ||
Han vs. European_Finnish | 428 | 10196 | 0.9717 | 3.24 × 10−1 | ||
Han vs. XY | XY: 13,810 | XY: 60,600 | 30.9504 | 2.65 × 10−8 | ||
XX vs. XY (Sex-based) | XX: 15,150; XY: 13,810 | XX: 62,606; XY: 60,600 | 21.0384 | 4.50 × 10−6 |
SNP | Genotype Distribution (Athletes; Controls) | Genotype Test χ2 (p) | Fisher p | Minor Allele Frequency (Athletes; Controls) | Allele Test χ2 (p) | Fisher p | OR (95% CI) |
---|---|---|---|---|---|---|---|
GALNT13 rs10196189 | AA = 38, AG = 10, GG = 1; AA = 125, AG = 13, GG = 1 | 4.85 (p = 0.088) | 0.069 | G: 12.2%; 5.4% | 4.12 (p = 0.042 *) | 0.038 * | OR = 0.41 (0.17–0.999) |
Variable | Athletes (Mean ± SD) | Controls (Mean ± SD) | Shapiro–Wilk p (Athlete/Control) | Test Type | p -Value | Effect Size | Effect Type |
---|---|---|---|---|---|---|---|
Squat 1RM (kg) | 153.57 ± 19.73 | 121.62 ± 24.24 | 0.2845/0.0172 | u | <0.0001 * | −0.687 | r |
IMTP Relative Peak Force (N/kg) | 4.06 ± 0.79 | 3.32 ± 0.53 | 0.0006/<0.0001 | u | <0.0001 * | −0.612 | r |
IMTP Absolute Peak Force (N) | 3142.63 ± 837.66 | 2550.44 ± 604.52 | 0.2061/<0.0001 | u | <0.0001 * | −0.5 | r |
CMJ Jump Height (cm) | 49.35 ± 5.68 | 40.85 ± 6.15 | 0.2442/0.1898 | t | <0.0001 * | −1.41 | d |
SJ Jump Height (cm) | 43.98 ± 5.62 | 38.05 ± 6.96 | 0.9362/0.7665 | t | <0.0001 * | −0.893 | d |
DJ Jump Height (cm) | 38.05 ± 7.52 | 27.16 ± 8.26 | 0.6256/0.4785 | t | <0.0001 * | −1.349 | d |
20 m Sprint Time (s) | 3.04 ± 0.17 | 3.32 ± 0.18 | 0.0028/0.0019 | u | <0.0001 * | 0.742 | r |
Peak Anaerobic Power (W) | 1050.41 ± 158.99 | 846.94 ± 189.48 | 0.8123/0.8155 | t | <0.0001 * | −1.117 | d |
Mean Anaerobic Power (W) | 668.04 ± 76.1 | 579.65 ± 100.67 | 0.894/0.5819 | t | <0.0001 * | −0.931 | d |
Anaerobic Power Fatigue Index (%) | 54.94 ± 11.1 | 49.64 ± 10.29 | 0.0015/0.0124 | u | 0.0011 * | −0.315 | r |
DXA Weight (kg) | 79.14 ± 7.28 | 77.32 ± 9.77 | 0.4266/0.023 | u | 0.1176 | −0.151 | r |
Body Fat Percentage (%) | 15.67 ± 4.68 | 19.1 ± 5.01 | 0.0606/0.0009 | u | 0.0001 * | 0.387 | r |
Fat Mass (g) | 12107.73 ± 4300.24 | 14310.37 ± 4897.64 | 0.0074/<0.0001 | u | 0.0033 * | 0.283 | r |
Muscle Mass (g) | 63064.2 ± 5426.97 | 59103.28 ± 7616.57 | 0.1288/0.1748 | t | 0.0001 * | −0.557 | d |
Lean Body Mass (g) | 65997.96 ± 6384.96 | 62287.78 ± 7617.4 | 0.005/0.6673 | u | 0.0004 * | −0.342 | r |
BMI (kg/m2) | 24.27 ± 2.03 | 23.81 ± 2.35 | 0.0111/0.0019 | u | 0.2133 | −0.12 | r |
Bone Mineral Density (g/cm2) | 1.34 ± 0.11 | 1.29 ± 0.12 | 0.6317/0.6451 | t | 0.0122 * | −0.408 | d |
Rectus Femoris Thickness (cm) | 2.05 ± 0.38 | 1.79 ± 0.33 | 0.1505/0.0944 | t | 0.0001 * | −0.754 | d |
Vastus Medialis Thickness (cm) | 2.78 ± 0.38 | 2.58 ± 0.33 | 0.1235/0.0033 | u | 0.0124 * | −0.24 | r |
Vastus Lateralis Thickness (cm) | 2.51 ± 0.32 | 2.26 ± 0.31 | 0.6696/0.4703 | t | <0.0001 * | −0.803 | d |
Semitendinosus Thickness (cm) | 2.32 ± 0.47 | 2.16 ± 0.51 | 0.4733/0.0028 | u | 0.0369 * | −0.201 | r |
Biceps Femoris (Long Head) Thickness (cm) | 2.55 ± 0.46 | 2.4 ± 0.39 | 0.6714/0.0098 | u | 0.0494 * | −0.189 | r |
Medial Gastrocnemius Thickness (cm) | 2.14 ± 0.4 | 2.0 ± 0.32 | 0.2519/0.7237 | t | 0.0295 * | −0.41 | d |
SNP | Genetic Model | OR | 95% CI | p-Value |
---|---|---|---|---|
GALNT13 rs10196189 | Dominant | 2.58 | 1.04–6.30 | 0.032 * |
Recessive | 2.88 | 0.24–17.02 | 0.458 | |
Additive | 2.31 | 1.06–5.00 | 0.037 * | |
Dominant1 | 2.53 | 1.03–6.10 | 0.032 * | |
Recessive1 | 2.68 | 0.10–68.93 | 0.490 | |
Additive1 | 2.25 | 1.01–5.03 | 0.045 * |
Phenotype | β | p | FDR-p |
---|---|---|---|
Squat 1RM (kg) | −10.3176 | 0.1106 | 0.3784 |
IMTP Relative Peak Force (N/kg) | 0.3863 | 0.1614 | 0.4062 |
IMTP Absolute Peak Force (N) | 537.9287 | 0.0657 | 0.3784 |
CMJ Jump Height (cm) | −4.0988 | 0.069 | 0.3784 |
SJ Jump Height (cm) | −1.1941 | 0.5717 | 0.6988 |
DJ Jump Height (cm) | 0.6365 | 0.818 | 0.8708 |
20 m Sprint Time (s) | 0.0578 | 0.3296 | 0.5438 |
Peak Anaerobic Power (W) | −44.4161 | 0.4339 | 0.641 |
Mean Anaerobic Power (W) | −25.0937 | 0.388 | 0.6097 |
Anaerobic Power Fatigue Index (%) | −4.6823 | 0.2645 | 0.4848 |
DXA Weight (kg) | 0.4371 | 0.8478 | 0.8743 |
Body Fat Percentage (%) | 0.9667 | 0.4856 | 0.641 |
Fat Mass (g) | 731.213 | 0.5296 | 0.6721 |
Muscle Mass (g) | −2628.768 | 0.1848 | 0.4065 |
Lean Body Mass (g) | −1713.446 | 0.467 | 0.641 |
Bone Mineral Density (g/cm2) | −0.0018 | 0.9617 | 0.9617 |
Rectus Femoris Thickness (cm) | 0.25 | 0.0839 | 0.3784 |
Vastus Medialis Thickness (cm) | 0.1688 | 0.25 | 0.4848 |
Vastus Lateralis Thickness (cm) | 0.186 | 0.119 | 0.3784 |
Semitendinosus Thickness (cm) | −0.0488 | 0.7869 | 0.8656 |
Biceps Femoris (Long Head) Thickness (cm) | 0.2457 | 0.1511 | 0.4062 |
Medial Gastrocnemius Thickness (cm) | 0.3714 | 0.0112 * | 0.1683 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, L.; Wang, M.; Liu, L.; Jiang, X.; Cao, Z.; Azhati, S.; Chen, H.; She, K.; Zhu, J.; Chen, M.; et al. Replication of the GWAS-Identified GALNT13 rs10196189 Polymorphism in Relation to Speed–Power Elite Active Athlete Status and Multidimensional Phenotypic Differences in Chinese Han Males: A Pilot Study. Genes 2025, 16, 983. https://doi.org/10.3390/genes16080983
Chen L, Wang M, Liu L, Jiang X, Cao Z, Azhati S, Chen H, She K, Zhu J, Chen M, et al. Replication of the GWAS-Identified GALNT13 rs10196189 Polymorphism in Relation to Speed–Power Elite Active Athlete Status and Multidimensional Phenotypic Differences in Chinese Han Males: A Pilot Study. Genes. 2025; 16(8):983. https://doi.org/10.3390/genes16080983
Chicago/Turabian StyleChen, Lun, Mingrui Wang, Longtianjiao Liu, Xiaoyu Jiang, Zihang Cao, Samuhaer Azhati, Hangyu Chen, Kaixin She, Jinyao Zhu, Ming Chen, and et al. 2025. "Replication of the GWAS-Identified GALNT13 rs10196189 Polymorphism in Relation to Speed–Power Elite Active Athlete Status and Multidimensional Phenotypic Differences in Chinese Han Males: A Pilot Study" Genes 16, no. 8: 983. https://doi.org/10.3390/genes16080983
APA StyleChen, L., Wang, M., Liu, L., Jiang, X., Cao, Z., Azhati, S., Chen, H., She, K., Zhu, J., Chen, M., Li, J., Kong, J., Zhang, J., Yan, Y., Dong, Y., Mieryazi, A., Liu, S., Zhang, Y., Ma, Y., & Shi, L. (2025). Replication of the GWAS-Identified GALNT13 rs10196189 Polymorphism in Relation to Speed–Power Elite Active Athlete Status and Multidimensional Phenotypic Differences in Chinese Han Males: A Pilot Study. Genes, 16(8), 983. https://doi.org/10.3390/genes16080983