Pharmacogenetic Profiling of Genes Associated with Outcomes of Chemotherapy in Omani Healthy Controls
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
- -
- Participants of Omani nationality, aged 18 years or older.
- -
- Individuals without any prior diagnosis of malignancy.
- -
- Completion of an informed consent form specific to healthy participants.
2.2. DNA Extraction
2.3. Targeted Gene Panel Next-Generation Sequencing
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
5-FU | 5-Fluorouracil |
ABCB1 | ATP Binding Cassette Subfamily B Member 1 (MDR1) |
ABCC3 | ATP Binding Cassette Subfamily C Member 3 |
ABCC4 | ATP Binding Cassette Subfamily C Member 4 |
ABCC5 | ATP Binding Cassette Subfamily C Member 5 |
ABCG2 | ATP Binding Cassette Subfamily G Member 2 |
CDA | Cytidine Deaminase |
CES1 | Carboxylesterase 1 |
CES2 | Carboxylesterase 2 |
CYP2A6 | Cytochrome P450 Family 2 Subfamily A Member 6 |
DHFR | Dihydrofolate Reductase |
DPYD | Dihydropyrimidine Dehydrogenase |
DPYS | Dihydropyrimidinase |
ENOSF1 | Enolase Superfamily Member 1 |
ERCC2 | Excision Repair Cross-Complementation Group 2 |
FP | Fluoropyrimidine |
FPGS | Folylpolyglutamate Synthase |
GGH | Gamma Glutamyl Hydrolase |
MAF | Minor Allele Frequency |
MTHFR | Methylenetetrahydrofolate Reductase |
PPAT | Phosphoribosyl Pyrophosphate Amidotransferase |
RRM1 | Ribonucleotide Reductase Catalytic Subunit M1 |
RRM2 | Ribonucleotide Reductase Regulatory Subunit M2 |
SLC22A7 | Solute Carrier Family 22 Member 7 |
SLC29A1 | Solute Carrier Family 29 Member 1 |
SMUG1 | Single-Strand-Selective Monofunctional Uracil-DNA Glycosylase 1 |
SNV | Single-Nucleotide Variant |
TDG | Thymine DNA Glycosylase |
TK1 | Thymidine Kinase 1 |
TP53 | Tumor Protein p53 |
TYMP | Thymidine Phosphorylase |
TYMS | Thymidylate Synthase |
UCK1 | Uridine-Cytidine Kinase 1 |
UCK2 | Uridine-Cytidine Kinase 2 |
UGT1A1 | UDP Glucuronosyltransferase Family 1 Member A1 |
UMPS | Uridine Monophosphate Synthetase |
UPB1 | β-Ureidopropionase 1 |
UPP1 | Uridine Phosphorylase 1 |
UPP2 | Uridine Phosphorylase 2 |
XRCC3 | X-Ray Repair Cross Complementing 3 |
Appendix A
Gene | Protein Product |
---|---|
DPYD | Dihydropyrimidine dehydrogenase |
DPYS | Dihydropyrimidinase |
UPB1 | β-ureidopropionase 1 |
CES1 | Carboxylesterase 1 |
CES2 | Carboxylesterase 2 |
UGT1A1 | UDP-glucuronosyltransferase 1A1 |
MTHFR | Methylenetetrahydrofolate reductase |
CYP2A6 | Cytochrome P450 2A6 |
ABCB1 | ATP-binding cassette transporter subfamily B1 |
ABCC3 | ATP-binding cassette transporter subfamily C3 also known as Multidrug resistance-associated protein 3 (MRP3) |
ABCC4 | ATP-binding cassette transporter subfamily C4 also known as Multidrug resistance-associated protein 4 (MRP4) |
ABCC5 | ATP-binding cassette transporter subfamily C5 also known as Multidrug resistance-associated protein 5 (MRP5) |
ABCG2 | ATP-binding cassette transporter subfamily G2 also known as Breast cancer resistance protein (BCRP) |
SLC29A1 | Solute carrier family 29 member A1 also known as Equilibrative nucleoside transporter 1 (ENT1) |
SLC22A7 | Solute carrier family 22 member A7 also known as Organic anion transporter 2 (OAT2) |
TYMP | Thymidine phosphorylase |
TP53 | Cellular tumor antigen p53 |
TK1 | Thymidine kinase 1 |
ERCC2 | DNA excision repair protein ERCC-2 (XPD) |
TYMS | Thymidylate synthase |
UCK1 | Uridine-cytidine kinase 1 |
PPAT | Phosphoribosyl pyrophosphate amidotransferase |
GGH | Gamma-glutamyl hydrolase |
UPP1 | Uridine phosphorylase 1 |
SMUG1 | Single-strand-selective monofunctional uracil-DNA glycosylase |
UMPS | Uridine monophosphate synthetase |
UCK2 | Uridine-cytidine kinase 2 |
XRCC3 | X-Ray Repair Cross Complementing 3 also known as DNA repair protein XRCC3 |
RRM1 | Ribonucleoside-diphosphate reductase subunit M1 |
TDG | Thymine DNA glycosylase |
CDA | Cytidine deaminase |
RRM2 | Ribonucleoside-diphosphate reductase subunit M2 |
UPP2 | Uridine phosphorylase 2 |
DHFR | Dihydrofolate reductase |
ENOSF1 | Enolase superfamily member 1 |
FPGS | Folylpolyglutamate synthase |
References
- Global Cancer Data by Country. World Cancer Research Fund. Available online: https://www.wcrf.org/preventing-cancer/cancer-statistics/global-cancer-data-by-country/ (accessed on 27 January 2025).
- Ranasinghe, P.; Sirisena, N.; Vishnukanthan, T.; Ariadurai, J.N.; Thilakarathne, S.; Priyadarshani, C.D.N.; Hendalage, D.P.B.; Dissanayake, V.H.W. Frequency of pharmacogenomic variants affecting efficacy and safety of anti-cancer drugs in a south Asian population from Sri Lanka. BMC Med. Genom. 2024, 17, 143. [Google Scholar] [CrossRef] [PubMed]
- Behdani, A.M.; Lai, J.; Kim, C.; Basalelah, L.; Halsey, T.; Donohoe, K.L.; Wijesinghe, D. Optimizing pharmacogenomic decision-making by data science. PLoS Digit. Health 2024, 3, e0000451. [Google Scholar] [CrossRef] [PubMed]
- Miteva-Marcheva, N.N.; Ivanov, H.Y.; Dimitrov, D.K.; Stoyanova, V.K. Application of pharmacogenetics in oncology. Biomark. Res. 2020, 8, 32. [Google Scholar] [CrossRef] [PubMed]
- Henricks, L.; Opdam, F.; Beijnen, J.; Cats, A.; Schellens, J.H.M. DPYD Genotype-Guided Dose Individualization to Improve Patient Safety of Fluoropyrimidine Therapy: Call for a Drug Label Update. Ann. Oncol. 2017, 28, 2915–2922. [Google Scholar] [CrossRef]
- Loganayagam, A.; Hernandez, M.A.; Corrigan, A.; Fairbanks, L.; Lewis, C.M.; Harper, P.; Maisey, N.; Ross, P.; Sanderson, J.D.; Marinaki, A.M. Pharmacogenetic variants in the DPYD, TYMS, CDA and MTHFR genes are clinically significant predictors of fluoropyrimidine toxicity. Br. J. Cancer 2013, 108, 2505–2515. [Google Scholar] [CrossRef]
- Derissen, E.J.B.; Jacobs, B.A.W.; Huitema, A.D.R.; Rosing, H.; Schellens, J.H.M.; Beijnen, J.H. Exploring the intracellular pharmacokinetics of the 5-fluorouracil nucleotides during capecitabine treatment. Br. J. Clin. Pharmacol. 2016, 81, 949–957. [Google Scholar] [CrossRef]
- Amstutz, U.; Henricks, L.M.; Offer, S.M.; Barbarino, J.; Schellens, J.H.; Swen, J.J.; Klein, T.E.; McLeod, H.L.; Caudle, K.E.; Diasio, R.B.; et al. Clinical Pharmacogenetics Implementation Consortium (CPIC) Guideline for Dihydropyrimidine Dehydrogenase Genotype and Fluoropyrimidine Dosing: 2017 Update. Clin. Pharmacol. Ther. 2018, 103, 210–216. [Google Scholar] [CrossRef]
- Larrue, R.; Fellah, S.; Hennart, B.; Sabaouni, N.; Boukrout, N.; Van der Hauwaert, C.; Delage, C.; Cheok, M.; Perrais, M.; Cauffiez, C.; et al. Integrating rare genetic variants into DPYD pharmacogenetic testing may help preventing fluoropyrimidine-induced toxicity. Pharmacogenom. J. 2024, 24, 1. [Google Scholar] [CrossRef]
- Jithesh, P.V.; Abuhaliqa, M.; Syed, N.; Ahmed, I.; El Anbari, M.; Bastaki, K.; Sherif, S.; Umlai, U.-K.; Jan, Z.; Gandhi, G.; et al. A population study of clinically actionable genetic variation affecting drug response from the Middle East. NPJ Genom. Med. 2022, 7, 10. [Google Scholar] [CrossRef]
- Al-Kharusi, K.; Van Wyk, C.; Al Hinai, M.; Al-Fori, A.; Bruwer, Z. Genetic counseling development and milestone in Oman. Genet. Med. Open 2024, 2 (Suppl. S2), 101897. [Google Scholar] [CrossRef]
- Saif, M.W.; Lee, A.M.; Offer, S.M.; McConnell, K.; Relias, V.; Diasio, R.B. A DPYD variant (Y186C) specific to individuals of African de-scent in a patient with life-threatening 5-FU toxic effects: Potential for an individualized medicine approach. Mayo Clin. Proc. 2014, 89, 131–136. [Google Scholar] [CrossRef]
- Matsusaka, S.; Lenz, H.-J. Pharmacogenomics of fluorouracil -based chemotherapy toxicity. Expert Opin. Drug Metab. Toxicol. 2015, 11, 811–821. [Google Scholar] [CrossRef] [PubMed]
- Roberto, M.; Romiti, A.; Botticelli, A.; Mazzuca, F.; Lionetto, L.; Gentile, G.; Paris, I.; Falcone, R.; Bassanelli, M.; Di Pietro, F.R.; et al. Evaluation of 5-fluorouracil degradation rate and Pharmacogenetic profiling to predict toxicity following adjuvant Capecitabine. Eur. J. Clin. Pharmacol. 2017, 73, 157–164. [Google Scholar] [CrossRef] [PubMed]
- Al-Mahayri, Z.N.; Patrinos, G.P.; Wattanapokayakit, S.; Iemwimangsa, N.; Fukunaga, K.; Mushiroda, T.; Chantratita, W.; Ali, B.R. Variation in 100 relevant pharmacogenes among emiratis with insights from understudied populations. Sci. Rep. 2020, 10, 21310. [Google Scholar] [CrossRef] [PubMed]
- International HapMap 3 Consortium. Integrating common and rare genetic variation in diverse human populations. Nature 2010, 467, 52–58. [Google Scholar] [CrossRef]
- Nies, A.T.; Magdy, T.; Schwab, M.; Zanger, U.M. Chapter Eight—Role of ABC Transporters in Fluoropyrimidine-Based Chemotherapy Response. In Advances in Cancer Research; Schuetz, J.D., Toshihisa Ishikawa, T., Eds.; Academic Press: Cambridge, MA, USA, 2015; Volume 125, pp. 217–243. [Google Scholar]
- Choi, Y.H.; Yu, A.-M. ABC Transporters in Multidrug Resistance and Pharmacokinetics, and Strategies for Drug Development. Curr. Pharm. Des. 2014, 20, 793–807. [Google Scholar] [CrossRef]
- Anna, A.; Monika, G. Splicing mutations in human genetic disorders: Examples, detection, and confirmation. J. Appl. Genet. 2018, 59, 253–268. [Google Scholar] [CrossRef]
- Thomas, H.R.; Ezzeldin, H.H.; Guarcello, V.; Mattison, L.K.; Fridley, B.L.; Diasio, R.B. Genetic regulation of β-ureidopropionase and its possible implication in altered uracil catabolism. Pharmacogenet. Genom. 2008, 18, 25. [Google Scholar] [CrossRef]
- Sharma, B.B.; Rai, K.; Blunt, H.; Zhao, W.; Tosteson, T.D.; Brooks, G.A. Pathogenic DPYD Variants and Treatment-Related Mortality in Patients Receiving Fluoropyrimidine Chemotherapy: A Systematic Review and Meta-Analysis. Oncol. 2021, 26, 1008–1016. [Google Scholar] [CrossRef]
- Meulendijks, D.; Henricks, L.M.; Sonke, G.S.; Deenen, M.J.; Froehlich, T.K.; Amstutz, U.; Largiadèr, C.R.; Jennings, B.A.; Marinaki, A.M.; Sanderson, J.D.; et al. Clinical relevance of DPYD variants c.1679T>G, c.1236G>A/HapB3, and c.1601G>A as predictors of severe fluoropyrimidine-associated toxicity: A systematic review and meta-analysis of individual patient data. Lancet Oncol. 2015, 16, 1639–1650. [Google Scholar] [CrossRef]
- Shakeel, F.; Fang, F.; Kwon, J.W.; Koo, K.; Pasternak, A.L.; Henry, N.L.; Sahai, V.; Kidwell, K.M.; Hertz, D.L. Patients carrying DPYD variant alleles have increased risk of severe toxicity and related treatment modifications during fluoropyrimidine chemotherapy. Pharmacogenomics 2021, 22, 145–155. [Google Scholar] [CrossRef] [PubMed]
- Elraiyah, T.; Jerde, C.; Shrestha, S.; Wu, R.; Nie, Q.; Giama, N.; Sarangi, V.; Roberts, L.; Offer, S.; Diasio, R. Novel Deleterious Dihydropyrimidine Dehydrogenase Variants May Contribute to 5-Fluorouracil Sensitivity in an East African Population. Clin. Pharmacol. Ther. 2017, 101, 382–390. [Google Scholar] [CrossRef] [PubMed]
- Cunha-Junior, G.F.; Bastos-Rodrigues, L.; Azevedo, P.G.; Bicalho, M.A.; Magno, L.A.V.; De Marco, L.; Coelho, L.G. Prevalence of the DPYD variant (Y186C) in Brazilian individuals of African ancestry. Cancer Chemother. Pharmacol. 2019, 84, 1359–1363. [Google Scholar] [CrossRef] [PubMed]
- Dean, L.; Kane, M. Fluorouracil Therapy and DPYD Genotype. In Medical Genetics Summaries; Pratt, V.M., Scott, S.A., Pirmohamed, M., Esquivel, B., Kattman, B.L., Malheiro, A.J., Eds.; National Center for Biotechnology Information: Bethesda, MD, USA, 2012. Available online: http://www.ncbi.nlm.nih.gov/books/NBK395610/ (accessed on 27 January 2025).
- Matáková, T.; Halašová, E.; Škovierová, H.; Dzian, A.; Dobrota, D.; Škereňová, M. DPYD genotype and haplotype analysis and colorectal cancer susceptibility in a case-control study from Slovakia. Gen. Physiol. Biophys. 2017, 36, 557–563. [Google Scholar] [CrossRef]
- Papandreou, C.N.; Doxani, C.; Zdoukopoulos, N.; Vlachostergios, P.J.; Hatzidaki, E.; Bakalos, G.; Ziogas, D.C.; Koufakis, T.; Zintzaras, E. Evidence of association between methylenetetrahydrofolate reductase gene and susceptibility to breast cancer: A candidate-gene association study in a South-eastern European population. DNA Cell Biol. 2012, 31, 193–198. [Google Scholar] [CrossRef]
- Thomas, F.; Motsinger-Reif, A.A.; Hoskins, J.M.; Dvorak, A.; Roy, S.; Alyasiri, A.; Myerson, R.J.; Fleshman, J.W.; Tan, B.R.; McLeod, H.L. Methylenetetrahydrofolate reductase genetic polymorphisms and toxicity to 5-FU-based chemoradiation in rectal cancer. Br. J. Cancer 2011, 105, 1654–1662. [Google Scholar] [CrossRef]
- Atasilp, C.; Lenavat, R.; Vanwong, N.; Chansriwong, P.; Sirachainan, E.; Reungwetwattana, T.; Jinda, P.; Aiempradit, S.; Sirilerttrakul, S.; Chamnanphon, M.; et al. Effects of polymorphisms in the MTHFR gene on 5-FU hematological toxicity and efficacy in Thai colorectal cancer patients. Front. Oncol. 2022, 12, 916650. [Google Scholar] [CrossRef]
- Oussalah, A.; Bosco, P.; Anello, G.; Spada, R.; Guéant-Rodriguez, R.-M.; Chery, C.; Rouyer, P.; Josse, T.; Romano, A.; Elia, M.; et al. Exome-Wide Association Study Identifies New Low-Frequency and Rare UGT1A1 Coding Variants and UGT1A6 Coding Variants Influencing Serum Bilirubin in Elderly Subjects: A Strobe Compliant Article. Medicine 2015, 94, e925. [Google Scholar] [CrossRef]
- Baghbani-Arani, F.; Telori, M.K.; Asadi, J.; Samadian, E.; Shirkavand, A. Association of Two Single-Nucleotide Polymorphisms (rs1805087 and rs1801131) with Coronary Artery Disease in Golestan Population. Ann. Mil. Health Sci. Res. 2017, 15, 11473. [Google Scholar] [CrossRef]
- Bukhari, N.; Azam, F.; Alfawaz, M.; Zahrani, M. Identifying a Novel DPYD Polymorphism Associated with Severe Toxicity to 5-FU Chemotherapy in a Saudi Patient. Case ReGenet. 2019, 2019, 5150725. [Google Scholar] [CrossRef]
- Hočevar, K.; Maver, A.; Peterlin, B. Actionable Pharmacogenetic Variation in the Slovenian Genomic Database. Front. Pharmacol. 2019, 10, 240. [Google Scholar] [CrossRef] [PubMed]
- Gonzalez-Covarrubias, V.; Morales-Franco, M.; Cruz-Correa, O.F.; Martinez-Hernandez, A.; García-Ortíz, H.; Barajas-Olomos, F.; Genis-Mendoza, A.D.; Marinez-Magana, J.J.; Nicolini, H. Variation in Actionable Pharmacogenetic Markers in Natives and Mestizos from Mexico. Front. Pharmacol. 2019, 10, 1169. [Google Scholar] [CrossRef]
- Nelson, M.R.; Wegmann, D.; Ehm, M.G.; Kessner, D.; Jean, P.S.; Verzilli, C.; Shen, J.; Tang, Z.; Bacanu, S.-A.; Fraser, D.; et al. An abundance of rare functional variants in 202 drug target genes sequenced in 14,002 people. Science 2012, 337, 100–104. [Google Scholar] [CrossRef] [PubMed]
- Kozyra, M.; Ingelman-Sundberg, M.; Lauschke, V.M. Rare genetic variants in cellular transporters, metabolic enzymes, and nuclear receptors can be important determinants of interindividual differences in drug response. Genet. Med. Off. J. Am. Coll. Med. Genet. 2017, 19, 20–29. [Google Scholar] [CrossRef] [PubMed]
- Wright, G.E.B.; Carleton, B.; Hayden, M.R.; Ross, C.J.D. The global spectrum of protein-coding pharmacogenomic diversity. Pharmacogenom. J. 2018, 18, 187–195. [Google Scholar] [CrossRef]
- Li, M.-X.; Gui, H.-S.; Kwan, J.S.H.; Bao, S.-Y.; Sham, P.C. A comprehensive framework for prioritizing variants in exome sequencing studies of Mendelian diseases. Nucleic Acids Res. 2012, 40, e53. [Google Scholar] [CrossRef]
- Manolio, T.A.; Fowler, D.M.; Starita, L.M.; Haendel, M.A.; MacArthur, D.G.; Biesecker, L.G.; Worthey, E.; Chisholm, R.L.; Green, E.D.; Jacob, H.J.; et al. Bedside Back to Bench: Building Bridges between Basic and Clinical Genomic Research. Cell 2017, 169, 6–12. [Google Scholar] [CrossRef]
Genes | Locus | Variant | Function (Variant Type) | Genotype | dbSNP | Clinical Significance in Clinvar | % of Population | MAF | GMAF from Genome AD |
---|---|---|---|---|---|---|---|---|---|
MTHFR | chr1:11854476 | NM_005957.5:c.1286A>C:p.Glu429Ala | missense | AC | rs1801131 | CP | 44.9 | 0.249 | 0.3032 |
chr1:11854476 | NM_005957.5:c.1286A>C:p.Glu429Ala | missense | CC | rs1801131 | CP | 18.4 | |||
DPYD | chr1:97981421 | NM_000110.4:c.1601G>A:p.Ser534Asn | missense | AG | rs1801158 | CP | 8.2 | 0.01 | 0.01878 |
chr1:98144726 | NM_000110.4:c.775A>G:p.Lys259Glu | missense | AG | rs45589337 | CP | 3.1 | 0.004 | 0.006651 | |
chr1:98206012 | NM_000110.4:c.257C>T:p.Pro86Leu | missense | CT | rs568132506 | P, LP | 1 | 0.000 | 0.0000806 | |
chr1:98293671 | NM_000110.4:c.232A>T:p.Arg78Ter | nonsense | AT | rs776692894 | LP | 2 | NA | 0.000003099 | |
UGT1A1 | chr2:234669607 | NM_000463.3:c.674T>G:p.Val225Gly | missense | TG | rs35003977 | P, LP, CP, US | 1 | 0.000 | 0.000485 |
UPB1 | chr22:24896073 | NM_016327.3:c.105-2A>G:p.? | splice site | AG | rs138081800 | CP | 4.1 | NA | 0.000198 |
Genes | Locus | Variant | Function (Variant Type) | Genotype | dbSNP | % from Population | MAF | GMAF |
---|---|---|---|---|---|---|---|---|
DPYD | chr1:97915614 | NM_000110.4:c.1905+1G>A | unknown | G/A | rs3918290 | 1 | 0.003 | 0.005061 |
chr1:98165030 | NM_000110.4: c.557A>G:p.Tyr186Cys | missense | A/G | rs115232898 | 1 | 0.006 | 0.001076 | |
MTHFR | chr1:11856378 | NM_005957.5:c.665C>T:p.Ala222Val | missense | C/T | rs1801133 | 1 | 0.245 | 0.3182 |
Genes | Locus | Variant | Function (Variant Type) | Genotype | % from Population |
---|---|---|---|---|---|
ABCB1 | chr7:87232389 | NM_000927.4:c.1838A>G:p.Asp613Gly | unknown | C/T | 1 |
ABCC3 | chr17:48736768 | NM_003786.4:c.806+39_806 + 40insT | unknown | C/CT | 1 |
chr17:48742499 | NM_003786.4:c.1339-15C>T | unknown | C/T | 1 | |
chr17:48745355 | NM_003786.4:c.1767C>T:p.Ile589= | synonymous | C/T | 1 | |
chr17:48753822 | NM_003786.4:c.3251C>T:p.Ala1084Val | missense | C/T | 43.9 | |
chr17:48762162 | NM_003786.4:c.4206C>G:p.Ser1402= | synonymous | C/G | 1 | |
ABCC4 | chr13:95815936 | NM_005845.5:c.2176-35T>C | unknown | A/G | 1 |
ABCG2 | chr4:89028449 | NM_004827.3:c.1195-31C>T | unknown | G/A | 1 |
CES1 | chr16:55844963 | NM_001025195.2:c.1087-41T>C | unknown | A/G | 1 |
DPYD | chr1:97847979 | NM_000110.4:c.1942_1943delAA:p.Asn648Ter | nonsense | ATT/A | 1 |
ENOSF1 | chr18:691073 | NM_017512.7:c.530A>G:p.Glu177Gly | missense | T/C | 1 |
chr18:712705 | NM_017512.7:c.-136T>CT | unknown | A/AG | 1 | |
chr18:712723 | NM_017512.7:c.-170G>C | unknown | A/AG | 1 | |
chr18:712757 | NM_017512.7:c.-118T>CT | unknown | C/G | 1 | |
ERCC2 | chr19:45855067 | NM_000400.4:c.2191-88C>T | unknown | G/A | 1 |
chr19:45873811 | NM_000400.4:c.-13GT>T | unknown | AC/A | 1 | |
FPGS | chr9:130569681 | NM_004957.6:c.580-19G>A | unknown | G/A | 1 |
RRM1 | chr11:4156257 | NM_001033.5:c.2002-55C>G | unknown | C/G | 1 |
SLC22A7 | chr6:43266286 | NM_153320.2:c.190T>G:p.Trp64Gly | missense | T/G | 2 |
TK1 | chr17:76182814 | NM_003258.5:c.98+53delC | unknown | AG/A | 1 |
chr17:76182814 | NM_003258.5:c.98+53delC | unknown | A/A | 2 | |
TYMS | chr18:671311 | NM_001071.4:c.733-69A>C | unknown | A/C | 3 |
PPAT | chr4:57272852 | NM_002703.5:c.211A>G:p.Asn71Asp | missense | T/C | 1 |
chr4:57301450 | NM_002703.5:c.128+66G>C | missense | C/G | 1 | |
UCK2 | chr1:165797127 | NM_012474.5:c.57G>A | synonymous | G/A | 1 |
UGT1A1 | chr2:234676396 | NM_019076.4:c.988-99_988-98insGT | unknown | T/TGT | 3 |
XRCC3 | chr14:104173311 | NM_001100118.2:c.406 + 29G>A | unknown | C/T | 1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Al-Mahrouqi, N.; Al Shuaili, N.; Al-Zadjali, S.; Pullanhi, A.; Al-Barwani, H.; Al-Kindy, A.; Al-Sharqi, H.; Al-Baimani, K.; Al-Moundhri, M.; Salman, B. Pharmacogenetic Profiling of Genes Associated with Outcomes of Chemotherapy in Omani Healthy Controls. Genes 2025, 16, 592. https://doi.org/10.3390/genes16050592
Al-Mahrouqi N, Al Shuaili N, Al-Zadjali S, Pullanhi A, Al-Barwani H, Al-Kindy A, Al-Sharqi H, Al-Baimani K, Al-Moundhri M, Salman B. Pharmacogenetic Profiling of Genes Associated with Outcomes of Chemotherapy in Omani Healthy Controls. Genes. 2025; 16(5):592. https://doi.org/10.3390/genes16050592
Chicago/Turabian StyleAl-Mahrouqi, Nahad, Nada Al Shuaili, Shoaib Al-Zadjali, Anoopa Pullanhi, Hamida Al-Barwani, Aida Al-Kindy, Hadeel Al-Sharqi, Khalid Al-Baimani, Mansour Al-Moundhri, and Bushra Salman. 2025. "Pharmacogenetic Profiling of Genes Associated with Outcomes of Chemotherapy in Omani Healthy Controls" Genes 16, no. 5: 592. https://doi.org/10.3390/genes16050592
APA StyleAl-Mahrouqi, N., Al Shuaili, N., Al-Zadjali, S., Pullanhi, A., Al-Barwani, H., Al-Kindy, A., Al-Sharqi, H., Al-Baimani, K., Al-Moundhri, M., & Salman, B. (2025). Pharmacogenetic Profiling of Genes Associated with Outcomes of Chemotherapy in Omani Healthy Controls. Genes, 16(5), 592. https://doi.org/10.3390/genes16050592