Advancing Depression Management Through Biomarker Discovery with a Focus on Genetic and Epigenetic Aspects: A Comprehensive Study on Neurobiological, Neuroendocrine, Metabolic, and Inflammatory Pathways
Abstract
:1. Introduction
1.1. Biomarkers in Depression Research
1.2. Identifying and Validating Biomarkers Associated with Depression
1.3. Aim
2. Methods
- P—Patient, problem, or population;
- I—Investigated condition (e.g., intervention, exposure, risk/prognostic factor, or test result);
- C—Comparison condition (e.g., intervention, exposure, risk/prognostic factor, or test result, respectively);
- O—Outcome(s) (e.g., symptom, syndrome, or disease of interest).
3. Results
4. Discussion
4.1. Inflammatory Biomarkers
4.2. Growth Factor–Neurogenic Biomarkers
4.3. Metabolic Biomarkers: Insights from AI
4.4. Neurotransmitters as Biomarkers
4.5. Neuroendocrine Biomarkers of the HPA Axis
4.6. Biomarkers in Predicting Treatment Response
4.7. Trait Biomarkers
4.8. Signaling Pathways Modified by Antidepressants
4.9. Genetic and Epigenetic Factors in Depression
4.10. Biomarkers Linking Genetics, Epigenetics, and Treatment Response
4.11. Summary of Depression Biomarkers—Limitations of Current Research
4.12. Clinical Implications—Strengths of Current Research
4.13. Future Research Directions
4.14. Challenges in Translating Biomarkers into Clinical Practice
4.15. Critical Appraisal of Biomarker Literature in the Current Review: Contradictions, Limitations, and Interpretative Challenges
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
CRP | C-reactive protein |
TNFα | Tumor Necrosis Factor α |
IL-l b | Interleukin 1 β |
IL-2 | Interleukin 2 |
IL-4 | Interleukin 4 |
IL-10 | Interleukin 10 |
IFNγ | Interferon γ or type II interferon |
IL-8 | Interleukin 8 |
MCP4 | Human monocyte chemoattractant protein |
IL-1a | Interleukin-1 α |
IFNα | Interferon α |
IL-5 | Interleukin 8 |
IL-7 | Interleukin 7 |
IL-12 | Interleukin 12 |
IL-12p70 | Interleukin-12p70 |
IL-13 | Interleukin 13 |
IL-15 | Interleukin 15 |
IL-16 | Interleukin 16 |
IL-17 | Interleukin 17 |
TNFβ | Tumor necrosis factor β |
Mipla | Methylisopropyllysergamide a |
Miplb | Methylisopropyllysergamide b |
SAA | Serum Amyloid A |
sICAMI | Soluble intercellular adhesion molecule-1 |
sVCAMI | Soluble vascular cell adhesion molecule-1 |
TARC | Thymus and activation-regulated chemokine |
IP-10 | Interferon γ-induced protein 10 |
GM-CSF | Granulocyte Macrophage Colony-Stimulating Factor |
BDNF | Brain-Derived Neurotrophic Factor |
VEGF | Vascular endothelial growth factor |
NGF | Nerve growth factor |
GDNF | Glial cell line-derived neurotrophic factor |
IGF-l | Expression of Insulin-Like Growth Factor-I |
bFGF | Basic Fibroblast Growth Factor |
Tie2 | Tyrosine kinases receptor 2 |
PIGF | Phosphatidylinositol Glycan Anchor Biosynthesis Class F |
VEGFC | Vascular endothelial growth factor C |
VEGFD | Vascular endothelial growth factor D |
proBDNF | Precursor of Brain-Derived Neurotrophic Factor |
5-HT | 5-hydroxytryptamine receptors, or serotonin receptors |
NA | Noradrenalin |
DA | Dopamine |
GABA | γ-Aminobutyric Acid |
MHPG | 3-Methoxy-4-hydroxyphenylglycol |
HVA | Homovanillic acid |
ACTH | Adrenokortikotropni hormone |
CRH | Corticotropin-releasing hormone |
DHEA | Dehydroepiandrosterone |
TSH | Thyroid stimulating hormone |
References
- Milic, J.; Stankic, D.; Stefanovic, D. Eating Disorder and Quality of Life. In Eating Disorders; Patel, V.B., Preedy, V.R., Eds.; Springer: Cham, Switzerland, 2023. [Google Scholar] [CrossRef]
- World Health Organization. The World Health Report 2002-Reducing Risks, Promoting Healthy Life; World Health Organization: Geneva, Switzerland, 2002. [Google Scholar]
- Baig-Ward, K.M.; Jha, M.K.; Trivedi, M.H. The Individual and Societal Burden of Treatment-Resistant Depression: An Overview. Psychiatr. Clin. N. Am. 2023, 46, 211–226. [Google Scholar] [CrossRef] [PubMed]
- Gonda, X.; Fountoulakis, K.N.; Kaprinis, G.; Rihmer, Z. Prediction and prevention of suicide in patients with unipolar depression and anxiety. Ann. Gen. Psychiatry 2007, 6, 23. [Google Scholar] [CrossRef] [PubMed]
- Greenberg, P.E.; Fournier, A.A.; Sisitsky, T.; Pike, C.T.; Kessler, R.C. The economic burden of adults with major depressive disorder in the United States (2005 and 2010). J. Clin. Psychiatry 2015, 76, 155–162. [Google Scholar] [CrossRef]
- Greenberg, P.; Fournier, A.-A.; Sisitsky, T.; Simes, M.; Berman, R.; Koenigsberg, S.H.; Kessler, R.C. The economic burden of adults with major depressive disorder in the United States (2010 and 2018). PharmacoEconomics 2021, 9, 653–665. [Google Scholar] [CrossRef]
- Anxiety and Depression. 2021. Available online: https://www.cdc.gov/nchs/covid19/pulse/mental-health.htm (accessed on 4 March 2021).
- Centers for Disease Control and Prevention. Early Release of Selected Mental Health Estimates Based on Data from the January–June 2019 National Health Interview Survey; Centers for Disease Control and Prevention: Atlanta, GA, USA, 2020.
- Zhang, X.; Zhang, Z.; Diao, W.; Zhou, C.; Song, Y.; Wang, R.; Luo, X.; Liu, G. Early diagnosis of major depressive disorder: From biomarkers to point-of-care testing. TrAC Trends Anal. Chem. 2023, 159, 116904. [Google Scholar] [CrossRef]
- Chan, V.K.Y.; Leung, M.Y.M.; Chan, S.S.M.; Yang, D.; Knapp, M.; Luo, H.; Craig, D.; Chen, Y.; Bishai, D.M.; Wong, G.H.Y.; et al. Projecting the 10-year costs of care and mortality burden of depression until 2032: A Markov modelling study developed from real-world data. The Lancet regional health. West. Pac. 2024, 45, 101026. [Google Scholar] [CrossRef]
- Wamala, S.P.; Lynch, J.; Horsten, M.; Mittleman, M.A.; Schenck-Gustafsson, K.; Orth-Gomer, K. Education and the metabolic syndrome in women. Diabetes Care 1999, 22, 1999–2003. [Google Scholar] [CrossRef]
- Mojtabai, R.; Amin-Esmaeili, M.; Spivak, S.; Olfson, M. Remission and Treatment Augmentation of Depression in the United States. J. Clin. Psychiatry 2021, 82, 21m13988. [Google Scholar] [CrossRef] [PubMed]
- Ratnayake, S. Why Has the Misleading “Chemical Imbalance” Theory of Mental Illness Persisted for So Long? State of Mind. Slate. 4 August 2022. Available online: https://slate.com/technology/2022/08/ssris-chemical-imbalance-depression.html (accessed on 15 July 2024).
- Singhal, N. Stigma, Prejudice and Discrimination Against People with Mental Illness: A Physician Review; American Psychiatric Association Portal of Patients and Families. March 2024. Available online: https://www.psychiatry.org/patients-families/stigma-and-discrimination (accessed on 15 July 2024).
- Strawbridge, R.; Young, A.H.; Cleare, A.J. Biomarkers for depression: Recent insights, current challenges and future prospects. Neuropsychiatr. Dis. Treat. 2017, 13, 1245–1262. [Google Scholar] [CrossRef]
- Paganin, W.; Signorini, S. Inflammatory biomarkers in depression: Scoping review. BJPsych Open 2024, 10, e165. [Google Scholar] [CrossRef]
- Dunlop, B.W.; Mayberg, H.S. Neuroimaging Advances for Depression. Cerebrum Dana Forum Brain Sci. 2017, 2017, cer-16-17. [Google Scholar]
- Licinio, J.; Wong, M.L. Advances in depression research: Second special issue, 2020, with highlights on biological mechanisms, clinical features, co-morbidity, genetics, imaging, and treatment. Mol. Psychiatry 2020, 25, 1356–1360. [Google Scholar] [CrossRef] [PubMed]
- Coleman, J.R.I.; Peyrot, W.J.; Purves, K.L.; Davis, K.A.S.; Rayner, C.; Choi, S.W.; Hübel, C.; Gaspar, H.A.; Kan, C.; Van der Auwera, S.; et al. Genome-wide gene-environment analyses of major depressive disorder and reported lifetime traumatic experiences in UK Biobank. Mol. Psychiatry 2020, 25, 1430–1446. [Google Scholar] [CrossRef] [PubMed]
- Amare, A.T.; Vaez, A.; Hsu, Y.-H.; Direk, N.; Kamali, Z.; Howard, D.M.; McIntosh, A.M.; Tiemeier, H.; Bültmann, U.; Snieder, H.; et al. Bivariate genome-wide association analyses of the broad depression phenotype combined with major depressive disorder, bipolar disorder or schizophrenia reveal eight novel genetic loci for depression. Mol. Psychiatry 2019, 25, 1420–1429. [Google Scholar] [CrossRef]
- Li, J.M.; Jiang, C.L. Biological Diagnosis of Depression: A Biomarker Panel from Several Nonspecial Indicators Instead of the Specific Biomarker(s). Neuropsychiatr. Dis. Treat. 2020, 18, 3067–3071. [Google Scholar] [CrossRef]
- Taub, D.D. Neuroendocrine interactions in the immune system. Cell. Immunol. 2008, 252, 1–6. [Google Scholar] [CrossRef] [PubMed]
- Guo, X.J.; Wu, P.; Jia, X.; Dong, Y.M.; Zhao, C.M.; Chen, N.N.; Zhang, Z.Y.; Miao, Y.T.; Yun, K.M.; Gao, C.R.; et al. Mapping the structure of depression biomarker research: A bibliometric analysis. Front. Psychiatry 2022, 13, 943996. [Google Scholar] [CrossRef]
- Lima Giacobbo, B.; Doorduin, J.; Klein, H.C.; Dierckx, R.A.J.O.; Bromberg, E.; de Vries, E.F.J. Brain-Derived Neurotrophic Factor in Brain Disorders: Focus on Neuroinflammation. Mol. Neurobiol. 2019, 56, 3295–3312. [Google Scholar] [CrossRef]
- Felger, J.C.; Lotrich, F.E. Inflammatory cytokines in depression: Neurobiological mechanisms and therapeutic implications. Neuroscience 2013, 246, 199–229. [Google Scholar] [CrossRef]
- Beer, C.; Rae, F.; Semmler, A.; Voisey, J. Biomarkers in the Diagnosis and Prediction of Medication Response in Depression and the Role of Nutraceuticals. Int. J. Mol. Sci. 2024, 25, 7992. [Google Scholar] [CrossRef]
- Malik, S.; Singh, R.; Arora, G.; Dangol, A.; Goyal, S. Biomarkers of Major Depressive Disorder: Knowing is Half the Battle. Clin. Psychopharmacol. Neurosci. 2021, 19, 12–25. [Google Scholar] [CrossRef]
- Lopresti, A.L.; Maker, G.L.; Hood, S.D.; Drummond, P.D. A review of peripheral biomarkers in major depression: The potential of inflammatory and oxidative stress biomarkers. Prog. Neuropsychopharmacol. Biol. Psychiatry 2014, 48, 102–111. [Google Scholar] [CrossRef] [PubMed]
- Peterson, B.S.; Kaur, T.; Baez, M.A.; Whiteman, R.C.; Sawardekar, S.; Sanchez-Peña, J.; Hao, X.; Klahr, K.W.; Talati, A.; Wickramaratne, P.; et al. Morphological Biomarkers in the Amygdala and Hippocampus of Children and Adults at High Familial Risk for Depression. Diagnostics 2022, 12, 1218. [Google Scholar] [CrossRef] [PubMed]
- Pizzagalli, D.A.; Roberts, A.C. Prefrontal cortex and depression. Neuropsychopharmacology 2022, 47, 225–246. [Google Scholar] [CrossRef]
- Wang, K.; Hu, Y.; Yan, C.; Li, M.; Wu, Y.; Qiu, J.; Zhu, X.; the REST-meta-MDD Consortium. Brain structural abnormalities in adult major depressive disorder revealed by voxel- and source-based morphometry: Evidence from the REST-meta-MDD Consortium. Psychol. Med. 2023, 53, 3672–3682. [Google Scholar] [CrossRef]
- Iob, E.; Kirschbaum, C.; Steptoe, A. Persistent depressive symptoms, HPA-axis hyperactivity, and inflammation: The role of cognitive-affective and somatic symptoms. Mol. Psychiatry 2020, 25, 1130–1140. [Google Scholar] [CrossRef]
- Hage, M.P.; Azar, S.T. The Link between Thyroid Function and Depression. J. Thyroid Res. 2012, 2012, 590648. [Google Scholar] [CrossRef]
- Cui, L.; Li, S.; Wang, S.; Wu, X.; Liu, Y.; Yu, W.; Wang, Y.; Tang, Y.; Xia, M.; Li, B. Major depressive disorder: Hypothesis, mechanism, prevention and treatment. Signal Transduct. Target. Ther. 2024, 9, 30. [Google Scholar] [CrossRef] [PubMed]
- Kurita, M.; Nishino, S.; Numata, Y.; Okubo, Y.; Sato, T. The noradrenaline metabolite MHPG is a candidate biomarker between the depressive, remission, and manic states in bipolar disorder I: Two long-term naturalistic case reports. Neuropsychiatr. Dis. Treat. 2015, 11, 353–358. [Google Scholar] [CrossRef]
- Jayamohananan, H.; Manoj Kumar, M.K.; P, A.T. 5-HIAA as a Potential Biological Marker for Neurological and Psychiatric Disorders. Adv. Pharm. Bull. 2019, 9, 374–381. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Khoodoruth, M.A.S.; Estudillo-Guerra, M.A.; Pacheco-Barrios, K.; Nyundo, A.; Chapa-Koloffon, G.; Ouanes, S. Glutamatergic System in Depression and Its Role in Neuromodulatory Techniques Optimization. Front. Psychiatry 2022, 13, 886918. [Google Scholar] [CrossRef]
- Stefanescu, C.; Ciobica, A. The relevance of oxidative stress status in first episode and recurrent depression. J. Affect. Disord. 2012, 143, 34–38. [Google Scholar] [CrossRef] [PubMed]
- Ait Tayeb, A.E.K.; Poinsignon, V.; Chappell, K.; Bouligand, J.; Becquemont, L.; Verstuyft, C. Major Depressive Disorder and Oxidative Stress: A Review of Peripheral and Genetic Biomarkers According to Clinical Characteristics and Disease Stages. Antioxidants 2023, 12, 942. [Google Scholar] [CrossRef]
- Bartoli, F.; Burnstock, G.; Crocamo, C.; Carrà, G. Purinergic Signaling and Related Biomarkers in Depression. Brain Sci. 2020, 10, 160. [Google Scholar] [CrossRef]
- Pandey, G.N.; Sharma, A.; Rizavi, H.S.; Ren, X. Dysregulation of Protein Kinase C in Adult Depression and Suicide: Evidence from Postmortem Brain Studies. Int. J. Neuropsychopharmacol. 2021, 24, 400–408. [Google Scholar] [CrossRef]
- Harsanyi, S.; Kupcova, I.; Danisovic, L.; Klein, M. Selected Biomarkers of Depression: What Are the Effects of Cytokines and Inflammation? Int. J. Mol. Sci. 2022, 24, 578. [Google Scholar] [CrossRef]
- Correia, A.S.; Vale, N. Tryptophan Metabolism in Depression: A Narrative Review with a Focus on Serotonin and Kynurenine Pathways. Int. J. Mol. Sci. 2022, 23, 8493. [Google Scholar] [CrossRef]
- Zong, L.; Ge, M.; Wang, J.; Kuang, D.; Wei, H.; Wang, Z.; Hu, Z.; Zhao, C.; Jin, Q.; Chen, M.; et al. Causal association between kynurenine and depression investigated using two-sample mendelian randomization. Sci. Rep. 2024, 14, 1821. [Google Scholar] [CrossRef]
- Fernandes, B.S.; Salagre, E.; Enduru, N.; Grande, I.; Vieta, E.; Zhao, Z. Insulin resistance in depression: A large meta-analysis of metabolic parameters and variation. Neurosci. Biobehav. Rev. 2022, 139, 104758. [Google Scholar] [CrossRef]
- Nunes, F.D.D.; Ferezin, L.P.; Pereira, S.C.; Figaro-Drumond, F.V.; Pinheiro, L.C.; Menezes, I.C.; Baes, C.V.W.; Coeli-Lacchini, F.B.; Tanus-Santos, J.E.; Juruena, M.F.; et al. The Association of Biochemical and Genetic Biomarkers in VEGF Pathway with Depression. Pharmaceutics 2022, 14, 2757. [Google Scholar] [CrossRef]
- Galvão, A.C.d.M.; Almeida, R.N.; Júnior, G.M.d.S.; Leocadio-Miguel, M.A.; Palhano-Fontes, F.; de Araujo, D.B.; Lobão-Soares, B.; Maia-De-Oliveira, J.P.; Nunes, E.A.; Hallak, J.E.C.; et al. Potential biomarkers of major depression diagnosis and chronicity. PLoS ONE 2021, 16, e0257251. [Google Scholar] [CrossRef]
- Schmidt, H.D.; Shelton, R.C.; Duman, R.S. Functional biomarkers of depression: Diagnosis, treatment, and pathophysiology. Neuropsychopharmacology 2011, 36, 2375–2394. [Google Scholar] [CrossRef]
- Shi, R.; Gwee, X.; Chua, D.Q.; Tan, C.T.; Yap, K.B.; Larbi, A.; Lu, Y.; Ng, T.P. Inflammatory markers and incident depression: Evidence in a population-based prospective study. Psychoneuroendocrinology 2022, 142, 105806. [Google Scholar] [CrossRef]
- Asthana, A.; Johnson, H.M.; Piper, M.E.; Fiore, M.C.; Baker, T.B.; Stein, J.H. Effects of smoking intensity and cessation on inflammatory markers in a large cohort of active smokers. Am. Heart J. 2010, 160, 458–463. [Google Scholar] [CrossRef]
- Ellulu, M.S.; Patimah, I.; Khazáai, H.; Rahmat, A.; Abed, Y. Obesity and inflammation: The linking mechanism and the complications. Arch. Med. Sci. 2017, 13, 851–863. [Google Scholar] [CrossRef]
- Kühnel, A.; Hagenberg, J.; Knauer-Arloth, J.; Ködel, M.; Czisch, M.; Sämann, P.G.; BeCOME Working Group; Brückl, T.; Spoormaker, V.I.; Erhardt, A.; et al. Stress-induced brain responses are associated with BMI in women. Commun. Biol. 2023, 6, 1031. [Google Scholar] [CrossRef]
- Jha, M.K.; Minhajuddin, A.; Gadad, B.S.; Greer, T.; Grannemann, B.; Soyombo, A.; Mayes, T.L.; Rush, A.J.; Trivedi, M.H. Can C-reactive protein inform antidepressant medication selection in depressed outpatients? Findings from the CO-MED trial. Psychoneuroendocrinology 2017, 78, 105–113. [Google Scholar] [CrossRef]
- Orsolini, L.; Pompili, S.; Tempia Valenta, S.; Salvi, V.; Volpe, U. C-Reactive Protein as a Biomarker for Major Depressive Disorder? Int. J. Mol. Sci. 2022, 23, 1616. [Google Scholar] [CrossRef]
- Pan, Y.; Luo, R.; Zhang, S.; Liu, Y.; Wang, Y.; Feng, S.; Li, H. C-reactive protein could predict the efficacy of SSRIs in clinical practice: A cohort study of large samples in the real world. J. Affect. Disord. 2022, 313, 251–259. [Google Scholar] [CrossRef]
- Wium-Andersen, M.K.; Ørsted, D.D.; Nielsen, S.F.; Nordestgaard, B.G. Elevated C-Reactive Protein Levels, Psychological Distress, and Depression in 73 131 Individuals. JAMA Psychiatry 2013, 70, 176–184. [Google Scholar] [CrossRef]
- Zincir, S.; Öztürk, P.; Bilgen, A.E.; İzci, F.; Yükselir, C. Levels of serum immunomodulators and alterations with electroconvulsive therapy in treatment-resistant major depression. Neuropsychiatr. Dis. Treat. 2016, 12, 1389–1396. [Google Scholar] [CrossRef]
- Lu, L.; Hu, X.; Jin, X. IL-4 as a potential biomarker for differentiating major depressive disorder from bipolar depression. Medicine 2023, 102, e33439. [Google Scholar] [CrossRef]
- Poletti, S.; Zanardi, R.; Mandelli, A.; Aggio, V.; Finardi, A.; Lorenzi, C.; Borsellino, G.; Carminati, M.; Manfredi, E.; Tomasi, E.; et al. Low-dose interleukin 2 antidepressant potentiation in unipolar and bipolar depression: Safety, efficacy, and immunological biomarkers. Brain Behav. Immun. 2024, 118, 52–68. [Google Scholar] [CrossRef] [PubMed]
- Yao, L.; Pan, L.; Qian, M.; Sun, W.; Gu, C.; Chen, L.; Tang, X.; Hu, Y.; Xu, L.; Wei, Y.; et al. Tumor Necrosis Factor-α Variations in Patients with Major Depressive Disorder Before and After Antidepressant Treatment. Front. Psychiatry 2020, 11, 518837. [Google Scholar] [CrossRef]
- Vaváková, M.; Ďuračková, Z.; Trebatická, J. Markers of Oxidative Stress and Neuroprogression in Depression Disorder. Oxidative Med. Cell. Longev. 2015, 2015, 898393. [Google Scholar] [CrossRef]
- Autry, A.E.; Monteggia, L.M. Brain-derived neurotrophic factor and neuropsychiatric disorders. Pharmacol. Rev. 2012, 64, 238–258. [Google Scholar] [CrossRef]
- Monteiro, B.C.; Monteiro, S.; Candida, M.; Adler, N.; Paes, F.; Rocha, N.; Nardi, A.E.; Murillo-Rodriguez, E.; Machado, S. Relationship Between Brain-Derived Neurotrofic Factor (Bdnf) and Sleep on Depression: A Critical Review. Clin. Pract. Epidemiol. Ment. Health CP EMH 2017, 13, 213–219. [Google Scholar] [CrossRef] [PubMed]
- Xia, H.; Du, X.; Yin, G.; Zhang, Y.; Li, X.; Cai, J.; Huang, X.; Ning, Y.; Soares, J.C.; Wu, F.; et al. Effects of smoking on cognition and BDNF levels in a male Chinese population: Relationship with BDNF Val66Met polymorphism. Sci. Rep. 2019, 9, 217. [Google Scholar] [CrossRef]
- Maes, M.; Rachayon, M.; Jirakran, K.; Sodsai, P.; Sughondhabirom, A. Lower Nerve Growth Factor Levels in Major Depression and Suicidal Behaviors: Effects of Adverse Childhood Experiences and Recurrence of Illness. Brain Sci. 2023, 13, 1090. [Google Scholar] [CrossRef]
- Tseng, P.T.; Cheng, Y.S.; Chen, Y.W.; Wu, C.K.; Lin, P.Y. Increased levels of vascular endothelial growth factor in patients with major depressive disorder: A meta-analysis. Eur. Neuropsychopharmacol. 2015, 25, 1622–1630. [Google Scholar] [CrossRef]
- Chen, M.; Zhang, L.; Jiang, Q. Peripheral IGF-1 in bipolar disorder and major depressive disorder: A systematic review and meta-analysis. Ann. Palliat. Med. 2020, 9, 4044–4053. [Google Scholar] [CrossRef]
- Fernández-Pereira, C.; Penedo, M.A.; Rivera-Baltanás, T.; Pérez-Márquez, T.; Alves-Villar, M.; Fernández-Martínez, R.; Veiga, C.; Salgado-Barreira, Á.; Prieto-González, J.M.; Ortolano, S.; et al. Protein Plasma Levels of the IGF Signalling System Are Altered in Major Depressive Disorder. Int. J. Mol. Sci. 2023, 24, 15254. [Google Scholar] [CrossRef]
- Ozsoy, S.; Besirli, A.; Abdulrezzak, U.; Basturk, M. Serum ghrelin and leptin levels in patients with depression and the effects of treatment. Psychiatry Investig. 2014, 11, 167–172. [Google Scholar] [CrossRef]
- Hasler, G. Pathophysiology of depression: Do we have any solid evidence of interest to clinicians? World Psychiatry 2010, 9, 155–161. [Google Scholar] [CrossRef]
- Marc, D.T.; Ailts, J.W.; Campeau, D.C.; Bull, M.J.; Olson, K.L. Neurotransmitters excreted in the urine as biomarkers of nervous system activity: Validity and clinical applicability. Neurosci. Biobehav. Rev. 2011, 35, 635–644. [Google Scholar] [CrossRef]
- Hughes, J.W.; Watkins, L.; Blumenthal, J.A.; Kuhn, C.; Sherwood, A. Depression and anxiety symptoms are related to increased 24-hour urinary norepinephrine excretion among healthy middle-aged women. J. Psychosom. Res. 2004, 57, 353–358. [Google Scholar] [CrossRef]
- Kaneko, F.; Kawahara, Y.; Kishikawa, Y.; Hanada, Y.; Yamada, M.; Kakuma, T.; Kawahara, H.; Nishi, A. Long-Term Citalopram Treatment Alters the Stress Responses of the Cortical Dopamine and Noradrenaline Systems: The Role of Cortical 5-HT1A Receptors. Int. J. Neuropsychopharmacol. 2016, 19, pyw026. [Google Scholar] [CrossRef]
- Turecki, G. Dissecting the suicide phenotype: The role of impulsive-aggressive behaviours. J. Psychiatry Neurosci. 2005, 30, 398–408. [Google Scholar]
- Müller, C.P.; Carey, R.J.; Huston, J.P.; De Souza Silva, M.A. Serotonin and psychostimulant addiction: Focus on 5-HT1A-receptors. Prog. Neurobiol. 2007, 81, 133–178. [Google Scholar] [CrossRef] [PubMed]
- Wisłowska-Stanek, A.; Kołosowska, K.; Maciejak, P. Neurobiological Basis of Increased Risk for Suicidal Behaviour. Cells 2021, 10, 2519. [Google Scholar] [CrossRef]
- Marcinkowska, M.; Kubacka, M.; Zagorska, A.; Jaromin, A.; Fajkis-Zajaczkowska, N.; Kolaczkowski, M. Exploring the antiplatelet activity of serotonin 5-HT2A receptor antagonists bearing 6-fluorobenzo[d]isoxazol-3-yl)propyl) motif- as potential therapeutic agents in the prevention of cardiovascular diseases. Biomed. Pharmacother. 2022, 145, 112424. [Google Scholar] [CrossRef] [PubMed]
- Sarawagi, A.; Soni, N.D.; Patel, A.B. Glutamate and GABA Homeostasis and Neurometabolism in Major Depressive Disorder. Front. Psychiatry 2021, 12, 637863. [Google Scholar] [CrossRef]
- Ciranna, L. Serotonin as a modulator of glutamate- and GABA-mediated neurotransmission: Implications in physiological functions and in pathology. Curr. Neuropharmacol. 2006, 4, 101–114. [Google Scholar] [CrossRef]
- Duarte, N.d.S.; Corrêa, L.M.d.A.; Assunção, L.R.; de Menezes, A.A.; de Castro, O.B.; Teixeira, L.F. Relation between Depression and Hormonal Dysregulation. Open J. Depress. 2017, 6, 69–78. [Google Scholar] [CrossRef]
- Feeney, J.; Kenny, R.A. Hair cortisol as a risk marker for increased depressive symptoms among older adults during the COVID-19 pandemic. Psychoneuroendocrinology 2022, 143, 105847. [Google Scholar] [CrossRef] [PubMed]
- ajkowska, Z.; Gullett, N.; Walsh, A.; Zonca, V.; Pedersen, G.A.; Souza, L.; Kieling, C.; Fisher, H.L.; Kohrt, B.A.; Mondelli, V. Cortisol and development of depression in adolescence and young adulthood—A systematic review and meta-analysis. Psychoneuroendocrinology 2022, 136, 105625. [Google Scholar] [CrossRef]
- Fischer, S.; Strawbridge, R.; Vives, A.H.; Cleare, A.J. Cortisol as a predictor of psychological therapy response in depressive disorders: Systematic review and meta-analysis. Br. J. Psychiatry 2017, 210, 105–109. [Google Scholar] [CrossRef]
- Schumacher, M.M.; Santambrogio, J. Cortisol and the Dexamethasone Suppression Test as a Biomarker for Melancholic Depression: A Narrative Review. J. Pers. Med. 2023, 13, 837. [Google Scholar] [CrossRef]
- Merali, Z.; Du, L.; Hrdina, P.; Palkovits, M.; Faludi, G.; Poulter, M.O.; Anisman, H. Dysregulation in the suicide brain: mRNA expression of corticotropin-releasing hormone receptors and GABA(A) receptor subunits in frontal cortical brain region. J. Neurosci. 2004, 24, 1478–1485. [Google Scholar] [CrossRef]
- Souza-Teodoro, L.H.; Davies, N.M.; Warren, H.R.; Andrade, L.H.S.G.; Carvalho, L.A. DHEA and response to antidepressant treatment: A Mendelian Randomization analysis. J. Psychiatr. Res. 2024, 173, 151–156. [Google Scholar] [CrossRef]
- Markopoulou, K.; Papadopoulos, A.; Juruena, M.F.; Poon, L.; Pariante, C.M.; Cleare, A.J. The ratio of cortisol/DHEA in treatment resistant depression. Psychoneuroendocrinology 2009, 34, 19–26. [Google Scholar] [CrossRef] [PubMed]
- Nuguru, S.P.; Rachakonda, S.; Sripathi, S.; Khan, M.I.; Patel, N.; Meda, R.T. Hypothyroidism and Depression: A Narrative Review. Cureus 2022, 14, e28201. [Google Scholar] [CrossRef]
- Pae, C.U.; Mandelli, L.; Han, C.; Ham, B.J.; Masand, P.S.; Patkar, A.A.; Steffens, D.C.; De Ronchi, D.; Serretti, A. Thyroid hormones affect recovery from depression during antidepressant treatment. Psychiatry Clin. Neurosci. 2009, 63, 305–313. [Google Scholar] [CrossRef]
- Beurel, E.; Grieco, S.F.; Jope, R.S. Glycogen synthase kinase-3 (GSK3): Regulation, actions, and diseases. Pharmacol. Ther. 2015, 148, 114–131. [Google Scholar] [CrossRef]
- Duman, R.S.; Heninger, G.R.; Nestler, E.J. A molecular and cellular theory of depression. Arch. Gen. Psychiatry 1997, 54, 597–606. [Google Scholar] [CrossRef]
- Hacimusalar, Y.; Eşel, E. Suggested Biomarkers for Major Depressive Disorder. Noro Psikiyatr. Ars. 2018, 55, 280–290. [Google Scholar] [CrossRef]
- Kondo, S.; El Omri, A.; Han, J.; Isoda, H. Antidepressant-like effects of rosmarinic acid through mitogen-activated protein kinase phosphatase-1 and brain-derived neurotrophic factor modulation. J. Funct. Foods 2015, 14, 758–766. [Google Scholar] [CrossRef]
- Chatterjee, D.; Beaulieu, J.M. Inhibition of glycogen synthase kinase 3 by lithium, a mechanism in search of specificity. Front. Mol. Neurosci. 2022, 15, 1028963. [Google Scholar] [CrossRef]
- Kennis, M.; Gerritsen, L.; van Dalen, M.; Williams, A.; Cuijpers, P.; Bockting, C. Prospective biomarkers of major depressive disorder: A systematic review and meta-analysis. Mol. Psychiatry 2020, 25, 321–338. [Google Scholar] [CrossRef]
- Dhillon, G.K.; Gangaram, S.C. Examining potential biomarkers for depression diagnosis: A literature review. Undergrad. Res. Nat. Clin. Sci. Technol. 2024, 8. [Google Scholar] [CrossRef]
Type of Biomarkers | Purpose/Use | Examples | Clinical Application |
---|---|---|---|
Diagnostic Biomarkers | Confirm the presence or absence of disease | Genetic mutations, specific proteins | Early detection of diseases like cancer, infectious diseases |
Markers of Therapy | Help choose the optimal therapy for the patient | Tumor markers, genetic profiling | Personalizing treatment in oncology, choosing targeted therapies |
Therapy Mediator | Monitor the response to therapy | Blood levels of drugs, specific biomarkers | Monitoring therapy effectiveness, adjusting dosages in chronic diseases |
Prognostic Markers | Predict the course or progression of the disease | Gene expression profiles, protein levels | Prognosis of cancer, cardiovascular diseases, or chronic illnesses |
Predictive Markers | Predict the likelihood of disease development | Genetic risk factors, biomarkers of predisposition | Predicting risk of developing diseases like diabetes, Alzheimer’s |
Trait Markers | Identify individuals with a higher risk due to genetic factors | SNPs, familial risk factors | Identifying genetic predispositions to hereditary conditions |
Status Markers | Reflect the current clinical status of the patient | Inflammatory markers, viral load | Assessing disease activity, infection status, or inflammation levels |
Biomarker System | Key Findings | Effect/Impact | Therapeutic Relevance |
---|---|---|---|
Inflammation Biomarkers | Higher levels of pro-inflammatory markers in patients with depression compared to controls. Antidepressants reduce inflammation levels. | Inflammation is higher in depression, indicating an immune system imbalance. | Anti-inflammatory therapy leads to improvements in depressive symptoms. |
Neuroendocrine Biomarkers | HPA axis hyperactivity in depressed patients, resulting in hypercortisolism. High cortisol levels correlate with poor response to therapy. | Elevated cortisol indicates stress and poor treatment response. | Targeting HPA axis dysregulation may improve therapeutic outcomes. |
Growth Factor Biomarkers | Lower neurotrophic factor levels (e.g., BDNF, NGF) in depressed patients compared to controls. These factors increase with therapy, regardless of symptom improvement. | Decreased neurotrophic factors may contribute to depression. | Monitoring neurotrophic factor levels may provide insights into therapeutic progress. |
Neurotransmitter Biomarkers | Increased binding to 5-HT1A receptors in depressed individuals. Monoamine interaction affects cognitive function and stress response. | Serotonin receptor activity influences mood and cognitive resources. | Targeting serotonin receptors can optimize treatment response and manage therapeutic resistance. |
Metabolic Biomarkers | Depression linked with altered metabolic profiles. BMI and disease severity influence these factors. Atypical depression forms often show metabolic disorders. | Metabolic imbalances complicate depression and therapy. | Metabolic profile assessment can guide treatment, particularly for atypical depression forms. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Milic, J.; Jovic, S.; Sapic, R. Advancing Depression Management Through Biomarker Discovery with a Focus on Genetic and Epigenetic Aspects: A Comprehensive Study on Neurobiological, Neuroendocrine, Metabolic, and Inflammatory Pathways. Genes 2025, 16, 487. https://doi.org/10.3390/genes16050487
Milic J, Jovic S, Sapic R. Advancing Depression Management Through Biomarker Discovery with a Focus on Genetic and Epigenetic Aspects: A Comprehensive Study on Neurobiological, Neuroendocrine, Metabolic, and Inflammatory Pathways. Genes. 2025; 16(5):487. https://doi.org/10.3390/genes16050487
Chicago/Turabian StyleMilic, Jelena, Sladjana Jovic, and Rosa Sapic. 2025. "Advancing Depression Management Through Biomarker Discovery with a Focus on Genetic and Epigenetic Aspects: A Comprehensive Study on Neurobiological, Neuroendocrine, Metabolic, and Inflammatory Pathways" Genes 16, no. 5: 487. https://doi.org/10.3390/genes16050487
APA StyleMilic, J., Jovic, S., & Sapic, R. (2025). Advancing Depression Management Through Biomarker Discovery with a Focus on Genetic and Epigenetic Aspects: A Comprehensive Study on Neurobiological, Neuroendocrine, Metabolic, and Inflammatory Pathways. Genes, 16(5), 487. https://doi.org/10.3390/genes16050487