The rs1403543 Polymorphism of AGTR2, Which Encodes the Type-2 Angiotensin II Receptor, and Left Ventricular Mass in Polish Full-Term Newborns
Abstract
:1. Introduction
2. Materials and Methods
2.1. Newborns
2.2. AGTR2:rs1403543 Genotyping
2.3. Statistical Analyses
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
AGTR2 | Type-2 Angiotensin II Receptor gene |
LVM | Left Ventricular Mass |
PCR | Polymerase Chain Reaction |
RFLP | Restriction Fragment Length Polymorphism |
BM | Body Mass |
BL | Body Length |
BSA | Body Surface Area |
LVH | Left Ventricular Hypertrophy |
RAS | Renin–Angiotensin System |
ANGII | Angiotensin II |
AT1R | Type-1 Angiotensin II Receptor |
AT2R | Type-2 Angiotensin II Receptor |
LVMI | Left Ventricular Mass Index |
GLAOLD | Glasgow Heart Scan Old |
MRI | Magnetic Resonance Imaging |
EPOGH | European Project On Genes in Hypertension |
CVD | Cardiovascular Disease |
IVST | Interventricular Septal Thickness |
LVPWT | Left Ventricular Posterior Wall Thickness |
LVID | Left Ventricular Internal Dimension |
ICSBP | Interferon Consensus Sequence Binding Protein |
ELP | Embryonal, Long Terminal Repeat Binding Protein |
cDNA | Complementary deoxyribonucleic acid |
mRNA | Messenger ribonucleic acid |
D′ | The difference between the observed and the expected frequency of a given haplotype |
r2 | The correlation between a pair of loci |
LD | Linkage Disequilibrium |
dbSNP | Single-Nucleotide Polymorphism database |
TSI | Toscani in Italy |
CEU | Utah Residents with Northern and Western European ancestry |
GBR | British in England and Scotland |
MYH6 | Myosin Heavy Chain 6 gene |
MYH7 | Myosin Heavy Chain 7 gene |
Hsa-miR | Homo sapiens microRNA (messenger ribonucleic acid) |
References
- Bula, K.; Ćmiel, A.; Sejud, M.; Sobczyk, K.; Ryszkiewicz, S.; Szydło, K.; Wita, M.; Mizia-Stec, K. Electrocardiographic criteria for left ventricular hypertrophy in aortic valve stenosis: Correlation with echocardiographic parameters. Ann. Noninvasive Electrocardiol. 2019, 24, e12645. [Google Scholar] [CrossRef] [PubMed]
- Lang, R.M.; Bierig, M.; Devereux, R.B.; Flachskampf, F.A.; Foster, E.; Pellikka, P.A.; Picard, M.H.; Roman, M.J.; Seward, J.; Shanewise, J.S.; et al. Recommendations for chamber quantification: A report from the American Society of Echocardiography’s Guidelines and Standards Committee and the Chamber Quantification Writing Group, developed in conjunction with the European Association of Echocardiography, a branch of the European Society of Cardiology. J. Am. Soc. Echocardiogr. 2005, 18, 1440–1463. [Google Scholar] [CrossRef]
- Bornstein, A.B.; Rao, S.S.; Marwaha, K. Left Ventricular Hypertrophy. In StatPearls [Internet]; StatPearls Publishing: Treasure Island, FL, USA, 2025. Available online: https://www.ncbi.nlm.nih.gov/books/NBK557534/ (accessed on 12 February 2025).
- Swan, L.; Birnie, D.H.; Padmanabhan, S.; Inglis, G.; Connell, J.M.; Hillis, W.S. The genetic determination of left ventricular mass in healthy adults. Eur. Heart J. 2003, 24, 577–582. [Google Scholar] [CrossRef] [PubMed]
- Sharma, P.; Middelberg, R.P.; Andrew, T.; Johnson, M.R.; Christley, H.; Brown, M.J. Heritability of left ventricular mass in a large cohort of twins. J. Hypertens. 2006, 24, 321–324. [Google Scholar] [CrossRef] [PubMed]
- Bella, J.N.; MacCluer, J.W.; Roman, M.J.; Almasy, L.; North, K.E.; Best, L.G.; Lee, E.T.; Fabsitz, R.R.; Howard, B.V.; Devereux, R.B. Heritability of left ventricular dimensions and mass in American Indians: The Strong Heart Study. J. Hypertens. 2004, 22, 281–286. [Google Scholar] [CrossRef]
- Assimes, T.L.; Narasimhan, B.; Seto, T.B.; Yoon, S.; Curb, J.D.; Olshen, R.A.; Quertermous, T. Heritability of left ventricular mass in Japanese families living in Hawaii: The SAPPHIRe Study. J. Hypertens. 2007, 25, 985–992. [Google Scholar] [CrossRef]
- Verhaaren, H.A.; Schieken, R.M.; Mosteller, M.; Hewitt, J.K.; Eaves, L.J.; Nance, W.E. Bivariate genetic analysis of left ventricular mass and weight in pubertal twins (the Medical College of Virginia twin study). Am. J. Cardiol. 1991, 68, 661–668. [Google Scholar] [CrossRef]
- Alexander, B.T.; South, A.M.; August, P.; Bertagnolli, M.; Ferranti, E.P.; Grobe, J.L.; Jones, E.J.; Loria, A.S.; Safdar, B.; Sequeira-Lopez, M.L.S.; et al. Appraising the Preclinical Evidence of the Role of the Renin-Angiotensin-Aldosterone System in Antenatal Programming of Maternal and Offspring Cardiovascular Health Across the Life Course: Moving the Field Forward: A Scientific Statement from the American Heart Association. Hypertension 2023, 80, e75–e89. [Google Scholar] [CrossRef]
- Bader, M.; Steckelings, U.M.; Alenina, N.; Santos, R.A.S.; Ferrario, C.M. Alternative Renin-Angiotensin System. Hypertension 2024, 81, 964–976. [Google Scholar] [CrossRef]
- Steckelings, U.M.; Widdop, R.E.; Sturrock, E.D.; Lubbe, L.; Hussain, T.; Kaschina, E.; Unger, T.; Hallberg, A.; Carey, R.M.; Sumners, C. The Angiotensin AT2 Receptor: From a Binding Site to a Novel Therapeutic Target. Pharmacol. Rev. 2022, 74, 1051–1135. [Google Scholar] [CrossRef]
- Biermann, D.; Heilmann, A.; Didié, M.; Schlossarek, S.; Wahab, A.; Grimm, M.; Römer, M.; Reichenspurner, H.; Sultan, K.R.; Steenpass, A.; et al. Impact of AT2 receptor deficiency on postnatal cardiovascular development. PLoS ONE 2012, 7, e47916. [Google Scholar] [CrossRef]
- Hein, L.; Barsh, G.S.; Pratt, R.E.; Dzau, V.J.; Kobilka, B.K. Behavioural and cardiovascular effects of disrupting the angiotensin II type-2 receptor in mice. Nature 1995, 377, 744–747. [Google Scholar] [CrossRef] [PubMed]
- Ichiki, T.; Labosky, P.A.; Shiota, C.; Okuyama, S.; Imagawa, Y.; Fogo, A.; Niimura, F.; Ichikawa, I.; Hogan, B.L.; Inagami, T. Effects on blood pressure and exploratory behaviour of mice lacking angiotensin II type-2 receptor. Nature 1995, 377, 748–750. [Google Scholar] [CrossRef]
- Akishita, M.; Yamada, H.; Dzau, V.J.; Horiuchi, M. Increased vasoconstrictor response of the mouse lacking angiotensin II type 2 receptor. Biochem. Biophys. Res. Commun. 1999, 261, 345–349. [Google Scholar] [CrossRef] [PubMed]
- Balmforth, A.J. Angiotensin II type 2 receptor gene polymorphisms in cardiovascular disease. J. Renin Angiotensin Aldosterone Syst. 2010, 11, 79–85. [Google Scholar] [CrossRef] [PubMed]
- Phan, L.; Zhang, H.; Wang, Q.; Villamarin, R.; Hefferon, T.; Ramanathan, A.; Kattman, B. The evolution of dbSNP: 25 years of impact in genomic research. Nucleic Acids Res. 2025, 53, D925–D931. [Google Scholar] [CrossRef]
- Schmieder, R.E.; Erdmann, J.; Delles, C.; Jacobi, J.; Fleck, E.; Hilgers, K.; Regitz-Zagrosek, V. Effect of the angiotensin II type 2-receptor gene (+1675 G/A) on left ventricular structure in humans. J. Am. Coll. Cardiol. 2001, 37, 175–182. [Google Scholar] [CrossRef]
- Herrmann, S.M.; Nicaud, V.; Schmidt-Petersen, K.; Pfeifer, J.; Erdmann, J.; McDonagh, T.; Dargie, H.J.; Paul, M.; Regitz-Zagrosek, V. Angiotensin II type 2 receptor gene polymorphism and cardiovascular phenotypes: The GLAECO and GLAOLD studies. Eur. J. Heart Fail. 2002, 4, 707–712. [Google Scholar] [CrossRef]
- Alfakih, K.; Maqbool, A.; Sivananthan, M.; Walters, K.; Bainbridge, G.; Ridgway, J.; Balmforth, A.J.; Hall, A.S. Left ventricle mass index and the common, functional, X-linked angiotensin II type-2 receptor gene polymorphism (-1332 G/A) in patients with systemic hypertension. Hypertension 2004, 43, 1189–1194. [Google Scholar] [CrossRef]
- Kuznetsova, T.; Staessen, J.A.; Thijs, L.; Kunath, C.; Olszanecka, A.; Ryabikov, A.; Tikhonoff, V.; Stolarz, K.; Bianchi, G.; Casiglia, E.; et al. Left ventricular mass in relation to genetic variation in angiotensin II receptors, renin system genes, and sodium excretion. Circulation 2004, 110, 2644–2650. [Google Scholar] [CrossRef]
- Ott, C.; Titze, S.I.; Schwarz, T.K.; Kreutz, R.; Hilgers, K.F.; Schmidt, B.M.; Schlaich, M.P.; Schmieder, R.E. High sodium intake modulates left ventricular mass in patients with G expression of +1675 G/A angiotensin II receptor type 2 gene. J. Hypertens. 2007, 25, 1627–1632. [Google Scholar] [CrossRef]
- Orlowska-Baranowska, E.; Placha, G.; Baranowski, R.; Michalek, P.; Gora, J.; Gaciong, Z.; Stepinska, J. Can angiotensin II +1675 G/A type 2 receptor gene polymorphism be a marker of left ventricular hypertrophy in patients with aortic stenosis? J. Heart Valve Dis. 2007, 16, 495–503. [Google Scholar] [PubMed]
- Carstens, N.; van der Merwe, L.; Revera, M.; Heradien, M.; Goosen, A.; Brink, P.A.; Moolman-Smook, J.C. Genetic variation in angiotensin II type 2 receptor gene influences extent of left ventricular hypertrophy in hypertrophic cardiomyopathy independent of blood pressure. J. Renin Angiotensin Aldosterone Syst. 2011, 12, 274–280. [Google Scholar] [CrossRef] [PubMed]
- Huber, M.; Völler, H.; Jakob, S.; Reibis, R.; Do, V.; Bolbrinker, J.; Zergibel, I.; Schmieder, R.E.; Treszl, A.; Wegscheider, K.; et al. Role of the angiotensin II type 2 receptor gene (+1675G/A) polymorphism on left ventricular hypertrophy and geometry in treated hypertensive patients. J. Hypertens. 2010, 28, 1221–1229. [Google Scholar] [CrossRef] [PubMed]
- Dwyer, T.; Sun, C.; Magnussen, C.G.; Raitakari, O.T.; Schork, N.J.; Venn, A.; Burns, T.L.; Juonala, M.; Steinberger, J.; Sinaiko, A.R.; et al. Cohort Profile: The international childhood cardiovascular cohort (i3C) consortium. Int. J. Epidemiol. 2013, 42, 86–96. [Google Scholar] [CrossRef]
- Lai, C.C.; Sun, D.; Cen, R.; Wang, J.; Li, S.; Fernandez-Alonso, C.; Chen, W.; Srinivasan, S.R.; Berenson, G.S. Impact of long-term burden of excessive adiposity and elevated blood pressure from childhood on adulthood left ventricular remodeling patterns: The Bogalusa Heart Study. J. Am. Coll. Cardiol. 2014, 64, 1580–1587. [Google Scholar] [CrossRef]
- Hanevold, C.; Waller, J.; Daniels, S.; Portman, R.; Sorof, J. The effects of obesity, gender, and ethnic group on left ventricular hypertrophy and geometry in hypertensive children: A collaborative study of the International Pediatric Hypertension Association. Pediatrics 2004, 113, 328–333. [Google Scholar] [CrossRef]
- Dhuper, S.; Abdullah, R.A.; Weichbrod, L.; Mahdi, E.; Cohen, H.W. Association of obesity and hypertension with left ventricular geometry and function in children and adolescents. Obesity 2011, 19, 128–133. [Google Scholar] [CrossRef]
- Li, X.; Li, S.; Ulusoy, E.; Chen, W.; Srinivasan, S.R.; Berenson, G.S. Childhood adiposity as a predictor of cardiac mass in adulthood: The Bogalusa Heart Study. Circulation 2004, 110, 3488–3492. [Google Scholar] [CrossRef]
- Toprak, A.; Wang, H.; Chen, W.; Paul, T.; Srinivasan, S.; Berenson, G. Relation of childhood risk factors to left ventricular hypertrophy (eccentric or concentric) in relatively young adulthood (from the Bogalusa Heart Study). Am. J. Cardiol. 2008, 101, 1621–1625. [Google Scholar] [CrossRef]
- Gorący, I.; Safranow, K.; Dawid, G.; Skonieczna-Żydecka, K.; Kaczmarczyk, M.; Gorący, J.; Loniewska, B.; Ciechanowicz, A. Common genetic variants of the BMP4, BMPR1A, BMPR1B, and ACVR1 genes, left ventricular mass, and other parameters of the heart in newborns. Genet. Test. Mol. Biomark. 2012, 16, 1309–1316. [Google Scholar] [CrossRef] [PubMed]
- Gorący, I.; Łoniewska, B.; Lewandowska, K.; Boroń, A.; Grzegorczyk, M.; Nowak, R.; Clark, J.S.C.; Ciechanowicz, A. Association of the rs3039851 Insertion/Deletion in the Gene PPP3R1, Which Encodes the Regulatory Calcineurin Subunit B Type 1, with Left Ventricular Mass in Polish Full-Term Newborns. Biomedicines 2023, 11, 1415. [Google Scholar] [CrossRef]
- Mosteller, R.D. Simplified calculation of body-surface area. N. Engl. J. Med. 1987, 317, 1098. [Google Scholar] [CrossRef] [PubMed]
- Hand, B.D.; Kostek, M.C.; Ferrell, R.E.; Delmonico, M.J.; Douglass, L.W.; Roth, S.M.; Hagberg, J.M.; Hurley, B.F. Influence of promoter region variants of insulin-like growth factor pathway genes on the strength-training response of muscle phenotypes in older adults. J. Appl. Physiol. 2007, 103, 1678–1687. [Google Scholar] [CrossRef]
- Huwez, F.U.; Houston, A.B.; Watson, J.; McLaughlin, S.; Macfarlane, P.W. Age and body surface area related normal upper and lower limits of M mode echocardiographic measurements and left ventricular volume and mass from infancy to early adulthood. Br. Heart J. 1994, 72, 276–280. [Google Scholar] [CrossRef]
- Han, T.; Wang, X.; Cui, Y.; Ye, H.; Tong, X.; Piao, M. Relationship between angiotensin-converting enzyme gene insertion or deletion polymorphism and insulin sensitivity in healthy newborns. Pediatrics 2007, 119, 1089–1094. [Google Scholar] [CrossRef] [PubMed]
- Wu, E.X.; Stanar, P.; Ma, S. X-chromosome inactivation in female newborns conceived by assisted reproductive technologies. Fertil. Steril. 2014, 101, 1718–1723. [Google Scholar] [CrossRef]
- Martin, M.M.; Elton, T.S. The sequence and genomic organization of the human type 2 angiotensin II receptor. Biochem. Biophys. Res. Commun. 1995, 209, 554–562. [Google Scholar] [CrossRef]
- Warnecke, C.; Willich, T.; Holzmeister, J.; Bottari, S.P.; Fleck, E.; Regitz-Zagrosek, V. Efficient transcription of the human angiotensin II type 2 receptor gene requires intronic sequence elements. Biochem. J. 1999, 340, 17–24. [Google Scholar] [CrossRef]
- Nishimura, H.; Yerkes, E.; Hohenfellner, K.; Miyazaki, Y.; Ma, J.; Hunley, T.E.; Yoshida, H.; Ichiki, T.; Threadgill, D.; Phillips, J.A., III; et al. Role of the angiotensin type 2 receptor gene in congenital anomalies of the kidney and urinary tract, CAKUT, of mice and men. Mol. Cell 1999, 3, 1–10. [Google Scholar] [CrossRef]
- Warnecke, C.; Mugrauer, P.; Sürder, D.; Erdmann, J.; Schubert, C.; Regitz-Zagrosek, V. Intronic ANG II type 2 receptor gene polymorphism 1675 G/A modulates receptor protein expression but not mRNA splicing. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2005, 289, R1729–R1735. [Google Scholar] [CrossRef] [PubMed]
- Yvert, T.P.; Zempo, H.; Gabdrakhmanova, L.J.; Kikuchi, N.; Miyamoto-Mikami, E.; Murakami, H.; Naito, H.; Cieszczyk, P.; Leznicka, K.; Kostryukova, E.S.; et al. AGTR2 and sprint/power performance: A case-control replication study for rs11091046 polymorphism in two ethnicities. Biol. Sport 2018, 35, 105–109. [Google Scholar] [CrossRef]
- van Rooij, E.; Sutherland, L.B.; Qi, X.; Richardson, J.A.; Hill, J.; Olson, E.N. Control of stress-dependent cardiac growth and gene expression by a microRNA. Science 2007, 316, 575–579. [Google Scholar] [CrossRef] [PubMed]
- van Rooij, E.; Quiat, D.; Johnson, B.A.; Sutherland, L.B.; Qi, X.; Richardson, J.A.; Kelm, R.J., Jr.; Olson, E.N. A family of microRNAs encoded by myosin genes governs myosin expression and muscle performance. Dev. Cell 2009, 17, 662–673. [Google Scholar] [CrossRef] [PubMed]
- Aoki, S.; Mukae, S.; Itoh, S.; Sato, R.; Nishio, K.; Ueda, H.; Iwata, T.; Katagiri, T. Genetic background in patients with acute myocardial infarction. Jpn. Heart J. 2001, 42, 15–28. [Google Scholar] [CrossRef] [PubMed]
- Jin, J.J.; Nakura, J.; Wu, Z.; Yamamoto, M.; Abe, M.; Chen, Y.; Tabara, Y.; Yamamoto, Y.; Igase, M.; Bo, X.; et al. Association of angiotensin II type 2 receptor gene variant with hypertension. Hypertens. Res. 2003, 26, 547–552. [Google Scholar] [CrossRef]
- Deinum, J.; van Gool, J.M.; Kofflard, M.J.; ten Cate, F.J.; Danser, A.H. Angiotensin II type 2 receptors and cardiac hypertrophy in women with hypertrophic cardiomyopathy. Hypertension 2001, 38, 1278–1281. [Google Scholar] [CrossRef]
Variable | All Newborns (n = 207) | Female Newborns (n = 96) | Male Newborns (n = 111) | p |
---|---|---|---|---|
Median (Minimum–Maximum) | ||||
BM [kg] | 3.43 (1.87–5.09) | 3.30 (1.87–4.48) | 3.51 (2.36–5.09) | 0.003 |
BL [m] | 0.56 (0.44–0.63) | 0.55 (0.46–0.63) | 0.56 (0.44–0.63) | 0.055 |
BSA [m2] | 0.230 (0.158–0.289) | 0.227 (0.158–0.270) | 0.232 (0.170–0.289) | 0.006 |
IVST [mm] | 3.7 (2.4–6.3) | 3.6 (2.4–6.0) | 3.7 (2.6–6.3) | 0.592 |
LVPWT [mm] | 2.8 (1.1–5.8) | 2.5 (1.3–5.0) | 2.8 (1.1–5.8) | 0.309 |
LVID [mm] | 18.3 (15.0–25.0) | 18.1 (15.0–25.0) | 18.4 (15.6–23.5) | 0.168 |
LVM [g] | 9.2 (4.5–21.9) | 8.8 (4.5–19.3) | 9.4 (4.5–21.9) | 0.062 |
LVM/BM [g/kg] | 2.8 (1.5–6.4) | 2.7 (1.5–5.8) | 2.8 (1.6–6.4) | 0.804 |
LVM/BL [g/m] | 16.5 (8.5–35.9) | 16.0 (9.0–33.3) | 17.1 (8.5–35.9) | 0.108 |
LVM/BSA [g/m2] | 40.5 (22.2–90.6) | 39.4 (22.2–80.7) | 41.7 (22.4–90.6) | 0.384 |
Variable | GG (n = 28) | GA (n = 45) | AA (n = 23) | p K-W | p D | p R |
---|---|---|---|---|---|---|
Median (Minimum–Maximum) | ||||||
BM [kg] | 3.26 (1.87–4.30) | 3.30 (2.30–4.22) | 3.50 (2.70–4.48) | 0.338 | 0.377 | 0.158 |
BL [m] | 0.55 (0.46–0.63) | 0.55 (0.47–0.62) | 0.55 (0.50–0.60) | 0.761 | 0.276 | 0.463 |
BSA [m2] | 0.225 (0.158–0.270) | 0.225 (0.173–0.270) | 0.230 (0.194–0.268) | 0.393 | 0.491 | 0.179 |
IVST [mm] | 3.8 (2.8–6.0) | 3.4 (2.4–4.8) | 3.7 (2.4–6.0) | 0.085 | 0.069 | 0.603 |
LVPWT [mm] | 2.8 (1.7–5.0) | 2.5 (1.3–3.8) | 2.5 (1.5–5.0) | 0.202 | 0.075 | 0.602 |
LVID [mm] | 18.0 (15.0–21.4) | 18.5 (15.0–21.2) | 17.6 (16.0–25.0) | 0.298 | 0.939 | 0.156 |
LVM [g] | 8.9 (5.6–17.6) | 8.8 (4.5–15.3) | 8.2 (5.4–19.3) | 0.331 | 0.138 | 0.619 |
LVM/BM [g/kg] | 2.9 (1.8–5.8) | 2.7 (1.5–4.2) | 2.4 (1.7–5.2) | 0.112 | 0.043 | 0.233 |
LVM/BL [g/m] | 16.6 (11.0–32.0) | 16.1 (9.0–26.4) | 15.1 (10.0–33.3) | 0.229 | 0.087 | 0.577 |
LVM/BSA [g/m2] | 40.8 (26.6–80.7) | 39.8 (22.2–63.1) | 35.7 (26.2–78.8) | 0.193 | 0.076 | 0.361 |
Variable | G (n = 58) | A (n = 53) | p |
---|---|---|---|
Median (Minimum–Maximum) | |||
BM [kg] | 3.64 (2.36–5.09) | 3.45 (2.73–4.40) | 0.073 |
BL [m] | 0.57 (0.44–0.63) | 0.56 (0.47–0.61) | 0.071 |
BSA [m2] | 0.242 (0.170–0.289) | 0.229 (0.196–0.269) | 0.047 |
IVST [mm] | 3.8 (2.0–6.3) | 3.7 (2.7–5.6) | 0.947 |
LVPWT [mm] | 2.8 (2.0–4.3) | 2.8 (1.1–5.8) | 0.270 |
LVID [mm] | 18.6 (15.6–23.5) | 18.0 (15.6–23.2) | 0.307 |
LVM [g] | 9.8 (5.0–21.9) | 9.4 (4.5–19.0) | 0.392 |
LVM/BM [g/kg] | 2.8 (1.8–6.4) | 2.7 (1.6–4.7) | 0.947 |
LVM/BL [g/m] | 17.4 (9.2–36.9) | 16.9 (8.5–33.4) | 0.567 |
LVM/BSA [g/m2] | 41.8 (25.0–90.6) | 41.2 (22.4–72.8) | 0.849 |
Variable | Tertile | GG n (%) | GA n (%) | AA n (%) | p | p D | p R |
---|---|---|---|---|---|---|---|
LT vs. MT vs. UT (LT vs. UT) | LT vs. MT vs. UT (LT vs. UT) | LT vs. MT vs. UT (LT vs. UT) | |||||
Lower (<2.4) | 6 (19) | 15 (47) | 11 (34) | 0.179 (0.150) | 0.155 (0.055) | 0.202 (0.266) | |
LVM/BM [g/kg] | Middle (2.4–3.0) | 9 (28) | 18 (56) | 5 (16) | |||
Upper (>3.0) | 13 (41) | 12 (38) | 7 (22) | ||||
Lower (<14.7) | 5 (16) | 17 (53) | 10 (31) | 0.226 (0.138) | 0.114 (0.047) | 0.337 (0.578) | |
LVM/BL [g/m] | Middle (14.7–18.4) | 11 (34) | 16 (60) | 5 (16) | |||
Upper (>18.4) | 12 (38) | 12 (38) | 8 (25) | ||||
Lower (<35.6) | 5 (16) | 17 (53) | 10 (31) | 0.315 (0.139) | 0.114 (0.047) | 0.475 (0.396) | |
LVM/BSA [g/m2] | Middle (35.6–44.6) | 11 (34) | 15 (47) | 6 (19) | |||
Upper (>44.6) | 12 (38) | 13 (41) | 7 (22) |
Variable | Tertile | G n (%) | A n (%) | p LT vs. MT vs. UT | p LT vs. UT |
---|---|---|---|---|---|
Lower (<2.5) | 22 (60) | 15 (40) | |||
LVM/BM [g/kg] | Middle (2.5–3.0) | 15 (40) | 22 (60) | 0.212 | 0.814 |
Upper (>3.0) | 21 (57) | 16 (43) | |||
Lower (<15.5) | 17 (46) | 20 (54) | |||
LVM/BL [g/m] | Middle (15.5–18.9) | 19 (51) | 18 (49) | 0.504 | 0.244 |
Upper (>18.9) | 22 (60) | 15 (40) | |||
Lower (<37.4) | 20 (54) | 17 (46) | |||
LVM/BSA [g/m2] | Middle (37.4–45.4) | 16 (43) | 21 (57) | 0.364 | 0.639 |
Upper (>45.4) | 22 (60) | 15 (40) |
Variable | Female Newborns (n = 28 + 23) | Male Newborns (n = 111) | p |
---|---|---|---|
Median (Minimum–Maximum) | |||
BM [kg] | 3.32 (1.87–4.48) | 3.51 (2.36–5.09) | 0.028 |
BL [m] | 0.55 (0.46–0.63) | 0.56 (0.44–0.63) | 0.195 |
BSA [m2] | 0.230 (0.158–0.270) | 0.230 (0.170–0.290) | 0.049 |
IVST [mm] | 3.7 (2.4–6.0) | 3.7 (2.6–6.3) | 0.430 |
LVPWT [mm] | 2.5 (1.5–5) | 2.8 (1.1–5.8) | 0.894 |
LVID [mm] | 17.8 (15.0–25.0) | 18.4 (25.6–23.5) | 0.065 |
LVM [g] | 8.7 (5.4–19.3) | 9.5 (4.5–21.9) | 0.360 |
LVM/BM [g/kg] | 2.7 (1.7–5.8) | 2.8 (1.6–6.4) | 0.762 |
LVM/BL [g/m] | 15.9 (10.0–33.3) | 17.1 (8.5–35.9) | 0.489 |
LVM/BSA [g/m2] | 38.9 (26.2–80.8) | 41.7 (22.4–90.6) | 0.857 |
Variable | GG + G (n = 28 + 58) | AA + A (n = 23 + 53) | p |
---|---|---|---|
Median (Minimum–Maximum) | |||
BM [kg] | 3.46 (1.87–5.09) | 3.47 (2.70–4.48) | 0.563 |
BL [m] | 0.56 (0.44–0.63) | 0.56 (0.47–0.61) | 0.282 |
BSA [m2] | 0.230 (0.158–0.290) | 0.230 (0.194–0.270) | 0.357 |
IVST [mm] | 3.8 (2.6–6.3) | 3.7 (2.4–6.0) | 0.704 |
LVPWT [mm] | 2.8 (1.7–5.0) | 2.7 (1.1–5.8) | 0.102 |
LVID [mm] | 18.4 (15–23.5) | 18.0 (15.6–25.0) | 0.206 |
LVM [g] | 9.5 (5.0–21.9) | 9.2 (4.5–19.3) | 0.207 |
LVM/BM [g/kg] | 2.8 (1.8–6.4) | 2.7 (1.6–5.2) | 0.357 |
LVM/BL [g/m] | 17.2 (9.2–35.9) | 16.2 (8.5–33.4) | 0.278 |
LVM/BSA [g/m2] | 41.7 (25.0–90.6) | 40.1 (22.4–78.8) | 0.310 |
Variable | Tertile | GG + G n (%) | AA + A n (%) | p LT vs. MT vs. UT | p LT vs. UT |
---|---|---|---|---|---|
Lower (<2.4) | 27 (50) | 27 (50) | |||
LVM/BM [g/kg] | Middle (2.4–3.0) | 27 (50) | 27 (50) | 0.538 | 0.334 |
Upper (>3.0) | 32 (59) | 22 (41) | |||
Lower (<15.4) | 25 (46) | 29 (54) | |||
LVM/BL [g/m] | Middle (15.4–19.0) | 29 (54) | 25 (46) | 0.400 | 0.177 |
Upper (>19.0) | 32 (59) | 22 (41) | |||
Lower (<37.0) | 25 (46) | 29 (54) | |||
LVM/BSA [g/m2] | Middle (37.0–45.5) | 28 (52) | 26 (48) | 0.297 | 0.123 |
Upper (>45.5) | 33 (61) | 21 (39) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gorący, I.; Miler, K.; Lewandowska, K.; Rychel, M.; Łoniewska, B.; Ciechanowicz, A. The rs1403543 Polymorphism of AGTR2, Which Encodes the Type-2 Angiotensin II Receptor, and Left Ventricular Mass in Polish Full-Term Newborns. Genes 2025, 16, 518. https://doi.org/10.3390/genes16050518
Gorący I, Miler K, Lewandowska K, Rychel M, Łoniewska B, Ciechanowicz A. The rs1403543 Polymorphism of AGTR2, Which Encodes the Type-2 Angiotensin II Receptor, and Left Ventricular Mass in Polish Full-Term Newborns. Genes. 2025; 16(5):518. https://doi.org/10.3390/genes16050518
Chicago/Turabian StyleGorący, Iwona, Karol Miler, Klaudyna Lewandowska, Monika Rychel, Beata Łoniewska, and Andrzej Ciechanowicz. 2025. "The rs1403543 Polymorphism of AGTR2, Which Encodes the Type-2 Angiotensin II Receptor, and Left Ventricular Mass in Polish Full-Term Newborns" Genes 16, no. 5: 518. https://doi.org/10.3390/genes16050518
APA StyleGorący, I., Miler, K., Lewandowska, K., Rychel, M., Łoniewska, B., & Ciechanowicz, A. (2025). The rs1403543 Polymorphism of AGTR2, Which Encodes the Type-2 Angiotensin II Receptor, and Left Ventricular Mass in Polish Full-Term Newborns. Genes, 16(5), 518. https://doi.org/10.3390/genes16050518