Comparative Evaluation of AAV8 and AAV9 Gene Therapy in Fabry Knockout (Gla−/y) and Symptomatic (G3STg/+Gla−/y) Murine Models
Abstract
1. Introduction
2. Materials and Methods
2.1. Plasmid Construction and AAV Production
2.2. Animals
2.3. Sample Collection
2.4. Activity Assay of α-Gal A
2.5. Quantitation of Gb3 Levels
2.6. Immunofluorescent Staining of Gb3
2.7. Analysis of Proteinuria
2.8. Anti-α-Gal A Immune Response
2.9. Statistical Analysis
3. Results
3.1. Dose-Dependent GLA Enzyme Activity Following AAV8-GLA and AAV9-GLA Gene Therapy in Fabry Mice
3.2. Sustained Enzyme Activity Three Months Post-Treatment
3.3. GLA Enzyme Expression in Symptomatic Fabry Mice Treated with AAV8-GLA or AAV9-GLA
3.4. Reduction In Serum Gb3 and Lyso-Gb3 in Symptomatic Fabry Mice Following AAV8-GLA or AAV9-GLA Treatment
3.5. Comparison of Gb3 Clearance in Renal and Cardiac Tissues of Symptomatic Fabry Mice Treated with AAV8-GLA or AAV9-GLA
3.6. Comparison of Proteinuria Response in Symptomatic Fabry Mice Treated with AAV8-GLA or AAV9-GLA
3.7. AAV-Mediated Gene Therapy Exhibits Limited Immunogenicity and a Favorable Safety Profile in Fabry Disease Mice
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Germain, D.P. Fabry disease. Orphanet J. Rare Dis. 2010, 5, 30. [Google Scholar] [CrossRef] [PubMed]
- Arends, M.; Wanner, C.; Hughes, D.; Mehta, A.; Oder, D.; Watkinson, O.T.; Elliott, P.M.; Linthorst, G.E.; Wijburg, F.A.; Biegstraaten, M.; et al. Characterization of Classical and Nonclassical Fabry Disease: A Multicenter Study. J. Am. Soc. Nephrol. 2017, 28, 1631–1641. [Google Scholar] [CrossRef] [PubMed]
- Azevedo, O.; Gal, A.; Faria, R.; Gaspar, P.; Miltenberger-Miltenyi, G.; Gago, M.F.; Dias, F.; Martins, A.; Rodrigues, J.; Reimao, P.; et al. Founder effect of Fabry disease due to p.F113L mutation: Clinical profile of a late-onset phenotype. Mol. Genet. Metab. 2020, 129, 150–160. [Google Scholar] [CrossRef] [PubMed]
- Azevedo, O.; Cordeiro, F.; Gago, M.F.; Miltenberger-Miltenyi, G.; Ferreira, C.; Sousa, N.; Cunha, D. Fabry Disease and the Heart: A Comprehensive Review. Int. J. Mol. Sci. 2021, 22, 4434. [Google Scholar] [CrossRef]
- Gilchrist, M.; Casanova, F.; Tyrrell, J.S.; Cannon, S.; Wood, A.R.; Fife, N.; Young, K.; Oram, R.A.; Weedon, M.N. Prevalence of Fabry disease-causing variants in the UK Biobank. J. Med. Genet. 2023, 60, 391–396. [Google Scholar] [CrossRef]
- Lin, H.Y.; Chong, K.W.; Hsu, J.H.; Yu, H.C.; Shih, C.C.; Huang, C.H.; Lin, S.J.; Chen, C.H.; Chiang, C.C.; Ho, H.J.; et al. High incidence of the cardiac variant of Fabry disease revealed by newborn screening in the Taiwan Chinese population. Circ. Cardiovasc. Genet. 2009, 2, 450–456. [Google Scholar] [CrossRef]
- Hsu, T.R.; Sung, S.H.; Chang, F.P.; Yang, C.F.; Liu, H.C.; Lin, H.Y.; Huang, C.K.; Gao, H.J.; Huang, Y.H.; Liao, H.C.; et al. Endomyocardial biopsies in patients with left ventricular hypertrophy and a common Chinese later-onset Fabry mutation (IVS4 + 919G > A). Orphanet J. Rare Dis. 2014, 9, 96. [Google Scholar] [CrossRef]
- Hsu, T.R.; Hung, S.C.; Chang, F.P.; Yu, W.C.; Sung, S.H.; Hsu, C.L.; Dzhagalov, I.; Yang, C.F.; Chu, T.H.; Lee, H.J.; et al. Later Onset Fabry Disease, Cardiac Damage Progress in Silence: Experience With a Highly Prevalent Mutation. J. Am. Coll. Cardiol. 2016, 68, 2554–2563. [Google Scholar] [CrossRef]
- Hsu, M.J.; Chang, F.P.; Lu, Y.H.; Hung, S.C.; Wang, Y.C.; Yang, A.H.; Lee, H.J.; Sung, S.H.; Wang, Y.F.; Yu, W.C.; et al. Identification of lysosomal and extralysosomal globotriaosylceramide (Gb3) accumulations before the occurrence of typical pathological changes in the endomyocardial biopsies of Fabry disease patients. Genet. Med. 2019, 21, 224–232. [Google Scholar] [CrossRef]
- Carella, M.C.; Forleo, C.; Caretto, P.; Naccarati, M.L.; Dentamaro, I.; Dicorato, M.M.; Basile, P.; Carulli, E.; Latorre, M.D.; Baggiano, A.; et al. Overcoming Resistance in Anderson-Fabry Disease: Current Therapeutic Challenges and Future Perspectives. J. Clin. Med. 2024, 13, 7195. [Google Scholar] [CrossRef]
- Germain, D.P.; Elliott, P.M.; Falissard, B.; Fomin, V.V.; Hilz, M.J.; Jovanovic, A.; Kantola, I.; Linhart, A.; Mignani, R.; Namdar, M.; et al. The effect of enzyme replacement therapy on clinical outcomes in male patients with Fabry disease: A systematic literature review by a European panel of experts. Mol. Genet. Metab. Rep. 2019, 19, 100454. [Google Scholar] [CrossRef] [PubMed]
- Germain, D.P.; Arad, M.; Burlina, A.; Elliott, P.M.; Falissard, B.; Feldt-Rasmussen, U.; Hilz, M.J.; Hughes, D.A.; Ortiz, A.; Wanner, C.; et al. The effect of enzyme replacement therapy on clinical outcomes in female patients with Fabry disease—A systematic literature review by a European panel of experts. Mol. Genet. Metab. 2019, 126, 224–235. [Google Scholar] [CrossRef]
- Holida, M.; Linhart, A.; Pisani, A.; Longo, N.; Eyskens, F.; Goker-Alpan, O.; Wallace, E.; Deegan, P.; Tondel, C.; Feldt-Rasmussen, U.; et al. A phase III, open-label clinical trial evaluating pegunigalsidase alfa administered every 4 weeks in adults with Fabry disease previously treated with other enzyme replacement therapies. J. Inherit. Metab. Dis. 2025, 48, e12795. [Google Scholar] [CrossRef] [PubMed]
- Weidemann, F.; Jovanovic, A.; Herrmann, K.; Vardarli, I. Chaperone Therapy in Fabry Disease. Int. J. Mol. Sci. 2022, 23, 1887. [Google Scholar] [CrossRef] [PubMed]
- Modrego, A.; Amaranto, M.; Godino, A.; Mendoza, R.; Barra, J.L.; Corchero, J.L. Human alpha-Galactosidase A Mutants: Priceless Tools to Develop Novel Therapies for Fabry Disease. Int. J. Mol. Sci. 2021, 22, 6518. [Google Scholar] [CrossRef]
- Jeyakumar, J.M.; Kia, A.; Tam, L.C.S.; McIntosh, J.; Spiewak, J.; Mills, K.; Heywood, W.; Chisari, E.; Castaldo, N.; Verhoef, D.; et al. Preclinical evaluation of FLT190, a liver-directed AAV gene therapy for Fabry disease. Gene Ther. 2023, 30, 487–502. [Google Scholar] [CrossRef]
- Liefhebber, J.M.P.; Brasser, G.; Spronck, E.A.; Ottenhoff, R.; Paerels, L.; Ferraz, M.J.; Schwarz, L.K.; Efthymiopoulou, N.; Kuo, C.L.; Montenegro-Miranda, P.S.; et al. Preclinical efficacy and safety of adeno-associated virus 5 alpha-galactosidase: A gene therapy for Fabry disease. Mol. Ther. Methods Clin. Dev. 2024, 32, 101375. [Google Scholar] [CrossRef]
- Cabanes-Creus, M.; Navarro, R.G.; Zhu, E.; Baltazar, G.; Liao, S.H.Y.; Drouyer, M.; Amaya, A.K.; Scott, S.; Nguyen, L.H.; Westhaus, A.; et al. Novel human liver-tropic AAV variants define transferable domains that markedly enhance the human tropism of AAV7 and AAV8. Mol. Ther. Methods Clin. Dev. 2022, 24, 88–101. [Google Scholar] [CrossRef]
- Keeler, G.D.; Markusic, D.M.; Hoffman, B.E. Liver induced transgene tolerance with AAV vectors. Cell. Immunol. 2019, 342, 103728. [Google Scholar] [CrossRef]
- Ziegler, R.J.; Cherry, M.; Barbon, C.M.; Li, C.; Bercury, S.D.; Armentano, D.; Desnick, R.J.; Cheng, S.H. Correction of the Biochemical and Functional Deficits in Fabry Mice Following AAV8-mediated Hepatic Expression of alpha-galactosidase A. Mol. Ther. 2007, 15, 492–500. [Google Scholar] [CrossRef]
- Liu, D.; Zhu, M.; Zhang, Y.; Diao, Y. Crossing the blood-brain barrier with AAV vectors. Metab. Brain Dis. 2021, 36, 45–52. [Google Scholar] [CrossRef]
- Hayashi, Y.; Sehara, Y.; Watano, R.; Ohba, K.; Takayanagi, Y.; Muramatsu, K.; Sakiyama, Y.; Mizukami, H. Therapeutic strategy for Fabry disease by intravenous administration of adeno-associated virus 2 or 9 in alpha-galactosidase A-deficient mice. J. Gene Med. 2023, 25, e3560. [Google Scholar] [CrossRef] [PubMed]
- Hayashi, Y.; Sehara, Y.; Watano, R.; Ohba, K.; Takayanagi, Y.; Sakiyama, Y.; Muramatsu, K.; Mizukami, H. Therapeutic Strategy for Fabry Disease by Intravenous Administration of Adeno-Associated Virus 9 in a Symptomatic Mouse Model. Hum. Gene Ther. 2024, 35, 192–201. [Google Scholar] [CrossRef] [PubMed]
- Ohshima, T.; Murray, G.J.; Swaim, W.D.; Longenecker, G.; Quirk, J.M.; Cardarelli, C.O.; Sugimoto, Y.; Pastan, I.; Gottesman, M.M.; Brady, R.O.; et al. alpha-Galactosidase A deficient mice: A model of Fabry disease. Proc. Natl. Acad. Sci. USA 1997, 94, 2540–2544. [Google Scholar] [CrossRef] [PubMed]
- Bangari, D.S.; Ashe, K.M.; Desnick, R.J.; Maloney, C.; Lydon, J.; Piepenhagen, P.; Budman, E.; Leonard, J.P.; Cheng, S.H.; Marshall, J.; et al. alpha-Galactosidase A knockout mice: Progressive organ pathology resembles the type 2 later-onset phenotype of Fabry disease. Am. J. Pathol. 2015, 185, 651–665. [Google Scholar] [CrossRef]
- Taguchi, A.; Maruyama, H.; Nameta, M.; Yamamoto, T.; Matsuda, J.; Kulkarni, A.B.; Yoshioka, H.; Ishii, S. A symptomatic Fabry disease mouse model generated by inducing globotriaosylceramide synthesis. Biochem. J. 2013, 456, 373–383. [Google Scholar] [CrossRef]
- Kusiak, J.W.; Quirk, J.M.; Brady, R.O. Purification and properties of the two major isozymes of alpha-galactosidase from human placenta. J. Biol. Chem. 1978, 253, 184–190. [Google Scholar] [CrossRef]
- Liao, H.C.; Huang, Y.H.; Chen, Y.J.; Kao, S.M.; Lin, H.Y.; Huang, C.K.; Liu, H.C.; Hsu, T.R.; Lin, S.P.; Yang, C.F.; et al. Plasma globotriaosylsphingosine (lysoGb3) could be a biomarker for Fabry disease with a Chinese hotspot late-onset mutation (IVS4+919G>A). Clin. Chim. Acta 2013, 426, 114–120. [Google Scholar] [CrossRef]
- Itoh, K.; Kotani, M.; Tai, T.; Suzuki, H.; Utsunomiya, T.; Inoue, H.; Yamada, H.; Sakuraba, H.; Suzuki, Y. Immunofluorescence imaging diagnosis of Fabry heterozygotes using confocal laser scanning microscopy. Clin. Genet. 1993, 44, 302–306. [Google Scholar] [CrossRef]
- Liang, H.; Narum, D.L.; Fuhrmann, S.R.; Luu, T.; Sim, B.K. A recombinant baculovirus-expressed Plasmodium falciparum receptor-binding domain of erythrocyte binding protein EBA-175 biologically mimics native protein. Infect. Immun. 2000, 68, 3564–3568. [Google Scholar] [CrossRef]
- Ali, R.R.; Reichel, M.B.; Thrasher, A.J.; Levinsky, R.J.; Kinnon, C.; Kanuga, N.; Hunt, D.M.; Bhattacharya, S.S. Gene transfer into the mouse retina mediated by an adeno-associated viral vector. Hum. Mol. Genet. 1996, 5, 591–594. [Google Scholar] [CrossRef] [PubMed]
- Bennett, J.; Duan, D.; Engelhardt, J.F.; Maguire, A.M. Real-time, noninvasive in vivo assessment of adeno-associated virus-mediated retinal transduction. Investig. Ophthalmol. Vis. Sci. 1997, 38, 2857–2863. [Google Scholar]
- Sarra, G.M.; Stephens, C.; Schlichtenbrede, F.C.; Bainbridge, J.W.; Thrasher, A.J.; Luthert, P.J.; Ali, R.R. Kinetics of transgene expression in mouse retina following sub-retinal injection of recombinant adeno-associated virus. Vis. Res. 2002, 42, 541–549. [Google Scholar] [CrossRef]
- Foust, K.D.; Nurre, E.; Montgomery, C.L.; Hernandez, A.; Chan, C.M.; Kaspar, B.K. Intravascular AAV9 preferentially targets neonatal neurons and adult astrocytes. Nat. Biotechnol. 2009, 27, 59–65. [Google Scholar] [CrossRef] [PubMed]
- Mendell, J.R.; Al-Zaidy, S.; Shell, R.; Arnold, W.D.; Rodino-Klapac, L.R.; Prior, T.W.; Lowes, L.; Alfano, L.; Berry, K.; Church, K.; et al. Single-Dose Gene-Replacement Therapy for Spinal Muscular Atrophy. N. Engl. J. Med. 2017, 377, 1713–1722. [Google Scholar] [CrossRef]
- Biferi, M.G.; Cohen-Tannoudji, M.; Garcia-Silva, A.; Souto-Rodriguez, O.; Vieitez-Gonzalez, I.; San-Millan-Tejado, B.; Fernandez-Carrera, A.; Perez-Marquez, T.; Teijeira-Bautista, S.; Barrera, S.; et al. Systemic Treatment of Fabry Disease Using a Novel AAV9 Vector Expressing alpha-Galactosidase A. Mol. Ther. Methods Clin. Dev. 2021, 20, 1–17. [Google Scholar] [CrossRef]
- Kugadas, A.; Artoni, P.; Ruangsiriluk, W.; Zhao, M.; Boukharov, N.; Islam, R.; Volfson, D.; Derakhchan, K. Cardiac manifestations of Fabry disease in G3Stg/GlaKO and GlaKO mouse models-Translation to Fabry disease patients. PLoS ONE 2024, 19, e0304415. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chang, F.-P.; Lee, Y.-T.; Liu, P.-H.; Chen, P.-S.; Chen, Y.-R.; Niu, D.-M. Comparative Evaluation of AAV8 and AAV9 Gene Therapy in Fabry Knockout (Gla−/y) and Symptomatic (G3STg/+Gla−/y) Murine Models. Genes 2025, 16, 766. https://doi.org/10.3390/genes16070766
Chang F-P, Lee Y-T, Liu P-H, Chen P-S, Chen Y-R, Niu D-M. Comparative Evaluation of AAV8 and AAV9 Gene Therapy in Fabry Knockout (Gla−/y) and Symptomatic (G3STg/+Gla−/y) Murine Models. Genes. 2025; 16(7):766. https://doi.org/10.3390/genes16070766
Chicago/Turabian StyleChang, Fu-Pang, Ya-Ting Lee, Pao-Hsung Liu, Pei-Sin Chen, Yun-Ru Chen, and Dau-Ming Niu. 2025. "Comparative Evaluation of AAV8 and AAV9 Gene Therapy in Fabry Knockout (Gla−/y) and Symptomatic (G3STg/+Gla−/y) Murine Models" Genes 16, no. 7: 766. https://doi.org/10.3390/genes16070766
APA StyleChang, F.-P., Lee, Y.-T., Liu, P.-H., Chen, P.-S., Chen, Y.-R., & Niu, D.-M. (2025). Comparative Evaluation of AAV8 and AAV9 Gene Therapy in Fabry Knockout (Gla−/y) and Symptomatic (G3STg/+Gla−/y) Murine Models. Genes, 16(7), 766. https://doi.org/10.3390/genes16070766