Pontocerebellar Hypoplasia Type 1 and Associated Neuronopathies
Abstract
:1. Introduction
2. Genes
2.1. Vaccinia-Related Kinase 1 (VRK1; OMIM *602168)
2.2. Nuclear RNA Exosome Complex Components 3, 8 and 9 (EXOSC 3; OMIM *606489, EXOSC8; OMIM *606019, EXOSC9; OMIM *606180)
2.3. Solute Carrier Family 25, Member 46 (SLC25A46; OMIM *610826)
3. Clinical Phenotypes
3.1. Pontocerebellar Hypoplasia Type 1 and Spinal Muscular Atrophy (PCH1-SMA)
3.2. Hereditary Motor Neuropathy and Motor Neuron Disorders Without Neurodevelopmental Abnormalities
3.3. Sensorimotor Axonal Polyneuropathy with or Without Neurodevelopmental Abnormalities
4. Discussion
Gene | Base Pair Mutation | AminoAcid Substitution | Onset (Outcome) | Imaging/CNS Phenotype | NMD Phenotype | Reference |
---|---|---|---|---|---|---|
VRK1 | c.197C>G (he); c.583T>G (he) | p.Ala66Gly; p.Leu195Val | Adult (alive at 48 yr) | Unk | SMA | [9] |
c.265C>T (he); c.769G>A (he) | p.Arg89*; p.Gly257Ser | Childhood (alive at 27 yr) | Normal | ALS | [32] | |
C.266G>A (he); c.706G>A (he) | p.Arg89Gln; p.Val236Met | Infancy (alive at 9 and 10 yr) | Microcephaly | HMSN | [35] | |
c.356A>G (he); c.961C>T(he) | p.His119Arg; p.Arg321Cys | Adult (alive at 32 yr) | Unk | ALS | [11] | |
c.356A>G (he); c.1072C>T (he) | p.His119Arg; p.Arg 358* | Teenage (alive at 56 yr) | Brain atrophy | SMA | [34] | |
c.398G>A (he); c.727G>A (he) | p.Arg133His; p.Asp243Asn | Teenage (alive at 28 and 33 yr) | Normal | HMN | [16] | |
c.403G>A (he); c.583T>G (he) | p.Gly135Arg; p.Leu195Val | Childhood (alive at 20 yr) | Normal | ALS | [34] | |
c.583T>G (he); c.701A>G (he) | p.Leu195Val; p.Asn234Ser | Adult (alive at 37 yr) | Unk | SMA | [9] | |
c.607C>T (he); c.858G>T (he) | p.Arg203Trp; p.Met286Ile | Adult (alive at 59 yr) | Unk | SMA | [9] | |
c.637T>C (ho) | p.Tyr213His | Childhood (alive at 35 yr) | Unk | HMSN | [48] | |
c.706G>A (he); c.961C>T (he) | p.Val236Met; p.Arg321Cys | Adult (alive at 51 yr) | Normal | SMA | [15] | |
c.710-14T>C (he); c.721C>T (he) | Intron; p.Arg241Cys | Childhood (alive at 28 yr) | Normal | ALS | [32] | |
c.767C>T (he); c.800A>G (he) | p.Thr256Ile; p.Asp267Gly | Childhood (alive at 24 yr) | Normal # | ALS | [33] | |
c.788A>G (ho) | p.Asp263Gly | Childhood (alive at 25 and 29 yr) | Minimal cerebellar atrophy and normal | HSP | [49] | |
c.961C>T (ho) | p.Arg321Cys | Adult, Teenage (alive at 55 yr) | Unk; Normal | HMN, SMA | [12,15] | |
c.1072C>T (ho) | p.Arg358* | Antenatal (died at 9.5 and 11 yr) Toddler (alive at 10 yr) | PCH, microcephaly, Lissencephaly | SMA, HMSN | [30,35] | |
c.1124G>A (ho) | p.Trp375* | Teenage (alive at 37, 42 and 46 yr) | Normal | SMA, HMN | [50,51] | |
c.1159+1G>A (ho) | p.Arg387Hisfs*7 | Infancy, Childhood (died at 13 yr, alive at 32 yr) | Normal | ALS, SMA | [52] | |
c.1160G>A (ho) | p.Arg387His | Teenage (alive at 49 yr), Adult (alive at 59 and 61 yr) | Unk; Normal | HMSN; HMN | [10,16] | |
EXOSC3 | c.92G>C (ho) | p.Gly31Ala | Infancy (died at 4 d–17 mo.) | PCH, microcephaly | SMA | [5,17] |
c.325-4_329dupGTAGTATGT (he); c.334G>A (he) c.395A>C (he) | p.Pro111*; p.Val112Ile; p.Asp132Ala | Infancy (died at 6 mo.) | PCH | SMA | [17] | |
c.325T>A (he) c.395A>C (he) | p.Tyr109Asn; p.Asp132Ala | Infancy (died at 8.5 mo) | PCH | SMA | [17] | |
c.395A>C (ho) | p.Asp132Ala | Infancy (died at 5 d–12 yr) | PCH, progressive microcephaly, cerebellar atrophy, | ALS, SMA | [17,38,42,53] | |
c.395A>C (he); g.del37781240-37787410 (he) | p.Asp132Ala; intron. Deletion of exons 1–3 | Infancy (died at 6 mo.) | PCH, optic atrophy | SMA | [17] | |
c.404G>A (ho) | p.Gly135Glu | Infancy (died at 2 mo) | PCH | SMA | [17] | |
EXOSC8 | c.238 G>A (ho) | p.Val80Ile | Birth (alive at 3 yr) | PCH, hypoplastic temporal lobes | SMA | [54] |
c.390+1delG (he); c.628C>T (he); c.815G>T (he) | p.Ser116LysfsTer27; p.Pro210Ser; p.Ser272Thr | Infant (alive at 16 yr) | PCH | SMA | [13] | |
c.815 G>C (ho) | p.Ser272Thr | Infancy (died at 9–19 mo.) | PCH | SMA | [55] | |
EXOSC9 | c.41T>C (ho) | p.Leu14Pro | Infant (died at 8–10 mo) | Cerebellar atrophy, | SMA, HMN | [56,57] |
c.41T>C (he); c.481C>T (he) | p.Leu14Pro; p.Arg161* | Infant (died at 10 mo.) | Cerebellar atrophy, CNS dysmyelination, | HMN | [57] | |
c.151G>C (ho) | p.Gly51Arg | Infant (died at 2 mo.) | Cerebellar atrophy | SMA | [14] | |
c.239T>G (he); c.484dupA (he) | p.Gly51Arg; p.Arg162Lysfs*3 | Toddler (alive at 6 yr, died at 10 yr) | Cerebellar atrophy, normal pons | SMA | [14] | |
SLC25A46 | c.42C>G (he); c.462+ 1G>A (he) | p.Tyr14*;(intron) | Infant (died at 1–18 d) | PCH | SMA | [8] |
c.165_165insC (he); c.746G>A (he), | p.[His56fs*94]; [Gly249Asp] | Childhood (alive at 43 yr) | Normal | HMSN | [22] | |
c.413 T>G (ho) | p.Leu138Arg | Infant (alive at 15 yr) | Cerebellar atrophy, progressive myoclonic ataxia | HMSN | [58] | |
c.1018C>T (ho) | p.Arg340Cys | Toddler (alive at 51yr) | Cerebellar atrophy | HMSN | [22,59] | |
c.1022T>C (ho) | p.Leu341Pro | Infant (died at 2–6 wk) | PCH, optic atrophy, hypotonia, seizures | HMSN | [28] |
Author Contributions
Funding
Conflicts of Interest
References
- van Dijk, T.; Baas, F.; Barth, P.G.; Poll-The, B.T. What’s new in pontocerebellar hypoplasia? An update on genes and subtypes. Orphanet J. Rare Dis. 2018, 13, 92. [Google Scholar] [CrossRef] [PubMed]
- Rusch, C.T.; Bolsterli, B.K.; Kottke, R.; Steinfeld, R.; Boltshauser, E. Pontocerebellar hypoplasia: A pattern recognition approach. Cerebellum 2020, 19, 569–582. [Google Scholar] [CrossRef] [PubMed]
- Sanchez-Albisua, I.; Frolich, S.; Barth, P.G.; Steinlin, M.; Krageloh-Mann, I. Natural course of pontocerebellar hypoplasia type 2A. Orphanet J. Rare Dis. 2014, 9, 70. [Google Scholar] [CrossRef] [PubMed]
- Barth, P.G. Pontocerebellar hypoplasias. An overview of a group of inherited neurodegenerative disorders with fetal onset. Brain Dev. 1993, 15, 411–422. [Google Scholar] [CrossRef] [PubMed]
- Ivanov, I.; Atkinson, D.; Litvinenko, I.; Angelova, L.; Andonova, S.; Mumdjiev, H.; Pacheva, I.; Panova, M.; Yordanova, R.; Belovejdov, V.; et al. Pontocerebellar hypoplasia type 1 for the neuropediatrician: Genotype-phenotype correlations and diagnostic guidelines based on new cases and overview of the literature. Eur. J. Paediatr. Neurol. 2018, 22, 674–681. [Google Scholar] [CrossRef] [PubMed]
- Goutieres, F.; Aicardi, J.; Farkas, E. Anterior horn cell disease associated with pontocerebellar hypoplasia in infants. J. Neurol. Neurosurg. Psychiatry 1977, 40, 370–378. [Google Scholar] [CrossRef] [PubMed]
- Norman, R.M. Cerebellar hypoplasia in Werdnig-Hoffmann disease. Arch. Dis. Child. 1961, 36, 96–101. [Google Scholar] [CrossRef] [PubMed]
- Braunisch, M.C.; Gallwitz, H.; Abicht, A.; Diebold, I.; Holinski-Feder, E.; Van Maldergem, L.; Lammens, M.; Kovacs-Nagy, R.; Alhaddad, B.; Strom, T.M.; et al. Extension of the phenotype of biallelic loss-of-function mutations in SLC25A46 to the severe form of pontocerebellar hypoplasia type I. Clin. Genet. 2018, 93, 255–265. [Google Scholar] [CrossRef] [PubMed]
- Demaegd, K.; Brilstra, E.H.; Hoogendijk, J.E.; de Bie, C.I.; de Pagter, M.S.; van Hecke, W.; Muhlebner, A.; van Es, M.A.; Milone, M.; van Rheenen, W. Distal spinal muscular atrophy featured by predominant calf muscle involvement in VRK1 associated disease—Case series and review. Neuromuscul. Disord. 2022, 32, 527–532. [Google Scholar] [CrossRef] [PubMed]
- Greenbaum, L.; Barel, O.; Nikitin, V.; Hersalis-Eldar, A.; Kol, N.; Reznik-Wolf, H.; Dominissini, D.; Pras, E.; Dori, A. Identification of a homozygous VRK1 mutation in two patients with adult-onset distal hereditary motor neuropathy. Muscle Nerve 2020, 61, 395–400. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, T.P.; Biliciler, S.; Wiszniewski, W.; Sheikh, K. Expanding phenotype of VRK1 mutations in motor neuron disease. J. Clin. Neuromuscul. Dis. 2015, 17, 69–71. [Google Scholar] [CrossRef] [PubMed]
- Previtali, S.C.; Zhao, E.; Lazarevic, D.; Pipitone, G.B.; Fabrizi, G.M.; Manganelli, F.; Mazzeo, A.; Pareyson, D.; Schenone, A.; Taroni, F.; et al. Expanding the spectrum of genes responsible for hereditary motor neuropathies. J. Neurol. Neurosurg. Psychiatry 2019, 90, 1171–1179. [Google Scholar] [CrossRef] [PubMed]
- Rodriguez-Garcia, M.E.; Cotrina-Vinagre, F.J.; Bellusci, M.; Merino-Lopez, A.; Chumilla-Calzada, S.; Garcia-Silva, M.T.; Martinez-Azorin, F. New subtype of PCH1C caused by novel EXOSC8 variants in a 16-year-old Spanish patient. Neuromuscul. Disord. 2021, 31, 773–782. [Google Scholar] [CrossRef] [PubMed]
- Sakamoto, M.; Iwama, K.; Sekiguchi, F.; Mashimo, H.; Kumada, S.; Ishigaki, K.; Okamoto, N.; Behnam, M.; Ghadami, M.; Koshimizu, E.; et al. Novel EXOSC9 variants cause pontocerebellar hypoplasia type 1D with spinal motor neuronopathy and cerebellar atrophy. J. Hum. Genet. 2021, 66, 401–407. [Google Scholar] [CrossRef] [PubMed]
- Sung, A.; Moretti, P.; Shaibani, A. Adult-onset spinal muscular atrophy due to mutations in the VRK1 gene. Neurol. Genet. 2021, 7, e599. [Google Scholar] [CrossRef] [PubMed]
- Zivkovic, S.A.; Nowak, R.J.; DiCapua, D. CMT2 and distal hereditary motor neuropathy associated with VRK1 variants: Case series. Neuromuscul. Disord. 2024, 47, 105254. [Google Scholar] [CrossRef] [PubMed]
- Eggens, V.R.; Barth, P.G.; Niermeijer, J.M.; Berg, J.N.; Darin, N.; Dixit, A.; Fluss, J.; Foulds, N.; Fowler, D.; Hortobagyi, T.; et al. EXOSC3 mutations in pontocerebellar hypoplasia type 1: Novel mutations and genotype-phenotype correlations. Orphanet J. Rare Dis. 2014, 9, 23. [Google Scholar] [CrossRef] [PubMed]
- El-Bazzal, L.; Rihan, K.; Bernard-Marissal, N.; Castro, C.; Chouery-Khoury, E.; Desvignes, J.P.; Atkinson, A.; Bertaux, K.; Koussa, S.; Levy, N.; et al. Loss of Cajal bodies in motor neurons from patients with novel mutations in VRK1. Hum. Mol. Genet. 2019, 28, 2378–2394. [Google Scholar] [CrossRef] [PubMed]
- Martin-Doncel, E.; Rojas, A.M.; Cantarero, L.; Lazo, P.A. VRK1 functional insufficiency due to alterations in protein stability or kinase activity of human VRK1 pathogenic variants implicated in neuromotor syndromes. Sci. Rep. 2019, 9, 13381. [Google Scholar] [CrossRef] [PubMed]
- Lazo, P.A.; Morejon-Garcia, P. VRK1 variants at the cross road of Cajal body neuropathogenic mechanisms in distal neuropathies and motor neuron diseases. Neurobiol. Dis. 2023, 183, 106172. [Google Scholar] [CrossRef] [PubMed]
- Kilchert, C.; Wittmann, S.; Vasiljeva, L. The regulation and functions of the nuclear RNA exosome complex. Nat. Rev. Mol. Cell Biol. 2016, 17, 227–239. [Google Scholar] [CrossRef] [PubMed]
- Abrams, A.J.; Hufnagel, R.B.; Rebelo, A.; Zanna, C.; Patel, N.; Gonzalez, M.A.; Campeanu, I.J.; Griffin, L.B.; Groenewald, S.; Strickland, A.V.; et al. Mutations in SLC25A46, encoding a UGO1-like protein, cause an optic atrophy spectrum disorder. Nat. Genet. 2015, 47, 926–932. [Google Scholar] [CrossRef] [PubMed]
- Tabara, L.C.; Segawa, M.; Prudent, J. Molecular mechanisms of mitochondrial dynamics. Nat. Rev. Mol. Cell Biol. 2025, 26, 123–146. [Google Scholar] [CrossRef] [PubMed]
- Adebayo, M.; Singh, S.; Singh, A.P.; Dasgupta, S. Mitochondrial fusion and fission: The fine-tune balance for cellular homeostasis. FASEB J. 2021, 35, e21620. [Google Scholar] [CrossRef] [PubMed]
- Boopathy, S.; Luce, B.E.; Lugo, C.M.; Hakim, P.; McDonald, J.; Kim, H.L.; Ponce, J.; Ueberheide, B.M.; Chao, L.H. Identification of SLC25A46 interaction interfaces with mitochondrial membrane fusogens Opa1 and Mfn2. J. Biol. Chem. 2024, 300, 107740. [Google Scholar] [CrossRef] [PubMed]
- Janer, A.; Prudent, J.; Paupe, V.; Fahiminiya, S.; Majewski, J.; Sgarioto, N.; Des Rosiers, C.; Forest, A.; Lin, Z.Y.; Gingras, A.C.; et al. SLC25A46 is required for mitochondrial lipid homeostasis and cristae maintenance and is responsible for Leigh syndrome. EMBO Mol. Med. 2016, 8, 1019–1038. [Google Scholar] [CrossRef] [PubMed]
- Dong, J.; Chen, L.; Ye, F.; Tang, J.; Liu, B.; Lin, J.; Zhou, P.H.; Lu, B.; Wu, M.; Lu, J.H.; et al. Mic19 depletion impairs endoplasmic reticulum-mitochondrial contacts and mitochondrial lipid metabolism and triggers liver disease. Nat. Commun. 2024, 15, 168. [Google Scholar] [CrossRef] [PubMed]
- Wan, J.; Steffen, J.; Yourshaw, M.; Mamsa, H.; Andersen, E.; Rudnik-Schoneborn, S.; Pope, K.; Howell, K.B.; McLean, C.A.; Kornberg, A.J.; et al. Loss of function of SLC25A46 causes lethal congenital pontocerebellar hypoplasia. Brain 2016, 139, 2877–2890. [Google Scholar] [CrossRef] [PubMed]
- Rudnik-Schoneborn, S.; Sztriha, L.; Aithala, G.R.; Houge, G.; Laegreid, L.M.; Seeger, J.; Huppke, M.; Wirth, B.; Zerres, K. Extended phenotype of pontocerebellar hypoplasia with infantile spinal muscular atrophy. Am. J. Med. Genet. Part A 2003, 117A, 10–17. [Google Scholar] [CrossRef] [PubMed]
- Renbaum, P.; Kellerman, E.; Jaron, R.; Geiger, D.; Segel, R.; Lee, M.; King, M.C.; Levy-Lahad, E. Spinal muscular atrophy with pontocerebellar hypoplasia is caused by a mutation in the VRK1 gene. Am. J. Hum. Genet. 2009, 85, 281–289. [Google Scholar] [CrossRef] [PubMed]
- Zambon, A.A.; Pini, V.; Bosco, L.; Falzone, Y.M.; Munot, P.; Muntoni, F.; Previtali, S.C. Early onset hereditary neuronopathies: An update on non-5q motor neuron diseases. Brain 2023, 146, 806–822. [Google Scholar] [CrossRef] [PubMed]
- Silva, D.P.; Soeiro, E.S.M.; Silveira, F.; Pinto, S.; Gromicho, M.; Sousa, A.B.; Leao, M.; De Carvalho, M. VRK1 variants in two Portuguese unrelated patients with childhood-onset motor neuron disease. Amyotroph. Lateral Scler. Front. Degener. 2020, 21, 291–295. [Google Scholar] [CrossRef] [PubMed]
- Yamaura, G.; Higashiyama, Y.; Kusama, K.; Kunii, M.; Tanaka, K.; Koyano, S.; Nakashima, M.; Tsurusaki, Y.; Miyake, N.; Saitsu, H.; et al. Novel VRK1 mutations in a patient with childhood-onset motor neuron disease. Intern. Med. 2019, 58, 2715–2719. [Google Scholar] [CrossRef] [PubMed]
- Stoll, M.; Teoh, H.; Lee, J.; Reddel, S.; Zhu, Y.; Buckley, M.; Sampaio, H.; Roscioli, T.; Farrar, M.; Nicholson, G. Novel motor phenotypes in patients with VRK1 mutations without pontocerebellar hypoplasia. Neurology 2016, 87, 65–70. [Google Scholar] [CrossRef] [PubMed]
- Gonzaga-Jauregui, C.; Lotze, T.; Jamal, L.; Penney, S.; Campbell, I.M.; Pehlivan, D.; Hunter, J.V.; Woodbury, S.L.; Raymond, G.; Adesina, A.M.; et al. Mutations in VRK1 associated with complex motor and sensory axonal neuropathy plus microcephaly. JAMA Neurol. 2013, 70, 1491–1498. [Google Scholar] [CrossRef] [PubMed]
- Rossor, A.M.; Haddad, S.; Reilly, M.M. The evolving spectrum of complex inherited neuropathies. Curr. Opin. Neurol. 2024, 37, 427–444. [Google Scholar] [CrossRef] [PubMed]
- Abrams, A.J.; Fontanesi, F.; Tan, N.B.L.; Buglo, E.; Campeanu, I.J.; Rebelo, A.P.; Kornberg, A.J.; Phelan, D.G.; Stark, Z.; Zuchner, S. Insights into the genotype-phenotype correlation and molecular function of SLC25A46. Hum. Mutat. 2018, 39, 1995–2007. [Google Scholar] [CrossRef] [PubMed]
- Wan, J.; Yourshaw, M.; Mamsa, H.; Rudnik-Schoneborn, S.; Menezes, M.P.; Hong, J.E.; Leong, D.W.; Senderek, J.; Salman, M.S.; Chitayat, D.; et al. Mutations in the RNA exosome component gene EXOSC3 cause pontocerebellar hypoplasia and spinal motor neuron degeneration. Nat. Genet. 2012, 44, 704–708. [Google Scholar] [CrossRef] [PubMed]
- Mead, R.J.; Shan, N.; Reiser, H.J.; Marshall, F.; Shaw, P.J. Amyotrophic lateral sclerosis: A neurodegenerative disorder poised for successful therapeutic translation. Nat. Rev. Drug Discov. 2023, 22, 185–212. [Google Scholar] [CrossRef] [PubMed]
- Faller, K.M.E.; Chaytow, H.; Gillingwater, T.H. Targeting common disease pathomechanisms to treat amyotrophic lateral sclerosis. Nat. Rev. Neurol. 2025, 21, 86–102. [Google Scholar] [CrossRef] [PubMed]
- Oliveira, D.; Assoni, A.F.; Alves, L.M.; Sakugawa, A.; Melo, U.S.; Teles, E.S.A.L.; Sertie, A.L.; Caires, L.C.; Goulart, E.; Ghirotto, B.; et al. ALS-associated VRK1 R321C mutation causes proteostatic imbalance and mitochondrial defects in iPSC-derived motor neurons. Neurobiol. Dis. 2024, 198, 106540. [Google Scholar] [CrossRef] [PubMed]
- Schottmann, G.; Picker-Minh, S.; Schwarz, J.M.; Gill, E.; Rodenburg, R.J.T.; Stenzel, W.; Kaindl, A.M.; Schuelke, M. Recessive mutation in EXOSC3 associates with mitochondrial dysfunction and pontocerebellar hypoplasia. Mitochondrion 2017, 37, 46–54. [Google Scholar] [CrossRef] [PubMed]
- Manfredi, G.; Xu, Z. Mitochondrial dysfunction and its role in motor neuron degeneration in ALS. Mitochondrion 2005, 5, 77–87. [Google Scholar] [CrossRef] [PubMed]
- Barth, P.G.; Ryan, M.M.; Webster, R.I.; Aronica, E.; Kan, A.; Ramkema, M.; Jardine, P.; Poll-The, B.T. Rhabdomyolysis in pontocerebellar hypoplasia type 2 (PCH-2). Neuromuscul. Disord. 2008, 18, 52–58. [Google Scholar] [CrossRef] [PubMed]
- Ghasemi, M.R.; Tehrani Fateh, S.; Moeinafshar, A.; Sadeghi, H.; Karimzadeh, P.; Mirfakhraie, R.; Rezaei, M.; Hashemi-Gorji, F.; Rezvani Kashani, M.; Fazeli Bavandpour, F.; et al. Broadening the phenotype and genotype spectrum of novel mutations in pontocerebellar hypoplasia with a comprehensive molecular literature review. BMC Med. Genom. 2024, 17, 51. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.; Ge, Y.; Li, R.; He, G.; Lin, Y. Novel compound heterozygous missense variants in TOE1 gene associated with pontocerebellar hypoplasia type 7. Gene 2023, 862, 147250. [Google Scholar] [CrossRef] [PubMed]
- Gellersen, H.M.; Guo, C.C.; O’Callaghan, C.; Tan, R.H.; Sami, S.; Hornberger, M. Cerebellar atrophy in neurodegeneration-a meta-analysis. J. Neurol. Neurosurg. Psychiatry 2017, 88, 780–788. [Google Scholar] [CrossRef] [PubMed]
- Marcos, A.T.; Martin-Doncel, E.; Morejon-Garcia, P.; Marcos-Alcalde, I.; Gomez-Puertas, P.; Segura-Puimedon, M.; Armengol, L.; Navarro-Pando, J.M.; Lazo, P.A. VRK1 (Y213H) homozygous mutant impairs Cajal bodies in a hereditary case of distal motor neuropathy. Ann. Clin. Transl. Neurol. 2020, 7, 808–818. [Google Scholar] [CrossRef] [PubMed]
- Morejon-Garcia, P.; Keren, B.; Marcos-Alcalde, I.; Gomez-Puertas, P.; Mochel, F.; Lazo, P.A. Dysfunctional Homozygous VRK1-D263G Variant Impairs the Assembly of Cajal Bodies and DNA Damage Response in Hereditary Spastic Paraplegia. Neurol. Genet. 2021, 7, e624. [Google Scholar] [CrossRef] [PubMed]
- Feng, S.Y.; Li, L.Y.; Feng, S.M.; Zou, Z.Y. A novel VRK1 mutation associated with recessive distal hereditary motor neuropathy. Ann. Clin. Transl. Neurol. 2019, 6, 401–405. [Google Scholar] [CrossRef] [PubMed]
- Li, N.; Wang, L.; Sun, X.; Lu, Z.; Suo, X.; Li, J.; Peng, J.; Peng, R. A novel mutation in VRK1 associated with distal spinal muscular atrophy. J. Hum. Genet. 2019, 64, 215–219. [Google Scholar] [CrossRef] [PubMed]
- Sedghi, M.; Moslemi, A.R.; Olive, M.; Etemadifar, M.; Ansari, B.; Nasiri, J.; Emrahi, L.; Mianesaz, H.R.; Laing, N.G.; Tajsharghi, H. Motor neuron diseases caused by a novel VRK1 variant—A genotype/phenotype study. Ann. Clin. Transl. Neurol. 2019, 6, 2197–2204. [Google Scholar] [CrossRef] [PubMed]
- Biancheri, R.; Cassandrini, D.; Pinto, F.; Trovato, R.; Di Rocco, M.; Mirabelli-Badenier, M.; Pedemonte, M.; Panicucci, C.; Trucks, H.; Sander, T.; et al. EXOSC3 mutations in isolated cerebellar hypoplasia and spinal anterior horn involvement. J. Neurol. 2013, 260, 1866–1870. [Google Scholar] [CrossRef] [PubMed]
- Zaki, M.S.; Abdel-Ghafar, S.F.; Abdel-Hamid, M.S. A missense variant in EXOSC8 causes exon skipping and expands the phenotypic spectrum of pontocerebellar hypoplasia type 1C. J. Hum. Genet. 2024, 69, 79–84. [Google Scholar] [CrossRef] [PubMed]
- Boczonadi, V.; Muller, J.S.; Pyle, A.; Munkley, J.; Dor, T.; Quartararo, J.; Ferrero, I.; Karcagi, V.; Giunta, M.; Polvikoski, T.; et al. EXOSC8 mutations alter mRNA metabolism and cause hypomyelination with spinal muscular atrophy and cerebellar hypoplasia. Nat. Commun. 2014, 5, 4287. [Google Scholar] [CrossRef] [PubMed]
- Burns, D.T.; Donkervoort, S.; Muller, J.S.; Knierim, E.; Bharucha-Goebel, D.; Faqeih, E.A.; Bell, S.K.; AlFaifi, A.Y.; Monies, D.; Millan, F.; et al. Variants in EXOSC9 disrupt the RNA exosome and result in cerebellar atrophy with spinal motor neuronopathy. Am. J. Hum. Genet. 2018, 102, 858–873. [Google Scholar] [CrossRef] [PubMed]
- Bizzari, S.; Hamzeh, A.R.; Mohamed, M.; Al-Ali, M.T.; Bastaki, F. Expanded PCH1D phenotype linked to EXOSC9 mutation. Eur. J. Med. Genet. 2020, 63, 103622. [Google Scholar] [CrossRef] [PubMed]
- Charlesworth, G.; Balint, B.; Mencacci, N.E.; Carr, L.; Wood, N.W.; Bhatia, K.P. SLC25A46 mutations underlie progressive myoclonic ataxia with optic atrophy and neuropathy. Mov. Disord. 2016, 31, 1249–1251. [Google Scholar] [CrossRef] [PubMed]
- Hammer, M.B.; Ding, J.; Mochel, F.; Eleuch-Fayache, G.; Charles, P.; Coutelier, M.; Gibbs, J.R.; Arepalli, S.K.; Chong, S.B.; Hernandez, D.G.; et al. SLC25A46 mutations associated with autosomal recessive cerebellar ataxia in north african families. Neurodegener. Dis. 2017, 17, 208–212. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Škarica, M.; Acsadi, G.; Živković, S.A. Pontocerebellar Hypoplasia Type 1 and Associated Neuronopathies. Genes 2025, 16, 585. https://doi.org/10.3390/genes16050585
Škarica M, Acsadi G, Živković SA. Pontocerebellar Hypoplasia Type 1 and Associated Neuronopathies. Genes. 2025; 16(5):585. https://doi.org/10.3390/genes16050585
Chicago/Turabian StyleŠkarica, Mario, Gyula Acsadi, and Sasha A. Živković. 2025. "Pontocerebellar Hypoplasia Type 1 and Associated Neuronopathies" Genes 16, no. 5: 585. https://doi.org/10.3390/genes16050585
APA StyleŠkarica, M., Acsadi, G., & Živković, S. A. (2025). Pontocerebellar Hypoplasia Type 1 and Associated Neuronopathies. Genes, 16(5), 585. https://doi.org/10.3390/genes16050585