Exploring the Role of Genetic and Genomic Factors in Therapeutic Response to Heart Failure: A Comprehensive Analytical Review
Abstract
1. Introduction
1.1. Overview of Heart Failure: Pathophysiology, Etiology, and Classification
1.2. Current Therapeutic Landscape: From Pharmacology to Precision Medicine
1.3. The Need for Personalization in Heart Failure Therapy
1.4. Overview of Genetic Influence in Disease Progression and Treatment Response
2. Genetic Mechanisms and Therapeutic Response in Heart Failure
2.1. Key Genetic Factors: Single-Nucleotide Polymorphisms, Copy Number Variations, and Mutations
2.2. Epigenetic Modifications and Their Impact on Heart Failure
2.3. Genetic Variability: A Key Determinant of Treatment Efficacy
2.4. Gene-Environment Interactions and Their Impact on Drug Metabolism
3. Pharmacogenomics in Heart Failure: The Role of Genetic Variations in Drug Response
3.1. Overview of Pharmacogenomics in Heart Failure
3.2. Impact on Common HF Medications
3.2.1. ACE Inhibitors (ACEi) and Angiotensin Receptor Blockers (ARBs)
3.2.2. Angiotensin Receptor-Neprilysin Inhibitor (ARNI)
3.2.3. β-Blockers
3.2.4. Mineralocorticoid Receptor Antagonists
3.2.5. SGLT2 Inhibitors
3.3. Future Directions: Integrating Pharmacogenomic Data into Clinical Practice
4. Gene Therapy in Heart Failure: Emerging Strategies for Targeted Treatment
4.1. The Rationale for Gene Therapy in Heart Failure
4.2. Gene Therapy Approaches in Heart Failure
4.3. Challenges in Translating Gene Therapy to Clinical Practice: Safety, Efficacy, and Ethical Considerations
5. Specific Heart Failure Phenotypes
5.1. Genetic Basis and Therapeutic Implications in Dilated Cardiomyopathy
5.2. Hypertrophic Cardiomyopathy (HCM)
5.3. Cardiomyopathies with a Restrictive Phenotype
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- McDonagh, T.A.; Metra, M.; Adamo, M.; Gardner, R.S.; Baumbach, A.; Böhm, M.; Burri, H.; Butler, J.; Čelutkienė, J.; Chioncel, O.; et al. 2021 ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure. Eur. Heart J. 2021, 42, 3599–3726. [Google Scholar] [CrossRef] [PubMed]
- Bozkurt, B.; Coats, A.J.S.; Tsutsui, H.; Abdelhamid, C.M.; Adamopoulos, S.; Albert, N.; Anker, S.D.; Atherton, J.; Böhm, M.; Butler, J.; et al. Universal definition and classification of heart failure: A report of the Heart Failure Society of America, Heart Failure Association of the European Society of Cardiology, Japanese Heart Failure Society and Writing Committee of the Universal Definition of Heart Failure: Endorsed by the Canadian Heart Failure Society, Heart Failure Association of India, Cardiac Society of Australia and New Zealand, and Chinese Heart Failure Association. Eur. J. Heart Fail. 2021, 23, 352–380. [Google Scholar] [CrossRef] [PubMed]
- James, S.L.; Abate, D.; Abate, K.H.; Abay, S.M.; Abbafati, C.; Abbasi, N.; Abbastabar, H.; Abd-Allah, F.; Abdela, J.; Abdelalim, A.; et al. Global, regional, and national incidence, prevalence, and years lived with disability for 354 diseases and injuries for 195 countries and territories, 1990–2017: A systematic analysis for the Global Burden of Disease Study 2017. The Lancet 2018, 392, 1789–1858. [Google Scholar] [CrossRef]
- Savarese, G.; Becher, P.M.; Lund, L.H.; Seferovic, P.; Rosano, G.M.C.; Coats, A.J.S. Global burden of heart failure: A comprehensive and updated review of epidemiology. Cardiovasc. Res. 2023, 118, 3272–3287. [Google Scholar] [CrossRef]
- Crispino, S.P.; Segreti, A.; Nafisio, V.; Valente, D.; Crisci, F.; Ferro, A.; Cavallari, I.; Nusca, A.; Ussia, G.P.; Grigioni, F. The Role of SGLT2-Inhibitors Across All Stages of Heart Failure and Mechanisms of Early Clinical Benefit: From Prevention to Advanced Heart Failure. Biomedicines 2025, 13, 608. [Google Scholar] [CrossRef]
- Schwinger, R.H.G. Pathophysiology of heart failure. Cardiovasc. Diagn. Ther. 2021, 11, 263–276. [Google Scholar] [CrossRef]
- McDonagh, T.A.; Metra, M.; Adamo, M.; Gardner, R.S.; Baumbach, A.; Böhm, M.; Burri, H.; Butler, J.; Čelutkienė, J.; Chioncel, O.; et al. 2023 Focused Update of the 2021 ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure. Eur. Heart J. 2023, 44, 3627–3639. [Google Scholar] [CrossRef]
- Armstrong, P.W.; Pieske, B.; Anstrom, K.J.; Ezekowitz, J.; Hernandez, A.F.; Butler, J.; Lam, C.S.P.; Ponikowski, P.; Voors, A.A.; Jia, G.; et al. Vericiguat in Patients with Heart Failure and Reduced Ejection Fraction. N. Engl. J. Med. 2020, 382, 1883–1893. [Google Scholar] [CrossRef] [PubMed]
- Hahn, V.S.; Selvaraj, S.; Sharma, K.; Shah, S.H. Towards Metabolomic-Based Precision Approaches for Classifying and Treating Heart Failure. JACC Basic Transl. Sci. 2024, 9, 1144–1158. [Google Scholar] [CrossRef]
- Crispino, S.P.; Segreti, A.; Nafisio, V.; Ciancio, M.; Cavallari, I.; Giannone, S.; Melfi, R.; Ussia, G.P.; Grigioni, F. Tailoring Pharmacological Treatment in Cardiogenic Shock: A Narrative Review. Discov. Med. 2025, 37, 222. [Google Scholar] [CrossRef]
- Abdelhalim, H.; Berber, A.; Lodi, M.; Jain, R.; Nair, A.; Pappu, A.; Patel, K.; Venkat, V.; Venkatesan, C.; Wable, R.; et al. Artificial Intelligence, Healthcare, Clinical Genomics, and Pharmacogenomics Approaches in Precision Medicine. Front. Genet. 2022, 13, 929736. [Google Scholar] [CrossRef] [PubMed]
- Segreti, A.; Grigioni, F.; Campodonico, J.; Magini, A.; Zaffalon, D.; Sinagra, G.; Sciascio, G.D.; Swenson, E.R.; Agostoni, P. Chemoreceptor hyperactivity in heart failure: Is lactate the culprit? Eur. J. Prev. Cardiol. 2021, 28, e8–e10. [Google Scholar] [CrossRef] [PubMed]
- Vanuzzo, D.; Giampaoli, S. 70 anni dello studio di Framingham. L’epidemiologia cardiovascolare dalle origini al futuro. G. Ital. Cardiol. 2018, 19, 601. [Google Scholar] [CrossRef]
- Duarte, J.D.; Thomas, C.D.; Lee, C.R.; Huddart, R.; Agundez, J.A.G.; Baye, J.F.; Gaedigk, A.; Klein, T.E.; Lanfear, D.E.; Monte, A.A.; et al. Clinical Pharmacogenetics Implementation Consortium Guideline (CPIC) for CYP2D6, ADRB1, ADRB2, ADRA2C, GRK4, and GRK5 Genotypes and Beta-Blocker Therapy. Clin. Pharmacol. Ther. 2024, 116, 939–947. [Google Scholar] [CrossRef]
- Ware, J.S.; Amor-Salamanca, A.; Tayal, U.; Govind, R.; Serrano, I.; Salazar-Mendiguchía, J.; García-Pinilla, J.M.; Pascual-Figal, D.A.; Nuñez, J.; Guzzo-Merello, G.; et al. Genetic Etiology for Alcohol-Induced Cardiac Toxicity. J. Am. Coll. Cardiol. 2018, 71, 2293–2302. [Google Scholar] [CrossRef]
- Goli, R.; Li, J.; Brandimarto, J.; Levine, L.D.; Riis, V.; McAfee, Q.; DePalma, S.; Haghighi, A.; Seidman, J.G.; Seidman, C.E.; et al. Genetic and Phenotypic Landscape of Peripartum Cardiomyopathy. Circulation 2021, 143, 1852–1862. [Google Scholar] [CrossRef] [PubMed]
- Ware, J.S.; Li, J.; Mazaika, E.; Yasso, C.M.; DeSouza, T.; Cappola, T.P.; Tsai, E.J.; Hilfiker-Kleiner, D.; Kamiya, C.A.; Mazzarotto, F.; et al. Shared Genetic Predisposition in Peripartum and Dilated Cardiomyopathies. N. Engl. J. Med. 2016, 374, 233–241. [Google Scholar] [CrossRef]
- Arbelo, E.; Protonotarios, A.; Gimeno, J.R.; Arbustini, E.; Barriales-Villa, R.; Basso, C.; Bezzina, C.R.; Biagini, E.; Blom, N.A.; De Boer, R.A.; et al. 2023 ESC Guidelines for the management of cardiomyopathies. Eur. Heart J. 2023, 44, 3503–3626. [Google Scholar] [CrossRef]
- Ho, J.S.Y.; Jou, E.; Khong, P.-L.; Foo, R.S.Y.; Sia, C.-H. Epigenetics in Heart Failure. Int. J. Mol. Sci. 2024, 25, 12010. [Google Scholar] [CrossRef]
- Huang, S.; Zhou, Y.; Zhang, Y.; Liu, N.; Liu, J.; Liu, L.; Fan, C. Advances in MicroRNA Therapy for Heart Failure: Clinical Trials, Preclinical Studies, and Controversies. Cardiovasc. Drugs Ther. 2025, 39, 221–232. [Google Scholar] [CrossRef]
- Lee, D.S.M.; Cardone, K.M.; Zhang, D.Y.; Tsao, N.L.; Abramowitz, S.; Sharma, P.; DePaolo, J.S.; Conery, M.; Aragam, K.G.; Biddinger, K.; et al. Common-variant and rare-variant genetic architecture of heart failure across the allele-frequency spectrum. Nat. Genet. 2025, 57, 829–838. [Google Scholar] [CrossRef] [PubMed]
- Dorn, G.W. The Genomic Architecture of Sporadic Heart Failure. Circ. Res. 2011, 108, 1270–1283. [Google Scholar] [CrossRef]
- Appunni, S.; Rubens, M.; Ramamoorthy, V.; Saxena, A.; McGranaghan, P.; Khosla, A.; Doke, M.; Chaparro, S.; Jimenez, J. Molecular remodeling in comorbidities associated with heart failure: A current update. Mol. Biol. Rep. 2024, 51, 1092. [Google Scholar] [CrossRef] [PubMed]
- McNally, E.M. Gene Editing for the Heart: Correcting Dystrophin Mutations. Circ. Res. 2017, 121, 896–898. [Google Scholar] [CrossRef]
- Verdonschot, J.A.J.; Heymans, S.R.B. Dilated cardiomyopathy: Second hits knock-down the heart. Eur. Heart J. 2024, 45, 500–501. [Google Scholar] [CrossRef]
- Japp, A.G.; Gulati, A.; Cook, S.A.; Cowie, M.R.; Prasad, S.K. The Diagnosis and Evaluation of Dilated Cardiomyopathy. J. Am. Coll. Cardiol. 2016, 67, 2996–3010. [Google Scholar] [CrossRef]
- Hofmeyer, M.; Haas, G.J.; Jordan, E.; Cao, J.; Kransdorf, E.; Ewald, G.A.; Morris, A.A.; Owens, A.; Lowes, B.; Stoller, D.; et al. Rare Variant Genetics and Dilated Cardiomyopathy Severity: The DCM Precision Medicine Study. Circulation 2023, 148, 872–881. [Google Scholar] [CrossRef]
- Hershberger, R.E.; Givertz, M.M.; Ho, C.Y.; Judge, D.P.; Kantor, P.F.; McBride, K.L.; Morales, A.; Taylor, M.R.G.; Vatta, M.; Ware, S.M. Genetic Evaluation of Cardiomyopathy—A Heart Failure Society of America Practice Guideline. J. Card. Fail. 2018, 24, 281–302. [Google Scholar] [CrossRef] [PubMed]
- Inshutiyimana, S.; Ramadan, N.; Razzak, R.A.; Al Maaz, Z.; Wojtara, M.; Uwishema, O. Pharmacogenomics revolutionizing cardiovascular therapeutics: A narrative review. Health Sci. Rep. 2024, 7, e70139. [Google Scholar] [CrossRef]
- Papadopoulou, E.; Bouzarelou, D.; Tsaousis, G.; Papathanasiou, A.; Vogiatzi, G.; Vlachopoulos, C.; Miliou, A.; Papachristou, P.; Prappa, E.; Servos, G.; et al. Application of next generation sequencing in cardiology: Current and future precision medicine implications. Front. Cardiovasc. Med. 2023, 10, 1202381. [Google Scholar] [CrossRef]
- Rabkin, S.W.; Wong, C.N. Epigenetics in Heart Failure: Role of DNA Methylation in Potential Pathways Leading to Heart Failure with Preserved Ejection Fraction. Biomedicines 2023, 11, 2815. [Google Scholar] [CrossRef]
- Papait, R.; Serio, S.; Condorelli, G. Role of the Epigenome in Heart Failure. Physiol. Rev. 2020, 100, 1753–1777. [Google Scholar] [CrossRef] [PubMed]
- Shi, Y.; Zhang, H.; Huang, S.; Yin, L.; Wang, F.; Luo, P.; Huang, H. Epigenetic regulation in cardiovascular disease: Mechanisms and advances in clinical trials. Signal Transduct. Target. Ther. 2022, 7, 200. [Google Scholar] [CrossRef] [PubMed]
- Luger, K.; Mäder, A.W.; Richmond, R.K.; Sargent, D.F.; Richmond, T.J. Crystal structure of the nucleosome core particle at 2.8 Å resolution. Nature 1997, 389, 251–260. [Google Scholar] [CrossRef]
- Hergeth, S.P.; Schneider, R. The H1 linker histones: Multifunctional proteins beyond the nucleosomal core particle. EMBO Rep. 2015, 16, 1439–1453. [Google Scholar] [CrossRef] [PubMed]
- Ivey, M.J.; Kuwabara, J.T.; Pai, J.T.; Moore, R.E.; Sun, Z.; Tallquist, M.D. Resident fibroblast expansion during cardiac growth and remodeling. J. Mol. Cell. Cardiol. 2018, 114, 161–174. [Google Scholar] [CrossRef]
- Bostick, M.; Kim, J.K.; Estève, P.-O.; Clark, A.; Pradhan, S.; Jacobsen, S.E. UHRF1 Plays a Role in Maintaining DNA Methylation in Mammalian Cells. Science 2007, 317, 1760–1764. [Google Scholar] [CrossRef]
- Williams, S.M.; Golden-Mason, L.; Ferguson, B.S.; Schuetze, K.B.; Cavasin, M.A.; Demos-Davies, K.; Yeager, M.E.; Stenmark, K.R.; McKinsey, T.A. Class I HDACs regulate angiotensin II-dependent cardiac fibrosis via fibroblasts and circulating fibrocytes. J. Mol. Cell. Cardiol. 2014, 67, 112–125. [Google Scholar] [CrossRef]
- Burke, M.A.; Wakimoto, H.; Jiao, Z.; Gorham, J.M.; DePalma, S.R.; Conner, D.A.; Qi, J.; Seidman, J.G.; Bradner, J.E.; Brown, J.D.; et al. Epigenomic Control of Cardiac Fibrosis by Bet Bromodomain Proteins in Dilated Cardiomyopathy. J. Card. Fail. 2018, 24, S2. [Google Scholar] [CrossRef]
- Foo, R.S.-Y.; Anene-Nzelu, C.G.; Rosa-Garrido, M.; Vondriska, T.M. Dissecting Chromatin Architecture for Novel Cardiovascular Disease Targets. Circulation 2019, 140, 446–448. [Google Scholar] [CrossRef]
- Lee, D.P.; Tan, W.L.W.; Anene-Nzelu, C.G.; Lee, C.J.M.; Li, P.Y.; Luu, T.D.A.; Chan, C.X.; Tiang, Z.; Ng, S.L.; Huang, X.; et al. Robust CTCF-Based Chromatin Architecture Underpins Epigenetic Changes in the Heart Failure Stress–Gene Response. Circulation 2019, 139, 1937–1956. [Google Scholar] [CrossRef]
- Rosa-Garrido, M.; Chapski, D.J.; Schmitt, A.D.; Kimball, T.H.; Karbassi, E.; Monte, E.; Balderas, E.; Pellegrini, M.; Shih, T.-T.; Soehalim, E.; et al. High-Resolution Mapping of Chromatin Conformation in Cardiac Myocytes Reveals Structural Remodeling of the Epigenome in Heart Failure. Circulation 2017, 136, 1613–1625. [Google Scholar] [CrossRef]
- Lee, J.; Termglinchan, V.; Diecke, S.; Itzhaki, I.; Lam, C.K.; Garg, P.; Lau, E.; Greenhaw, M.; Seeger, T.; Wu, H.; et al. Activation of PDGF pathway links LMNA mutation to dilated cardiomyopathy. Nature 2019, 572, 335–340. [Google Scholar] [CrossRef]
- Poleshko, A.; Shah, P.P.; Gupta, M.; Babu, A.; Morley, M.P.; Manderfield, L.J.; Ifkovits, J.L.; Calderon, D.; Aghajanian, H.; Sierra-Pagán, J.E.; et al. Genome-Nuclear Lamina Interactions Regulate Cardiac Stem Cell Lineage Restriction. Cell 2017, 171, 573–587.e14. [Google Scholar] [CrossRef] [PubMed]
- Angrisano, T.; Schiattarella, G.G.; Keller, S.; Pironti, G.; Florio, E.; Magliulo, F.; Bottino, R.; Pero, R.; Lembo, F.; Avvedimento, E.V.; et al. Epigenetic Switch at Atp2a2 and Myh7 Gene Promoters in Pressure Overload-Induced Heart Failure. PLoS ONE 2014, 9, e106024. [Google Scholar] [CrossRef] [PubMed]
- Anand, P.; Brown, J.D.; Lin, C.Y.; Qi, J.; Zhang, R.; Artero, P.C.; Alaiti, M.A.; Bullard, J.; Alazem, K.; Margulies, K.B.; et al. BET Bromodomains Mediate Transcriptional Pause Release in Heart Failure. Cell 2013, 154, 569–582. [Google Scholar] [CrossRef] [PubMed]
- Fadul, S.M.; Arshad, A.; Mehmood, R. CRISPR-Based Epigenome Editing: Mechanisms and Applications. Epigenomics 2023, 15, 1137–1155. [Google Scholar] [CrossRef] [PubMed]
- Liu, C.F.; Tang, W.W. Epigenetics in Cardiac Hypertrophy and Heart Failure. JACC Basic Transl. Sci. 2019, 4, 976–993. [Google Scholar] [CrossRef]
- Van Linthout, S.; Stellos, K.; Giacca, M.; Bertero, E.; Cannata, A.; Carrier, L.; Garcia-Pavia, P.; Ghigo, A.; González, A.; Haugaa, K.H.; et al. State of the art and perspectives of gene therapy in heart failure. A scientific statement of the Heart Failure Association of the ESC, the ESC Council on Cardiovascular Genomics and the ESC Working Group on Myocardial & Pericardial Diseases. Eur. J. Heart Fail. 2025, 27, 5–25. [Google Scholar] [CrossRef]
- Talameh, J.A.; McLeod, H.L.; Adams, K.F.; Patterson, J.H. Genetic Tailoring of Pharmacotherapy in Heart Failure: Optimize the Old, While We Wait for Something New. J. Card. Fail. 2012, 18, 338–349. [Google Scholar] [CrossRef]
- McDonough, C.W. Pharmacogenomics in Cardiovascular Diseases. Curr. Protoc. 2021, 1, e189. [Google Scholar] [CrossRef] [PubMed]
- Roden, D.M.; Altman, R.B.; Benowitz, N.L.; Flockhart, D.A.; Giacomini, K.M.; Johnson, J.A.; Krauss, R.M.; McLeod, H.L.; Ratain, M.J.; Relling, M.V.; et al. Pharmacogenomics: Challenges and Opportunities. Ann. Intern. Med. 2006, 145, 749–757. [Google Scholar] [CrossRef] [PubMed]
- Liu, W.-N.; Fu, K.-L.; Gao, H.-Y.; Shang, Y.-Y.; Wang, Z.-H.; Jiang, G.-H.; Zhang, Y.; Zhang, W.; Zhong, M. β1 Adrenergic Receptor Polymorphisms and Heart Failure: A Meta-Analysis on Susceptibility, Response to β-Blocker Therapy and Prognosis. PLoS ONE 2012, 7, e37659. [Google Scholar] [CrossRef]
- Agostini, L.D.C.; Silva, N.N.T.; Belo, V.D.A.; Luizon, M.R.; Lima, A.A.; Da Silva, G.N. Pharmacogenetics of angiotensin-converting enzyme inhibitors (ACEI) and angiotensin II receptor blockers (ARB) in cardiovascular diseases. Eur. J. Pharmacol. 2024, 981, 176907. [Google Scholar] [CrossRef]
- Abou Warda, A.E.; Flohr, R.M.; Sarhan, R.M.; Salem, M.N.; Salem, H.F.; Moharram, A.N.; Alanazi, A.S.; Lteif, C.; Gawronski, B.E.; Dumeny, L.; et al. Genetic polymorphisms in SLC5A2 are associated with clinical outcomes and dapagliflozin response in heart failure patients. Front. Pharmacol. 2025, 16, 1539870. [Google Scholar] [CrossRef]
- Zhang, Y.; Wang, Z.; Wang, Y.; Jin, W.; Zhang, Z.; Jin, L.; Qian, J.; Zheng, L. CYP3A4 and CYP3A5: The crucial roles in clinical drug metabolism and the significant implications of genetic polymorphisms. PeerJ 2024, 12, e18636. [Google Scholar] [CrossRef]
- Dreisbach, A.W.; Lertora, J.J. The effect of chronic renal failure on drug metabolism and transport. Expert Opin. Drug Metab. Toxicol. 2008, 4, 1065–1074. [Google Scholar] [CrossRef] [PubMed]
- Sokol, S.I.; Cheng, A.; Frishman, W.H.; Kaza, C.S. Cardiovascular Drug Therapy in Patients with Hepatic Diseases and Patients with Congestive Heart Failure. J. Clin. Pharmacol. 2000, 40, 11–30. [Google Scholar] [CrossRef]
- Zanni, S.; Del Prete, J.; Capogrossi, A.; Papapietro, G.; Del Cimmuto, A.; Gazzanelli, S.; Caronna, A.; Protano, C. Influence of cigarette smoking on drugs’ metabolism and effects: A systematic review. Eur. J. Clin. Pharmacol. 2025, 81, 667–695. [Google Scholar] [CrossRef]
- Dorn, G.W.; Liggett, S.B. Mechanisms of Pharmacogenomic Effects of Genetic Variation within the Cardiac Adrenergic Network in Heart Failure. Mol. Pharmacol. 2009, 76, 466–480. [Google Scholar] [CrossRef]
- Palaparthi, E.C.; Aditya Reddy, P.; Padala, T.; Sri Venkata Mahi Karthika, K.; Paka, R.; Ami Reddy, V.; Ayub, S.; Khyati Sri, V.; Rebanth Nandan, V.; Patnaik, P.K.; et al. The Rise of Personalized Medicine in Heart Failure Management: A Narrative Review. Cureus 2025, 17, e83731. [Google Scholar] [CrossRef]
- Al-Mahayri, Z.N.; Khasawneh, L.Q.; Alqasrawi, M.N.; Altoum, S.M.; Jamil, G.; Badawi, S.; Hamza, D.; George, L.; AlZaabi, A.; Ouda, H.; et al. Pharmacogenomics implementation in cardiovascular disease in a highly diverse population: Initial findings and lessons learned from a pilot study in United Arab Emirates. Hum. Genom. 2022, 16, 42. [Google Scholar] [CrossRef] [PubMed]
- Li, M.-Y.; Peng, L.-M.; Chen, X.-P. Pharmacogenomics in drug-induced cardiotoxicity: Current status and the future. Front. Cardiovasc. Med. 2022, 9, 966261. [Google Scholar] [CrossRef]
- Ingelman-Sundberg, M.; Pirmohamed, M. Precision medicine in cardiovascular therapeutics: Evaluating the role of pharmacogenetic analysis prior to drug treatment. J. Intern. Med. 2024, 295, 583–598. [Google Scholar] [CrossRef] [PubMed]
- Palmer, B.R.; Pilbrow, A.P.; Yandle, T.G.; Frampton, C.M.; Richards, A.M.; Nicholls, M.G.; Cameron, V.A. Angiotensin-converting enzyme gene polymorphism interacts with left ventricular ejection fraction and brain natriuretic peptide levels to predict mortality after myocardial infarction. J. Am. Coll. Cardiol. 2003, 41, 729–736. [Google Scholar] [CrossRef] [PubMed]
- Huang, H.; Liu, J.; Lei, M.; Yang, Z.; Bao, K.; Li, Q.; Lai, W.; Wang, B.; He, Y.; Chen, S.; et al. A Universal New Definition of Heart Failure With Improved Ejection Fraction for Patients With Coronary Artery Disease. Front. Physiol. 2021, 12, 770650. [Google Scholar] [CrossRef]
- Wu, C.-K.; Luo, J.-L.; Tsai, C.-T.; Huang, Y.-T.; Cheng, C.-L.; Lee, J.-K.; Lin, L.-Y.; Lin, J.-W.; Hwang, J.-J.; Chiang, F.-T. Demonstrating the pharmacogenetic effects of angiotensin-converting enzyme inhibitors on long-term prognosis of diastolic heart failure. Pharmacogenom. J. 2010, 10, 46–53. [Google Scholar] [CrossRef]
- McNamara, D.M.; Holubkov, R.; Postava, L.; Janosko, K.; MacGowan, G.A.; Mathier, M.; Murali, S.; Feldman, A.M.; London, B. Pharmacogenetic interactions between angiotensin-converting enzyme inhibitor therapy and the angiotensin-converting enzyme deletion polymorphism in patients with congestive heart failure. J. Am. Coll. Cardiol. 2004, 44, 2019–2026. [Google Scholar] [CrossRef]
- Roden, D.M.; Wilke, R.A.; Kroemer, H.K.; Stein, C.M. Pharmacogenomics: The Genetics of Variable Drug Responses. Circulation 2011, 123, 1661–1670. [Google Scholar] [CrossRef]
- Skrzynia, C.; Berg, J.; Willis, M.; Jensen, B. Genetics and Heart Failure: A Concise Guide for the Clinician. Curr. Cardiol. Rev. 2014, 11, 10–17. [Google Scholar] [CrossRef]
- Bai, Y.; Wang, L.; Hu, S.; Wei, Y. Association of angiotensin-converting enzyme I/D polymorphism with heart failure: A meta-analysis. Mol. Cell. Biochem. 2012, 361, 297–304. [Google Scholar] [CrossRef]
- Denus, S.D.; Zakrzewski-Jakubiak, M.; Dubé, M.-P.; Bélanger, F.; Lepage, S.; Leblanc, M.-H.; Gossard, D.; Ducharme, A.; Racine, N.; Whittom, L.; et al. Effects of AGTR1 A1166C Gene Polymorphism in Patients with Heart Failure Treated with Candesartan. Ann. Pharmacother. 2008, 42, 925–932. [Google Scholar] [CrossRef] [PubMed]
- Dubé, M.; Chazara, O.; Lemaçon, A.; Asselin, G.; Provost, S.; Barhdadi, A.; Lemieux Perreault, L.; Mongrain, I.; Wang, Q.; Carss, K.; et al. Pharmacogenomic study of heart failure and candesartan response from the CHARM programme. ESC Heart Fail. 2022, 9, 2997–3008. [Google Scholar] [CrossRef]
- Lee, C.J.; Choi, B.; Pak, H.; Park, J.M.; Lee, J.H.; Lee, S.-H. Genetic Variants Associated with Adverse Events after Angiotensin-Converting Enzyme Inhibitor Use: Replication after GWAS-Based Discovery. Yonsei Med. J. 2022, 63, 342. [Google Scholar] [CrossRef] [PubMed]
- Ghouse, J.; Ahlberg, G.; Andreasen, L.; Banasik, K.; Brunak, S.; Schwinn, M.; Larsen, I.H.; Petersen, O.; Sørensen, E.; Ullum, H.; et al. Association of Variants Near the Bradykinin Receptor B2 Gene With Angioedema in Patients Taking ACE Inhibitors. J. Am. Coll. Cardiol. 2021, 78, 696–709. [Google Scholar] [CrossRef]
- Shi, J.; Wang, X.; Nguyen, J.; Wu, A.H.; Bleske, B.E.; Zhu, H.-J. Sacubitril Is Selectively Activated by Carboxylesterase 1 (CES1) in the Liver and the Activation Is Affected by CES1 Genetic Variation. Drug Metab. Dispos. 2016, 44, 554–559. [Google Scholar] [CrossRef] [PubMed]
- Luo, H.-Y.; Gao, L.-C.; Long, H.-Z.; Zhou, Z.-W.; Xu, S.-G.; Li, F.-J.; Li, H.-L.; Cheng, Y.; Li, C.-X.; Peng, X.-Y.; et al. Association between the NEP rs701109 polymorphism and the clinical efficacy and safety of sacubitril/valsartan in Chinese patients with heart failure. Eur. J. Clin. Pharmacol. 2023, 79, 663–670. [Google Scholar] [CrossRef]
- Krittanawong, C.; Kitai, T. Pharmacogenomics of angiotensin receptor/neprilysin inhibitor and its long-term side effects. Cardiovasc. Ther. 2017, 35, e12272. [Google Scholar] [CrossRef]
- Song, G.; Chung, J.-E.; Yee, J.; Lee, K.-E.; Park, K.; Gwak, H.-S. Effects of SLCO1B1 and SLCO1B3 Genetic Polymorphisms on Valsartan Pharmacokinetics in Healthy Korean Volunteers. J. Pers. Med. 2021, 11, 862. [Google Scholar] [CrossRef]
- Gullestad, L.; Wikstrand, J.; Deedwania, P.; Hjalmarson, Å.; Egstrup, K.; Elkayam, U.; Gottlieb, S.; Rashkow, A.; Wedel, H.; Bermann, G.; et al. What resting heart rate should one aim for when treating patients with heart failure with a beta-blocker? J. Am. Coll. Cardiol. 2005, 45, 252–259. [Google Scholar] [CrossRef]
- Lupón, J.; Díez-López, C.; De Antonio, M.; Domingo, M.; Zamora, E.; Moliner, P.; González, B.; Santesmases, J.; Troya, M.I.; Bayés-Genís, A. Recovered heart failure with reduced ejection fraction and outcomes: A prospective study. Eur. J. Heart Fail. 2017, 19, 1615–1623. [Google Scholar] [CrossRef] [PubMed]
- Effect of metoprolol CR/XL in chronic heart failure: Metoprolol CR/XL Randomised Intervention Trial in-Congestive Heart Failure (MERIT-HF). Lancet 1999, 353, 2001–2007. [CrossRef]
- Vandell, A.G.; Lobmeyer, M.T.; Gawronski, B.E.; Langaee, T.Y.; Gong, Y.; Gums, J.G.; Beitelshees, A.L.; Turner, S.T.; Chapman, A.B.; Cooper-DeHoff, R.M.; et al. G protein receptor kinase 4 polymorphisms: β-Blocker Pharmacogenetics and treatment-related outcomes in Hypertension. Hypertension 2012, 60, 957–964. [Google Scholar] [CrossRef] [PubMed]
- Oni-Orisan, A.; Lanfear, D.E. Pharmacogenomics in heart failure: Where are we now and how can we reach clinical application? Cardiol. Rev. 2014, 22, 193–198. [Google Scholar] [CrossRef] [PubMed]
- Parikh, K.S.; Fiuzat, M.; Davis, G.; Neely, M.; Blain-Nelson, P.; Whellan, D.J.; Abraham, W.T.; Adams, K.F.; Felker, G.M.; Liggett, S.B.; et al. Dose Response of β-Blockers in Adrenergic Receptor Polymorphism Genotypes. Circ. Genom. Precis. Med. 2018, 11, e002210. [Google Scholar] [CrossRef]
- Guerra, L.A.; Lteif, C.; Arwood, M.J.; McDonough, C.W.; Dumeny, L.; Desai, A.A.; Cavallari, L.H.; Duarte, J.D. Genetic polymorphisms in ADRB2 and ADRB1 are associated with differential survival in heart failure patients taking β-blockers. Pharmacogenom. J. 2022, 22, 62–68. [Google Scholar] [CrossRef]
- Liggett, S.B.; Cresci, S.; Kelly, R.J.; Syed, F.M.; Matkovich, S.J.; Hahn, H.S.; Diwan, A.; Martini, J.S.; Sparks, L.; Parekh, R.R.; et al. A GRK5 polymorphism that inhibits β-adrenergic receptor signaling is protective in heart failure. Nat. Med. 2008, 14, 510–517. [Google Scholar] [CrossRef]
- Luzum, J.A.; English, J.D.; Ahmad, U.S.; Sun, J.W.; Canan, B.D.; Sadee, W.; Kitzmiller, J.P.; Binkley, P.F. Association of Genetic Polymorphisms in the Beta-1 Adrenergic Receptor with Recovery of Left Ventricular Ejection Fraction in Patients with Heart Failure. J Cardiovasc. Transl. Res. 2019, 12, 280–289. [Google Scholar] [CrossRef]
- Luzum, J.A.; Littleton, S.D.R.; Lopez-Medina, A.I.; Liu, B.; She, R.; Lanfear, D.E. The Beta-Blocker Pharmacogenetic Puzzle: More Pieces of Evidence for Pharmacodynamic Candidate Variants. Clin. Transl. Sci. 2025, 18, e70239. [Google Scholar] [CrossRef]
- Linskey, D.W.; Linskey, D.C.; McLeod, H.L.; Luzum, J.A. The Need to Shift Pharmacogenetic Research from Candidate Gene to Genome-Wide Association Studies. Pharmacogenomics 2021, 22, 1143–1150. [Google Scholar] [CrossRef]
- Lanfear, D.E.; Luzum, J.A.; She, R.; Gui, H.; Donahue, M.P.; O’Connor, C.M.; Adams, K.F.; Sanders-van Wijk, S.; Zeld, N.; Maeder, M.T.; et al. Polygenic Score for β-Blocker Survival Benefit in European Ancestry Patients With Reduced Ejection Fraction Heart Failure. Circ. Heart Fail. 2020, 13, e007012. [Google Scholar] [CrossRef] [PubMed]
- Sarhan, N.M.; Shahin, M.H.; El Rouby, N.M.; El-Wakeel, L.M.; Solayman, M.H.; Langaee, T.; Khorshid, H.; Schaalan, M.F.; Sabri, N.A.; Cavallari, L.H. Effect of Genetic and Nongenetic Factors on the Clinical Response to Mineralocorticoid Receptor Antagonist Therapy in Egyptians with Heart Failure. Clin. Transl. Sci. 2020, 13, 195–203. [Google Scholar] [CrossRef]
- Dumeny, L.; Vardeny, O.; Edelmann, F.; Pieske, B.; Duarte, J.D.; Cavallari, L.H. NR3C2 genotype is associated with response to spironolactone in diastolic heart failure patients from the Aldo-DHF trial. Pharmacotherapy 2021, 41, 978–987. [Google Scholar] [CrossRef]
- Pollard, C.M.; Suster, M.S.; Cora, N.; Carbone, A.M.; Lymperopoulos, A. GRK5 is an essential co-repressor of the cardiac mineralocorticoid receptor and is selectively induced by finerenone. World J. Cardiol. 2022, 14, 220–230. [Google Scholar] [CrossRef] [PubMed]
- Katzmann, J.L.; Mason, A.M.; März, W.; Kleber, M.E.; Niessner, A.; Blüher, M.; Speer, T.; Laufs, U. Genetic Variation in Sodium-glucose Cotransporter 2 and Heart Failure. Clin. Pharmacol. Ther. 2021, 110, 149–158. [Google Scholar] [CrossRef] [PubMed]
- Klen, J.; Dolžan, V. Treatment Response to SGLT2 Inhibitors: From Clinical Characteristics to Genetic Variations. Int. J. Mol. Sci. 2021, 22, 9800. [Google Scholar] [CrossRef]
- Marshall, J.; Liang, Y.; Sahasrabudhe, V.; Tensfeldt, T.; Fediuk, D.J.; Zhou, S.; Krishna, R.; Dawra, V.K.; Wood, L.S.; Sweeney, K. Meta-Analysis of Noncompartmental Pharmacokinetic Parameters of Ertugliflozin to Evaluate Dose Proportionality and UGT1A9 Polymorphism Effect on Exposure. J. Clin. Pharmacol. 2021, 61, 1220–1231. [Google Scholar] [CrossRef]
- Xu, B.; Li, S.; Kang, B.; Fan, S.; Chen, C.; Li, W.; Chen, J.; He, Z.; Tang, F.; Zhou, J. Role of SLC5A2 polymorphisms and effects of genetic polymorphism on sodium glucose cotransporter 2 inhibitors response. Mol. Biol. Rep. 2023, 50, 9637–9647. [Google Scholar] [CrossRef]
- Figueiral, M.; Paldino, A.; Fazzini, L.; Pereira, N.L. Genetic Biomarkers in Heart Failure: From Gene Panels to Polygenic Risk Scores. Curr. Heart Fail. Rep. 2024, 21, 554–569. [Google Scholar] [CrossRef]
- Friedmann, T.; Roblin, R. Gene Therapy for Human Genetic Disease?: Proposals for genetic manipulation in humans raise difficult scientific and ethical problems. Science 1972, 175, 949–955. [Google Scholar] [CrossRef]
- Shah, A.M.; Giacca, M. Small non-coding RNA therapeutics for cardiovascular disease. Eur. Heart J. 2022, 43, 4548–4561. [Google Scholar] [CrossRef] [PubMed]
- Marniemi, J.; Parkki, M.G. Radiochemical assay of glutathione S-epoxide transferase and its enhancement by phenobarbital in rat liver in vivo. Biochem. Pharmacol. 1975, 24, 1569–1572. [Google Scholar] [CrossRef] [PubMed]
- Hulot, J.; Salem, J.; Redheuil, A.; Collet, J.; Varnous, S.; Jourdain, P.; Logeart, D.; Gandjbakhch, E.; Bernard, C.; Hatem, S.N.; et al. Effect of intracoronary administration of AAV1/SERCA2a on ventricular remodelling in patients with advanced systolic heart failure: Results from the AGENT-HF randomized phase 2 trial. Eur. J. Heart Fail. 2017, 19, 1534–1541. [Google Scholar] [CrossRef]
- Jaski, B.E.; Jessup, M.L.; Mancini, D.M.; Cappola, T.P.; Pauly, D.F.; Greenberg, B.; Borow, K.; Dittrich, H.; Zsebo, K.M.; Hajjar, R.J. Calcium Upregulation by Percutaneous Administration of Gene Therapy in Cardiac Disease (CUPID Trial), a First-in-Human Phase 1/2 Clinical Trial. J. Card. Fail. 2009, 15, 171–181. [Google Scholar] [CrossRef]
- Van Rooij, E.; Olson, E.N. MicroRNA therapeutics for cardiovascular disease: Opportunities and obstacles. Nat. Rev. Drug Discov. 2012, 11, 860–872. [Google Scholar] [CrossRef] [PubMed]
- Solomon, S.D.; Adams, D.; Kristen, A.; Grogan, M.; González-Duarte, A.; Maurer, M.S.; Merlini, G.; Damy, T.; Slama, M.S.; Brannagan, T.H.; et al. Effects of Patisiran, an RNA Interference Therapeutic, on Cardiac Parameters in Patients With Hereditary Transthyretin-Mediated Amyloidosis: Analysis of the APOLLO Study. Circulation 2019, 139, 431–443. [Google Scholar] [CrossRef]
- Adams, D.; Gonzalez-Duarte, A.; O’Riordan, W.D.; Yang, C.-C.; Ueda, M.; Kristen, A.V.; Tournev, I.; Schmidt, H.H.; Coelho, T.; Berk, J.L.; et al. Patisiran, an RNAi Therapeutic, for Hereditary Transthyretin Amyloidosis. N. Engl. J. Med. 2018, 379, 11–21. [Google Scholar] [CrossRef]
- Adams, D.; Tournev, I.L.; Taylor, M.S.; Coelho, T.; Planté-Bordeneuve, V.; Berk, J.L.; González-Duarte, A.; Gillmore, J.D.; Low, S.-C.; Sekijima, Y.; et al. Efficacy and safety of vutrisiran for patients with hereditary transthyretin-mediated amyloidosis with polyneuropathy: A randomized clinical trial. Amyloid 2023, 30, 18–26. [Google Scholar] [CrossRef]
- Garcia-Pavia, P.; Kim, Y.; Restrepo-Cordoba, M.A.; Lunde, I.G.; Wakimoto, H.; Smith, A.M.; Toepfer, C.N.; Getz, K.; Gorham, J.; Patel, P.; et al. Genetic Variants Associated With Cancer Therapy–Induced Cardiomyopathy. Circulation 2019, 140, 31–41. [Google Scholar] [CrossRef]
- Benson, M.D.; Waddington-Cruz, M.; Berk, J.L.; Polydefkis, M.; Dyck, P.J.; Wang, A.K.; Planté-Bordeneuve, V.; Barroso, F.A.; Merlini, G.; Obici, L.; et al. Inotersen Treatment for Patients with Hereditary Transthyretin Amyloidosis. N. Engl. J. Med. 2018, 379, 22–31. [Google Scholar] [CrossRef]
- Täubel, J.; Hauke, W.; Rump, S.; Viereck, J.; Batkai, S.; Poetzsch, J.; Rode, L.; Weigt, H.; Genschel, C.; Lorch, U.; et al. Novel antisense therapy targeting microRNA-132 in patients with heart failure: Results of a first-in-human Phase 1b randomized, double-blind, placebo-controlled study. Eur. Heart J. 2021, 42, 178–188. [Google Scholar] [CrossRef] [PubMed]
- Lesizza, P.; Prosdocimo, G.; Martinelli, V.; Sinagra, G.; Zacchigna, S.; Giacca, M. Single-Dose Intracardiac Injection of Pro-Regenerative MicroRNAs Improves Cardiac Function After Myocardial Infarction. Circ. Res. 2017, 120, 1298–1304. [Google Scholar] [CrossRef] [PubMed]
- Gao, F.; Kataoka, M.; Liu, N.; Liang, T.; Huang, Z.-P.; Gu, F.; Ding, J.; Liu, J.; Zhang, F.; Ma, Q.; et al. Therapeutic role of miR-19a/19b in cardiac regeneration and protection from myocardial infarction. Nat. Commun. 2019, 10, 1802. [Google Scholar] [CrossRef]
- Greer-Short, A.; Greenwood, A.; Leon, E.C.; Qureshi, T.N.; Von Kraut, K.; Wong, J.; Tsui, J.H.; Reid, C.A.; Cheng, Z.; Easter, E.; et al. AAV9-mediated MYBPC3 gene therapy with optimized expression cassette enhances cardiac function and survival in MYBPC3 cardiomyopathy models. Nat. Commun. 2025, 16, 2196. [Google Scholar] [CrossRef] [PubMed]
- Rossano, J.; Lin, K.; Epstein, S.; Battiprolu, P.; Ricks, D.; Syed, A.A.; Waldron, A.; Schwartz, J.; Greenberg, B. Safety Profile Of The First Pediatric Cardiomyopathy Gene Therapy Trial: RP-A501 (AAV9:LAMP2B) For Danon Disease. J. Card. Fail. 2023, 29, 554. [Google Scholar] [CrossRef]
- Rode, L.; Bär, C.; Groß, S.; Rossi, A.; Meumann, N.; Viereck, J.; Abbas, N.; Xiao, K.; Riedel, I.; Gietz, A.; et al. AAV capsid engineering identified two novel variants with improved in vivo tropism for cardiomyocytes. Mol. Ther. 2022, 30, 3601–3618. [Google Scholar] [CrossRef]
- Mendell, J.R.; Al-Zaidy, S.A.; Rodino-Klapac, L.R.; Goodspeed, K.; Gray, S.J.; Kay, C.N.; Boye, S.L.; Boye, S.E.; George, L.A.; Salabarria, S.; et al. Current Clinical Applications of In Vivo Gene Therapy with AAVs. Mol. Ther. 2021, 29, 464–488. [Google Scholar] [CrossRef]
- Carlsson, L.; Clarke, J.C.; Yen, C.; Gregoire, F.; Albery, T.; Billger, M.; Egnell, A.-C.; Gan, L.-M.; Jennbacken, K.; Johansson, E.; et al. Biocompatible, Purified VEGF-A mRNA Improves Cardiac Function after Intracardiac Injection 1 Week Post-myocardial Infarction in Swine. Mol. Ther.—Methods Clin. Dev. 2018, 9, 330–346. [Google Scholar] [CrossRef]
- Magadum, A.; Singh, N.; Kurian, A.A.; Sharkar, M.T.K.; Chepurko, E.; Zangi, L. Ablation of a Single N-Glycosylation Site in Human FSTL 1 Induces Cardiomyocyte Proliferation and Cardiac Regeneration. Mol. Ther.—Nucleic Acids 2018, 13, 133–143. [Google Scholar] [CrossRef]
- Anttila, V.; Saraste, A.; Knuuti, J.; Hedman, M.; Jaakkola, P.; Laugwitz, K.-L.; Krane, M.; Jeppsson, A.; Sillanmäki, S.; Rosenmeier, J.; et al. Direct intramyocardial injection of VEGF mRNA in patients undergoing coronary artery bypass grafting. Mol. Ther. 2023, 31, 866–874. [Google Scholar] [CrossRef]
- Rurik, J.G.; Tombácz, I.; Yadegari, A.; Méndez Fernández, P.O.; Shewale, S.V.; Li, L.; Kimura, T.; Soliman, O.Y.; Papp, T.E.; Tam, Y.K.; et al. CAR T cells produced in vivo to treat cardiac injury. Science 2022, 375, 91–96. [Google Scholar] [CrossRef] [PubMed]
- Liu, N.; Olson, E.N. CRISPR Modeling and Correction of Cardiovascular Disease. Circ. Res. 2022, 130, 1827–1850. [Google Scholar] [CrossRef]
- Rees, H.A.; Liu, D.R. Base editing: Precision chemistry on the genome and transcriptome of living cells. Nat. Rev. Genet. 2018, 19, 770–788. [Google Scholar] [CrossRef]
- Komor, A.C.; Kim, Y.B.; Packer, M.S.; Zuris, J.A.; Liu, D.R. Programmable editing of a target base in genomic DNA without double-stranded DNA cleavage. Nature 2016, 533, 420–424. [Google Scholar] [CrossRef] [PubMed]
- Hoorntje, E.T.; Burns, C.; Marsili, L.; Corden, B.; Parikh, V.N.; Te Meerman, G.J.; Gray, B.; Adiyaman, A.; Bagnall, R.D.; Barge-Schaapveld, D.Q.C.M.; et al. Variant Location Is a Novel Risk Factor for Individuals With Arrhythmogenic Cardiomyopathy Due to a Desmoplakin (DSP) Truncating Variant. Circ. Genomic Precis. Med. 2023, 16, e003672. [Google Scholar] [CrossRef] [PubMed]
- Fontana, M.; Berk, J.L.; Gillmore, J.D.; Witteles, R.M.; Grogan, M.; Drachman, B.; Damy, T.; Garcia-Pavia, P.; Taubel, J.; Solomon, S.D.; et al. Vutrisiran in Patients with Transthyretin Amyloidosis with Cardiomyopathy. N. Engl. J. Med. 2025, 392, 33–44. [Google Scholar] [CrossRef]
- Eulalio, A.; Mano, M.; Ferro, M.D.; Zentilin, L.; Sinagra, G.; Zacchigna, S.; Giacca, M. Functional screening identifies miRNAs inducing cardiac regeneration. Nature 2012, 492, 376–381. [Google Scholar] [CrossRef]
- Helms, A.S.; Thompson, A.D.; Day, S.M. Translation of New and Emerging Therapies for Genetic Cardiomyopathies. JACC Basic Transl. Sci. 2022, 7, 70–83. [Google Scholar] [CrossRef]
- Wu, I.; Zeng, A.; Greer-Short, A.; Aycinena, J.A.; Tefera, A.E.; Shenwai, R.; Farshidfar, F.; Van Pell, M.; Xu, E.; Reid, C.; et al. AAV9:PKP2 improves heart function and survival in a Pkp2-deficient mouse model of arrhythmogenic right ventricular cardiomyopathy. Commun. Med. 2024, 4, 38. [Google Scholar] [CrossRef]
- Lebek, S.; Caravia, X.M.; Straub, L.G.; Alzhanov, D.; Tan, W.; Li, H.; McAnally, J.R.; Chen, K.; Xu, L.; Scherer, P.E.; et al. CRISPR-Cas9 base editing of pathogenic CaMKIIδ improves cardiac function in a humanized mouse model. J. Clin. Investig. 2024, 134, e175164. [Google Scholar] [CrossRef]
- Gillmore, J.D.; Gane, E.; Taubel, J.; Kao, J.; Fontana, M.; Maitland, M.L.; Seitzer, J.; O’Connell, D.; Walsh, K.R.; Wood, K.; et al. CRISPR-Cas9 In Vivo Gene Editing for Transthyretin Amyloidosis. N. Engl. J. Med. 2021, 385, 493–502. [Google Scholar] [CrossRef]
- Greenberg, B.; Butler, J.; Felker, G.M.; Ponikowski, P.; Voors, A.A.; Desai, A.S.; Barnard, D.; Bouchard, A.; Jaski, B.; Lyon, A.R.; et al. Calcium upregulation by percutaneous administration of gene therapy in patients with cardiac disease (CUPID 2): A randomised, multinational, double-blind, placebo-controlled, phase 2b trial. Lancet 2016, 387, 1178–1186. [Google Scholar] [CrossRef]
- Mendell, J.R.; Sahenk, Z.; Lehman, K.; Nease, C.; Lowes, L.P.; Miller, N.F.; Iammarino, M.A.; Alfano, L.N.; Nicholl, A.; Al-Zaidy, S.; et al. Assessment of Systemic Delivery of rAAVrh74.MHCK7.micro-dystrophin in Children With Duchenne Muscular Dystrophy: A Nonrandomized Controlled Trial. JAMA Neurol. 2020, 77, 1122. [Google Scholar] [CrossRef] [PubMed]
- Wang, D.; Tai, P.W.L.; Gao, G. Adeno-associated virus vector as a platform for gene therapy delivery. Nat. Rev. Drug Discov. 2019, 18, 358–378. [Google Scholar] [CrossRef]
- Konkalmatt, P.R.; Beyers, R.J.; O’Connor, D.M.; Xu, Y.; Seaman, M.E.; French, B.A. Cardiac-Selective Expression of Extracellular Superoxide Dismutase After Systemic Injection of Adeno-Associated Virus 9 Protects the Heart Against Post–Myocardial Infarction Left Ventricular Remodeling. Circ. Cardiovasc. Imaging 2013, 6, 478–486. [Google Scholar] [CrossRef] [PubMed]
- Jessup, M.; Greenberg, B.; Mancini, D.; Cappola, T.; Pauly, D.F.; Jaski, B.; Yaroshinsky, A.; Zsebo, K.M.; Dittrich, H.; Hajjar, R.J. Calcium Upregulation by Percutaneous Administration of Gene Therapy in Cardiac Disease (CUPID): A Phase 2 Trial of Intracoronary Gene Therapy of Sarcoplasmic Reticulum Ca2+-ATPase in Patients With Advanced Heart Failure. Circulation 2011, 124, 304–313. [Google Scholar] [CrossRef]
- Sorella, A.; Galanti, K.; Iezzi, L.; Gallina, S.; Mohammed, S.F.; Sekhri, N.; Akhtar, M.M.; Prasad, S.K.; Chahal, C.A.A.; Ricci, F. Diagnosis and management of dilated cardiomyopathy: A systematic review of clinical practice guidelines and recommendations. Eur. Heart J.—Qual. Care Clin. Outcomes 2025, 11, 206–222. [Google Scholar] [CrossRef] [PubMed]
- Sinagra, G.; Elliott, P.M.; Merlo, M. Dilated cardiomyopathy: So many cardiomyopathies! Eur. Heart J. 2019, 41, 3784–3786. [Google Scholar] [CrossRef]
- Ahmed, M.U.; Hollowell, M.; Khaleel, I.; Akram, M.; Banno, J.; Clay, J.; Hadley, R.; Kidambi, P.; Grysko, B.; Jani, M.; et al. Ambiguous Clinical Presentations and Imaging Findings in Genetic Dilated Cardiomyopathy. JACC Case Rep. 2024, 29, 102821. [Google Scholar] [CrossRef]
- McNally, E.M.; Mestroni, L. Dilated Cardiomyopathy: Genetic Determinants and Mechanisms. Circ. Res. 2017, 121, 731–748. [Google Scholar] [CrossRef]
- Fatkin, D.; Huttner, I.G.; Kovacic, J.C.; Seidman, J.; Seidman, C. Precision Medicine in the Management of Dilated Cardiomyopathy. J. Am. Coll. Cardiol. 2019, 74, 2921–2938. [Google Scholar] [CrossRef]
- Antonopoulos, A.S.; Xintarakou, A.; Protonotarios, A.; Lazaros, G.; Miliou, A.; Tsioufis, K.; Vlachopoulos, C. Imagenetics for Precision Medicine in Dilated Cardiomyopathy. Circ. Genom. Precis. Med. 2024, 17, e004301. [Google Scholar] [CrossRef]
- Nishiyama, T.; Zhang, Y.; Cui, M.; Li, H.; Sanchez-Ortiz, E.; McAnally, J.R.; Tan, W.; Kim, J.; Chen, K.; Xu, L.; et al. Precise genomic editing of pathogenic mutations in RBM20 rescues dilated cardiomyopathy. Sci. Transl. Med. 2022, 14, eade1633. [Google Scholar] [CrossRef] [PubMed]
- Nishiyama, T. Prime Editing Corrects Multiple Mutations in the RSRSP Region of the RBM20 Gene Using a Single Prime Editing Guide RNA. JMA J. 2025, 8. [Google Scholar] [CrossRef]
- Wang, Z.; Wu, J.; Lv, Z.; Liang, P.; Li, Q.; Li, Y.; Guo, Y. LMNA-related cardiomyopathy: From molecular pathology to cardiac gene therapy. J. Adv. Res. 2025; in press. [Google Scholar] [CrossRef]
- Teerlink, J.R.; Diaz, R.; Felker, G.M.; McMurray, J.J.V.; Metra, M.; Solomon, S.D.; Adams, K.F.; Anand, I.; Arias-Mendoza, A.; Biering-Sørensen, T.; et al. Cardiac Myosin Activation with Omecamtiv Mecarbil in Systolic Heart Failure. N. Engl. J. Med. 2021, 384, 105–116. [Google Scholar] [CrossRef]
- Miao, M.; Yang, Y.; Dai, H. Current research status and future prospects of NLRP3 inflammasome in cardiovascular diseases: A bibliometric and visualization analysis. Front. Cardiovasc. Med. 2024, 11, 1407721. [Google Scholar] [CrossRef]
- Olivotto, I.; Oreziak, A.; Barriales-Villa, R.; Abraham, T.P.; Masri, A.; Garcia-Pavia, P.; Saberi, S.; Lakdawala, N.K.; Wheeler, M.T.; Owens, A.; et al. Mavacamten for treatment of symptomatic obstructive hypertrophic cardiomyopathy (EXPLORER-HCM): A randomised, double-blind, placebo-controlled, phase 3 trial. Lancet 2020, 396, 759–769. [Google Scholar] [CrossRef] [PubMed]
- Maron, B.J.; Desai, M.Y.; Nishimura, R.A.; Spirito, P.; Rakowski, H.; Towbin, J.A.; Rowin, E.J.; Maron, M.S.; Sherrid, M.V. Diagnosis and Evaluation of Hypertrophic Cardiomyopathy. J. Am. Coll. Cardiol. 2022, 79, 372–389. [Google Scholar] [CrossRef]
- Chimenti, C.; Iacovoni, A.; Montalto, A.; Emdin, M.; Olivotto, I.; Basso, C.; Bottillo, I.; Dellegrottaglie, S.; Dimarco, M.; Gentile, P.; et al. Position paper ANMCO: Cardiomiopatia ipertrofica: Dalla diagnosi al trattamento. G. Ital. Cardiol. 2025, 26, 356–377. [Google Scholar] [CrossRef]
- Glazier, A.A.; Thompson, A.; Day, S.M. Allelic imbalance and haploinsufficiency in MYBPC3-linked hypertrophic cardiomyopathy. Pflüg. Arch. Eur. J. Physiol. 2019, 471, 781–793. [Google Scholar] [CrossRef]
- Haroldson, J.; Harrison, W.; Lombardi, L.; Argast, G.; Duclos, Z.; Nelson, S.; Sethi, S.; Tomlinson, L.; Paterson, N.; Pollman, M.; et al. MyPeak-1: A Phase 1b Study to Evaluate Safety and Efficacy of TN-201, an Adeno-Associated Virus Serotype 9 (AAV9) Investigational Gene Therapy, in Adults with MYBPC3-Associated Hypertrophic Cardiomyopathy (HCM). J. Card. Fail. 2024, 30, S5. [Google Scholar] [CrossRef]
- Mearini, G.; Stimpel, D.; Geertz, B.; Weinberger, F.; Krämer, E.; Schlossarek, S.; Mourot-Filiatre, J.; Stoehr, A.; Dutsch, A.; Wijnker, P.J.M.; et al. Mybpc3 gene therapy for neonatal cardiomyopathy enables long-term disease prevention in mice. Nat. Commun. 2014, 5, 5515. [Google Scholar] [CrossRef] [PubMed]
- Jiang, J.; Wakimoto, H.; Seidman, J.G.; Seidman, C.E. Allele-Specific Silencing of Mutant Myh6 Transcripts in Mice Suppresses Hypertrophic Cardiomyopathy. Science 2013, 342, 111–114. [Google Scholar] [CrossRef] [PubMed]
- Gedicke-Hornung, C.; Behrens-Gawlik, V.; Reischmann, S.; Geertz, B.; Stimpel, D.; Weinberger, F.; Schlossarek, S.; Précigout, G.; Braren, I.; Eschenhagen, T.; et al. Rescue of cardiomyopathy through U7sn RNA -mediated exon skipping in Mybpc3-targeted knock-in mice. EMBO Mol. Med. 2013, 5, 1128–1145. [Google Scholar] [CrossRef] [PubMed]
- Ma, H.; Marti-Gutierrez, N.; Park, S.-W.; Wu, J.; Lee, Y.; Suzuki, K.; Koski, A.; Ji, D.; Hayama, T.; Ahmed, R.; et al. Correction of a pathogenic gene mutation in human embryos. Nature 2017, 548, 413–419. [Google Scholar] [CrossRef]
- Felis, A.; Whitlow, M.; Kraus, A.; Warnock, D.G.; Wallace, E. Current and Investigational Therapeutics for Fabry Disease. Kidney Int. Rep. 2020, 5, 407–413. [Google Scholar] [CrossRef]
- Schiffmann, R.; Goker-Alpan, O.; Vockley, J.; Wilcox, W.R.; Ortiz, D.; Nie, M.; Shen, J.; Tavakkoli, F.; Kirn, D.; Fishman, R. Cardiac effects of 4D-310 in adults with Fabry disease in a phase 1/2 clinical trial: Functional, quality of life, and imaging endpoints in patients with 12 months of follow up. Mol. Genet. Metab. 2023, 138, 107306. [Google Scholar] [CrossRef]
- Dose-Ranging Study of ST-920, an AAV2/6 Human Alpha Galactosidase A Gene Therapy in Subjects With Fabry Disease (STAAR). Available online: https://www.clinicaltrials.gov/study/NCT04046224 (accessed on 1 June 2025).
- Open Label, Study Of Efficacy and Safety Of AVR-RD-01 for Treatment-Naive Subjects With Classic Fabry Disease. Available online: https://clinicaltrials.gov/study/NCT03454893?cond=Fabry%20Disease&intr=AVR-RD-01&rank=1 (accessed on 1 June 2025).
HF (LVEF) | Etiologies | Recommended Therapy |
---|---|---|
HFrEF (≤40%) |
|
|
HFmrEF (41–49%) |
|
|
HFpEF (≥50%) |
|
|
Transgene | Approach | Target | Status | Delivery | |
---|---|---|---|---|---|
TTR | siRNA (Patisiran, Vutrisiran) | Liver (TTR silencing) | Approved (FDA/EMA) | Lipid nanoparticles/GalNAc conjugation | [107,126] |
TTR | ASO (Inotersen) | Liver (TTR silencing) | Approved (with monitoring) | Subcutaneous injection | [110] |
miR-132 | Anti-miR (CDR132L) | Heart (miR-132 silencing) | Phase 1b Clinical Trial | Intravenous injection | [111] |
miR-199a-3p/miR-590-3p | miRNA mimics (e.g., miR-199a-3p) | Heart (regenerative miRNAs) | Preclinical (animal models) | Intramyocardial injection | [127] |
MYBPC3, PKP2, LAMP2B | AAV-mediated gene replacement | Heart (loss-of-function mutations) | Clinical Trials (in progress) | AAV vectors (cardiotropic) | [114,128,129] |
VEGF-A, IGF-1 | modRNA (e.g., VEGF-A, IGF-1) | Heart (protein overexpression) | Phase 2 Clinical Trial (AZD8601) | Direct myocardial injection/nanoparticles | [120] |
CaMKIIδ | CRISPR-Cas9 gene editing | Heart (pathogenic mutation correction) | Preclinical (animal models) | AAV or lipid nanoparticles | [130] |
TTR | NTLA-2001 (CRISPR for TTR) | Liver (TTR gene editing) | Early Clinical Trial | Lipid nanoparticle infusion | [131] |
SERCA2a | AAV1-mediated gene transfer | Cardiac calcium cycling | Phase 2 (CUPID trial failed) | Intracoronary AAV1 | [132] |
Microdystrophin | AAV-mediated gene replacement | Dystrophin restoration | Phase 1/2 (Duchenne cmp) | AAVrh74 (SRP-9001, PF-06939926) | [117,133] |
Gene | Phenotype | Resp. to GDMT | Arrh. Risk | Therapeutic Implications |
---|---|---|---|---|
TTN (TTNtv) [141] | Mild/mod. DCM; recovery; acq. forms | Good | Mod. | Early GDMT; test in alc./PPCM/tox. DCM |
LMNA [43] | Early-onset; CD (AVB, LBBB); rapid prog. | Poor | Very high | Early ICD; use LMNA Risk-VTA score |
FLNC [141] | Fibrosis, VA; poor prog. | Limited | Very high | ICD if LGE on CMR; arrhyth. monitor |
RBM20 [140] | Young onset; malig. arrhyth.; aggressive | Limited | Very high | Early ICD; arrhyth. surveillance |
DSP [139,142] | LDAC; epi. fibrosis; frequent PVCs | Variable | High | CMR; diff. from myocarditis; ICD if LGE |
Others | CD, SND, atrial arrhyth. | Variable | Mod. | Personalized care; CD |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ferro, A.; Segreti, A.; Crispino, S.P.; Cricco, R.; Di Cristo, A.; Ciancio, M.; Gurrieri, F.; Ussia, G.P.; Grigioni, F. Exploring the Role of Genetic and Genomic Factors in Therapeutic Response to Heart Failure: A Comprehensive Analytical Review. Genes 2025, 16, 801. https://doi.org/10.3390/genes16070801
Ferro A, Segreti A, Crispino SP, Cricco R, Di Cristo A, Ciancio M, Gurrieri F, Ussia GP, Grigioni F. Exploring the Role of Genetic and Genomic Factors in Therapeutic Response to Heart Failure: A Comprehensive Analytical Review. Genes. 2025; 16(7):801. https://doi.org/10.3390/genes16070801
Chicago/Turabian StyleFerro, Aurora, Andrea Segreti, Simone Pasquale Crispino, Riccardo Cricco, Anna Di Cristo, Martina Ciancio, Fiorella Gurrieri, Gian Paolo Ussia, and Francesco Grigioni. 2025. "Exploring the Role of Genetic and Genomic Factors in Therapeutic Response to Heart Failure: A Comprehensive Analytical Review" Genes 16, no. 7: 801. https://doi.org/10.3390/genes16070801
APA StyleFerro, A., Segreti, A., Crispino, S. P., Cricco, R., Di Cristo, A., Ciancio, M., Gurrieri, F., Ussia, G. P., & Grigioni, F. (2025). Exploring the Role of Genetic and Genomic Factors in Therapeutic Response to Heart Failure: A Comprehensive Analytical Review. Genes, 16(7), 801. https://doi.org/10.3390/genes16070801