The Problem of the Presence of DNA in Cosmetic and Medicinal Products Obtained from Animals on the CITES List
Abstract
1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Convention on International Trade in Endangered Species of Wild Fauna and Flora signed in Washington, DC on 3 March 1973, OJ of 1991. Available online: https://cites.org/eng/disc/text.php (accessed on 7 July 2025).
- Council Regulation (EC). No. 338/97 of 9 December 1996 on the protection of species of wild fauna and flora by regulating trade therein. OJEU 1996, 61, 1. [Google Scholar]
- Commission Regulation (EU) No. 865/2006 of 4 May 2006 Laying Down Implementing Rules for Council Regulation (EC) No. 338/97 on the Protection of Species of Wild Fauna and Flora by Regulating Trade Therein, OJ L 166 of 19 June 2006. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX:32006R0865 (accessed on 7 July 2025).
- Commission Regulation (EU) No. 750/2013 of 29 July 2013 Amending Council Regulation (EC) No. 338/97 on the Protection of Species of Wild Fauna and Flora by Regulating Trade Therein, OJ L 212 of 7 August 2013. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX:32013R0750 (accessed on 7 July 2025).
- Commission Implementing Regulation (EU) No. 578/2013 of 17 June 2013 Suspending the Introduction into the Union of Specimens of Certain Species of Wild Fauna and Flora, OJ L 169 of 21 June 2013. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX:32013R0578 (accessed on 7 July 2025).
- Chackiewicz, M.; Kostecka, J. Seizure of biodiversity resources under Washington Convention (CITES) by the polish customs service. Ecol. Eng. 2017, 18, 129–138. [Google Scholar] [CrossRef] [PubMed]
- Nakonieczna, S.; Grela, M.; Listos, P.; Gryzińska, M. Molecular methods of species identification used in forensic examinations. J. Anim. Sci. Biol. Bioecon. 2019, 37, 31–39. [Google Scholar] [CrossRef]
- Tazeen, S.; Rahman, S.; Abbas, R.; Shahid, S.A.; Shinwari, Z.K.; Ali, M. Isolation and detection of bacterial strains from cosmetics products available in Pakistan. Proc. Natl. Acad. Sci. USA 2023, 120, e2210535120. [Google Scholar] [CrossRef]
- Birben, Ü.; Gençay, G. Bio-smuggling in Turkey. Crime Law Soc Change 2019, 71, 345–364. [Google Scholar] [CrossRef]
- Habior, A. Ursodeoxycholic acid in cholestatic liver diseases: Current status. Gastroenterol. Klin. 2011, 3, 79–87. [Google Scholar]
- Gomez, L.; Shepherd, C.R. Trade in bears in Lao PDR with observations from market surveys and seizure data. Glob. Ecol. Conserv. 2018, 15, e00415. [Google Scholar] [CrossRef]
- Tarnowska, R.; Car, H. Hirudotherapy–pro and against. Farm. Pol. 2009, 65, 331–336. [Google Scholar]
- Jun, J.; Han, S.; Jeong, T.; Park, H.C.; Lee, B.Y.; Kwak, M. Wildlife forensics using mitochondrial DNA sequences: Species identification based on hairs collected in the field and confiscated tanned Felidae leathers. Genes Genom. 2011, 33, 721–726. [Google Scholar] [CrossRef]
- Kowalczyk, M.; Zawadzka, E.; Szewczuk, D.; Gryzińska, M.; Jakubczak, A. Molecular markers used in forensic genetics. Med. Sci. Law 2018, 58, 201–209. [Google Scholar] [CrossRef]
- Figura, A.; Gryzinska, M.; Jakubczak, A. Comparison of Universal mtDNA Primers in Species Identification of Animals in a Sample with Severely Degraded DNA. Animals 2024, 14, 3256. [Google Scholar] [CrossRef] [PubMed]
- Wares, J.P. Mitochondrial cytochrome b sequence data are not an improvement for species identification in scleractinian corals. PeerJ 2014, 2, e564. [Google Scholar] [CrossRef] [PubMed]
- Lapinski, A.G.; Pavlenko, M.V.; Solovenchuk, L.L.; Gorbachev, V.V. Some limitations in the use of the mitochondrial DNA cytb gene as a molecular marker for phylogenetic and population-genetic studies by the example of the Apodemus genus. Russ. J. Genet. Appl. Res. 2016, 6, 84–90. [Google Scholar] [CrossRef]
- Lusk, R.W. Diverse and widespread contamination evident in the unmapped depths of high throughput sequencing data. PLoS ONE 2014, 9, e110808. [Google Scholar] [CrossRef]
- Borst, A.; Box, A.T.A.; Fluit, A.C. False-Positive Results and Contamination in Nucleic Acid Amplification Assays: Suggestions for a Prevent and Destroy Strategy. Eur. J. Clin. Microbiol. Infect. Dis. 2004, 23, 289–299. [Google Scholar] [CrossRef]
- Ficetola, G.F.; Pansu, J.; Bonin, A.; Coissac, E.; Giguet-Covex, C.; De Barba, M.; Gielly, L.; Lopes, C.M.; Boyer, F.; Pompanon, F.; et al. Replication levels, false presences and the estimation of the presence/absence from eDNA metabarcoding data. Mol. Ecol. Resour. 2015, 15, 543–556. [Google Scholar] [CrossRef]
- Toews, D.P.; Brelsford, A. The biogeography of mitochondrial and nuclear discordance in animals. Mol Ecol. 2012, 21, 3907–3930. [Google Scholar] [CrossRef]
- Kocher, T.D.; Thomas, W.K.; Meyer, A.; Edwards, S.V.; Pääbo, S.; Villablanca, F.X.; Wilson, A.C. Dynamics of mitochondrial DNA evolution in animals: Amplification and sequencing with conserved primers. Proc. Natl. Acad. Sci. USA 1989, 86, 6196–6200. [Google Scholar] [CrossRef]
- Litos, P.; Dylewska, M.; Gryzinska, M. Inconsistent with the Washington Convention (CITES) smuggling animals to Poland. Życie Wet. 2016, 91, 238–243. [Google Scholar]
- Chackiewicz, M. Smuggling of endangered species of fauna through the checkpoints between Poland and Ukraine. Alm. Int. Law 2016, 11, 32–42. [Google Scholar]
- Gomez, L.; Kala, B.; Shepherd, C.R. Bear trade in Poland: An analysis of legal and illegal international trade from 2000 to 2021. Eur. J. Wild. Res. 2023, 69, 106. [Google Scholar] [CrossRef]
- Nowak, M. Price as a value affecting the phenomenology of Polish crime against industrial property. Stud. Politol. Ucraino-Pol. 2018, 8, 82–94. [Google Scholar]
- Hinsley, A.; Wan, A.K.Y.; Garshelis, D.; Hoffmann, M.; Hu, S.; Lee, T.M.; Meginnis, K.; Moyle, B.; Qiu, Y.; Ruan, X.; et al. Understanding why consumers in China switch between wild, farmed and synthetic bear bile products. Conserv. Biol. 2022, 36, e13895. [Google Scholar] [CrossRef] [PubMed]
- Sukanan, D.; Anthony, B.P. Community attitudes towards bears, bear bile use, and bear conservation in Luang Prabang, Lao PDR. J. Ethnobiol. Ethnomed. 2019, 15, e13895. [Google Scholar] [CrossRef]
- Melaniuk, E. Criminological and law aspects of crime against wild animals. Pol. Bull. Criminol. 2019, 26, 130–160. [Google Scholar]
- Bottero, M.T.; Dalmasso, I.A.; Nucera, D.; Turi, R.M.; Rosati, S.; Squadrone, S.; Goria, M.; Civera, T. Development of a PCR assay for the detection of animal tissues in ruminant feeds. J. Food Prot. 2003, 66, 2307–2312. [Google Scholar] [CrossRef]
- Kiewlicz, J. Praca Doktorska: Długołańcuchowe Estry Kwasów Fenolowych Jako Wielofunkcyjne Składniki Kształtujące Jakość Wyrobów Kosmetycznych. Ph.D. Thesis, Uniwersytet Ekonomiczny w Poznaniu, Poznań, Poland, 2013. [Google Scholar]
- Faslu Rahman, C.K. Rendered Animal Fat: A Boon to the Cosmetic Industry. Indian. Vet. J. 2022, 99, 20–26. [Google Scholar]
- Bindu, N. Final Report on the Safety Assessment of Mink Oil. Int. J. Toxicol. 1998, 17, 71–81. [Google Scholar]
- Sztych, D. Medicinal products of animal origin in folk medicine. Życie Wet. 2013, 88, 126–131. [Google Scholar]
- Capó, X.; Martorell, M.; Tur, J.A.; Sureda, A.; Pons, A. 5-Dodecanolide, a Compound Isolated from Pig Lard, Presents Powerful Anti-Inflammatory Properties. Molecules 2021, 26, 7363. [Google Scholar] [CrossRef]
- Zabidi, A.R.; Fauzi, F.N.; Abd Razak, F.N.; Rosli, D.; Jamil, M.Z.M.; Wan Ibrahim, W.K.; Yahaya, N. Screening porcine DNA in collagen cream cosmetic products. Food Res. 2020, 4, 151–156. [Google Scholar] [CrossRef]
- Mortas, M.; Awad, N.; Ayvaz, H. Adulteration detection technologies used for halal/kosher food products: An overview. Discover Food 2022, 2, 15. [Google Scholar] [CrossRef] [PubMed]
- Demirhan, Y.; Ulca, P.; Senyuva, H.Z. Detection of porcine DNA in gelatine and gelatine-containing processed food products—Halal/Kosher authentication. Meat Sci. 2012, 90, 686–689. [Google Scholar] [CrossRef] [PubMed]
- Kim, Y.S.; Yu, H.K.; Lee, B.Z.; Hong, K.W. Effect of DNA extraction methods on the detection of porcine ingredients in halal cosmetics using real-time PCR. Appl. Biol. Chem. 2018, 61, 549–555. [Google Scholar] [CrossRef]
- Firma, N.W.; Azizah, Z.; Asra, R. Pork DNA Contamination in Pharmaceutical Products: A Review. Asian J. Pharm. Res. Dev. 2020, 8, 96–104. [Google Scholar]
- Sugibayashi, K.; Yusuf, E.; Todo, H.; Dahlizar, S.; Sakdiset, P.; Arce, F.J.; See, G.L. Halal Cosmetics: A Review on Ingredients, Production, and Testing Methods. Cosmetics 2019, 6, 37. [Google Scholar] [CrossRef]
- European Parliament and Council. Regulation (EU) No 1169/2011 of the European Parliament and of the Council of 25 October 2011 on the provision of food information to consumers. Off. J. Eur. Union 2011, 304, 18–63. [Google Scholar]
- European Parliament and Council. Directive 2001/95/EC of the European Parliament and of the Council of 3 December 2001 on general product safety. Off. J. Eur. Communities 2001, 11, 4–17. [Google Scholar]
- OECD. Regulatory Enforcement and Inspections, OECD Best Practice Principles for Regulatory Policy; OECD Publishing: Paris, France, 2014. [Google Scholar]
- Zubańska, M. Forensic physicochemical tests—Expertise broadly speaking, unquestionable, scientific by definition. Przegląd Policyjny 2017, 3, 84–97. (In Polish) [Google Scholar] [CrossRef]
Radiculin Walentina Dikula (RWD) Gel | Ven Activ Forte (VAF) Balm | |
---|---|---|
Active substances | bear bile, bee venom, mumio, extracts and oils from medicinal plants | medical leech extract, troxerutin, horse chestnut, extracts and oils from medicinal plants |
Ingredients | water, liposome emulsion complex no. 3: (stearic acid, emulsion wax Neowax, glycerin, vegetable oil, anhydrous lanolin, propylene glycol, microcar IT, nimesulide, sodium hydroxide, Grindox antioxidant), hemp oil, juniper essential oil, elecampane extract, cinquefoil extract, pepper extract, pine bud extract, St. John’s wort extract, thyme extract, angelica extract, mumio, peavit, bee venom, bear bile, vitanol, collagen hydrolyzate, D-panthenol, microcar DMP | water, glycerin, carbomer, cococaprilate, dicaprylyl ether, troxerutin, grape extract, horse chestnut extract, collagen hydrolyzate, chamomile oil extract, sophora japonica, horsetail, rosehip fruit, propylene glycol extract, aloe vera, arnica, birch, ginkgo biloba, green tea, badiaga, D-panthenol, cottonseed oil, hazelnut oil, sea buckthorn oil, leech extract, vitanol, tea tree oil, lemon oil, phenoxyethanol, ethylhexylglycerin, sodium hydroxide, disodium EDTA, limonene |
DNA Sequence Similarity (%) | Max Score | E-Value | Degree of Coverage of Fragment (%) | Species—Common Name | Species—Latin Name | |
---|---|---|---|---|---|---|
1. | 97.61–99.17 | 431–525 | 1 × 10−142 | 68–83 | American mink | Neovison vison formerly Mustela vison |
2. | 90.41 | 385 | 1 × 10−102 | 82 | Colombian weasel | Mustela felipei |
3. | 90.41 | 385 | 1 × 10−102 | 82 | Long-tailed weasel | Mustela frenata |
4. | 90.07 | 379 | 7 × 10−101 | 82 | Amazon weasel | Mustela africana |
5. | 89.42–89.76 | 368–374 | 3 × 10−99 | 82 | Back-striped weasel | Mustela strigidorsa |
6. | 87.71–88.05 | 340–346 | 7 × 10−91 | 82 | Mountain weasel * | Mustela altaica |
7. | 87.59 | 337 | 4 × 10−88 | 82 | Asian badger | Meles leucurus |
8. | 87.46 | 339 | 1 × 10−88 | 83 | Malayan weasel | Mustela nudipes |
9. | 87.33 | 335 | 1 × 10−87 | 82 | Hairy-nosed otter * | Lutra sumatrana |
10. | 86.90–87.59 | 326–337 | 2 × 10−86 | 82 | European badger | Meles meles |
11. | 86.90–87.24 | 326–331 | 2 × 10−86 | 82 | Japanese badger | Meles anakuma |
12. | 86.76–87.15 | 320–326 | 4 × 10−83 | 81 | Western spotted skunk | Spilogale gracilis |
13. | 86.76 | 320 | 4 × 10−83 | 81 | Pygmy spotted skunk | Spilogale pygmaea |
14. | 86.64–87.03 | 322–329 | 1 × 10−83 | 82 | Stoat * | Mustela erminea |
15. | 86.64 | 324 | 3 × 10−84 | 82 | Greater hog badger | Arctonyx collaris |
16. | 86.64 | 324 | 3 × 10−84 | 82 | Eurasian otter * | Lutra lutra |
17. | 86.64 | 324 | 3 × 10−84 | 82 | Yellow-bellied weasel * | Mustela kathiah |
DNA Sequence Similarity (%) | Max Score | E-Value | Degree of Coverage of Fragment (%) | Species—Common Name | Species—Latin Name | |
---|---|---|---|---|---|---|
1. | 81.20–81.67 | 259–265 | 2 × 10−66 | 93–95 | Wild boar/domestic pig | Sus scrofa |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Figura, A.; Gryzinska, M.; Jakubczak, A. The Problem of the Presence of DNA in Cosmetic and Medicinal Products Obtained from Animals on the CITES List. Genes 2025, 16, 805. https://doi.org/10.3390/genes16070805
Figura A, Gryzinska M, Jakubczak A. The Problem of the Presence of DNA in Cosmetic and Medicinal Products Obtained from Animals on the CITES List. Genes. 2025; 16(7):805. https://doi.org/10.3390/genes16070805
Chicago/Turabian StyleFigura, Aleksandra, Magdalena Gryzinska, and Andrzej Jakubczak. 2025. "The Problem of the Presence of DNA in Cosmetic and Medicinal Products Obtained from Animals on the CITES List" Genes 16, no. 7: 805. https://doi.org/10.3390/genes16070805
APA StyleFigura, A., Gryzinska, M., & Jakubczak, A. (2025). The Problem of the Presence of DNA in Cosmetic and Medicinal Products Obtained from Animals on the CITES List. Genes, 16(7), 805. https://doi.org/10.3390/genes16070805