Pharmacogenomic and Pharmacomicrobiomic Aspects of Drugs of Abuse
Abstract
:1. Introduction
2. The Role of Pharmacogenomics in Drug Response
3. Influence of Drugs of Abuse on the Gut Microbiome
3.1. Alcohol
3.2. Psychostimulants
3.3. Opioids
3.4. Cannabinoids
3.5. Nicotine
4. Gut Microbiome and Substance Abuse
5. The Role of the Gut Microbiome in Drug Pharmacokinetics
Drug Biotransformation by the Gut Microbiome
6. Discussion
7. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Borrego-Ruiz, A. Motivación intrínseca y consumo de drogas: Una revisión de estudios sobre los motivos de curiosidad y de expansión. Health Addict. 2024, 24, 47–67. [Google Scholar] [CrossRef] [PubMed]
- Borrego-Ruiz, A. A holistic review of fentanyl use and its impact on public health. Curr. Addict. Res. 2024, 8, 23–33. [Google Scholar]
- American Psychiatric Association. Diagnostic and Statistical Manual of Mental Disorders (DSM-5); American Psychiatric Association: Washington, DC, USA, 2013. [Google Scholar]
- McLellan, A.T. Substance misuse and substance use disorders: Why do they matter in healthcare? Trans. Am. Clin. Climatol. Assoc. 2017, 128, 112–130. [Google Scholar]
- Rasic, D.; Weerasinghe, S.; Asbridge, M.; Langille, D.B. Longitudinal associations of cannabis and illicit drug use with depression, suicidal ideation and suicidal attempts among Nova Scotia high school students. Drug Alcohol Depend. 2013, 129, 49–53. [Google Scholar] [CrossRef]
- Patriquin, M.A.; Bauer, I.E.; Soares, J.C.; Graham, D.P.; Nielsen, D.A. Addiction pharmacogenetics: A systematic review of the genetic variation of the dopaminergic system. Psychiatr. Genet. 2015, 25, 181–193. [Google Scholar]
- Corponi, F.; Fabbri, C.; Serretti, A. Pharmacogenetics in psychiatry. Adv. Pharmacol. 2018, 83, 297–331. [Google Scholar]
- Abad-Santos, F.; Aliño, S.F.; Borobia, A.M.; García-Martín, E.; Gassó, P.; Maroñas, O.; Agúndez, J.A.G. Developments in pharmacogenetics, pharmacogenomics, and personalized medicine. Pharmacol. Res. 2024, 200, 107061. [Google Scholar]
- Mills, R.E.; Pittard, W.S.; Mullaney, J.M.; Farooq, U.; Creasy, T.H.; Mahurkar, A.A.; Kemeza, D.M.; Strassler, D.S.; Ponting, C.P.; Webber, C.; et al. Natural genetic variation caused by small insertions and deletions in the human genome. Genome Res. 2011, 21, 830–839. [Google Scholar]
- Evans, W.E.; Johnson, J.A. Pharmacogenomics: The inherited basis for interindividual differences in drug response. Annu. Rev. Genom. Hum. Genet. 2001, 2, 9–39. [Google Scholar]
- Wiese, K.M.; Flowers, S.A.; Ellingrod, V.L. Pharmacogenomics. In Applied Clinical Pharmacokinetics and Pharmacodynamics of Psychopharmacological Agents; Jann, M., Penzak, S., Cohen, L., Eds.; Springer: Cham, Switzerland, 2016; pp. 121–135. [Google Scholar]
- Morris, J.J. What is the hologenome concept of evolution? F1000Research 2018, 7, 1664. [Google Scholar]
- Rosenberg, E.; Zilber-Rosenberg, I. The hologenome concept of evolution after 10 years. Microbiome 2018, 6, 78. [Google Scholar]
- Stilling, R.M.; Dinan, T.G.; Cryan, J.F. Microbial genes, brain & behaviour-epigenetic regulation of the gut-brain axis. Genes Brain Behav. 2014, 13, 69–86. [Google Scholar] [PubMed]
- Pepke, M.L.; Hansen, S.B.; Limborg, M.T. Unraveling host regulation of gut microbiota through the epigenome-microbiome axis. Trends Microbiol. 2024, 32, 1229–1240. [Google Scholar] [CrossRef]
- Borrego-Ruiz, A.; Borrego, J.J. An updated overview on the relationship between human gut microbiome dysbiosis and psychiatric and psychological disorders. Prog. Neuropsychopharmacol. Biol. Psychiatry 2024, 128, 110861. [Google Scholar]
- Gilbert, J.A.; Blaser, M.J.; Caporaso, J.G.; Jansson, J.K.; Lynch, S.V.; Knight, R. Current understanding of the human microbiome. Nat. Med. 2018, 24, 392–400. [Google Scholar]
- Borrego-Ruiz, A.; Borrego, J.J. Neurodevelopmental disorders associated with gut microbiome dysbiosis in children. Children 2024, 11, 796. [Google Scholar] [CrossRef]
- Rodríguez, J.M.; Murphy, K.; Stanton, C.; Ross, R.P.; Kober, O.I.; Juge, N.; Avershina, E.; Rudi, K.; Narbad, A.; Jenmalm, M.C.; et al. The composition of the gut microbiota throughout life, with an emphasis on early life. Microb. Ecol. Health Dis. 2015, 26, 26050. [Google Scholar]
- Borrego-Ruiz, A.; Borrego, J.J. Human gut microbiome, diet, and mental disorders. Int. Microbiol. 2025, 28, 1–15. [Google Scholar]
- Rinninella, E.; Raoul, P.; Cintoni, M.; Franceschi, F.; Miggiano, G.A.D.; Gasbarrini, A.; Mele, M.C. What is the healthy gut microbiota composition? A changing ecosystem across age, environment, diet, and diseases. Microorganisms 2019, 7, 14. [Google Scholar] [CrossRef]
- Dikeocha, I.J.; Al-Kabsi, A.M.; Miftahussurur, M.; Alshawsh, M.A. Pharmacomicrobiomics: Influence of gut microbiota on drug and xenobiotic metabolism. FASEB J. 2022, 36, e22350. [Google Scholar]
- Wilson, I.D.; Nicholson, J.K. Gut microbiome interactions with drug metabolism, efficacy, and toxicity. Transl. Res. 2017, 179, 204–222. [Google Scholar] [CrossRef] [PubMed]
- Aziz, R. Rethinking pharmacogenomics in an ecosystem: Drug-microbiome interactions, pharmacomicrobiomics, and personalized medicine for the human supraorganism. Curr. Pharmacogenom. Pers. Med. 2012, 10, 258–261. [Google Scholar] [CrossRef]
- Saad, R.; Rizkallah, M.R.; Aziz, R.K. Gut pharmacomicrobiomics: The tip of an iceberg of complex interactions between drugs and gut-associated microbes. Gut Pathog. 2012, 4, 16. [Google Scholar] [CrossRef] [PubMed]
- Nichols, R.G.; Hume, N.E.; Smith, P.B.; Peters, J.M.; Patterson, A.D. Omics approaches to probe microbiota and drug metabolism interactions. Chem. Res. Toxicol. 2016, 29, 1987–1997. [Google Scholar] [CrossRef]
- Klünemann, M.; Andrejev, S.; Blasche, S.; Mateus, A.; Phapale, P.; Devendran, S.; Vappiani, J.; Simon, B.; Scott, T.A.; Kafkia, E.; et al. Bioaccumulation of therapeutic drugs by human gut bacteria. Nature 2021, 597, 533–538. [Google Scholar] [CrossRef]
- Haiser, H.J.; Seim, K.L.; Balskus, E.P.; Turnbaugh, P.J. Mechanistic insight into digoxin inactivation by Eggerthella lenta augments our understanding of its pharmacokinetics. Gut Microb. 2014, 5, 233–238. [Google Scholar] [CrossRef]
- Tai, Y.H.; Kao, C.Y.; Zhang, Y.P.; Chiou, Y.J.; Chiu, H.H.; Thuy, T.T.D.; Liao, H.W. An integrated platform for investigating drug-microbial interactions to support pharmacomicrobiomics studies. Talanta 2025, 283, 127094. [Google Scholar] [CrossRef]
- Theilmann, M.C.; Goh, Y.J.; Nielsen, K.F.; Klaenhammer, T.R.; Barrangou, R.; Hachem, M. Lactobacillus acidophilus metabolizes dietary plant glucosides and externalizes their bioactive phytochemicals. mBio 2017, 8, e01421-17. [Google Scholar] [CrossRef]
- Gao, S.; Sun, R.; Singh, R.; Yu So, S.; Chan, C.T.Y.; Savidge, T.; Hu, M. The role of gut microbial β-glucuronidase in drug disposition and development. Drug Discov. Today 2022, 27, 103316. [Google Scholar] [CrossRef]
- Magwaza, B.; Amobonye, A.; Pillai, S. Microbial β-glucosidases: Recent advances and applications. Biochimie 2024, 225, 49–67. [Google Scholar] [CrossRef]
- Boddu, R.S.; Perumal, O.; Divakar, K. Microbial nitroreductases: A versatile tool for biomedical and environmental applications. Biotechnol. Appl. Biochem. 2021, 68, 1518–1530. [Google Scholar] [PubMed]
- Aziz, R.K.; Hegazy, S.M.; Yasser, R.; Rizkallah, M.R.; ElRakaiby, M.T. Drug pharmacomicrobiomics and toxicomicrobiomics: From scattered reports to systematic studies of drug-microbiome interactions. Expert Opin. Drug Metab. Toxicol. 2018, 14, 1043–1055. [Google Scholar] [PubMed]
- Zhao, Q.; Chen, Y.; Huang, W.; Zhou, H.; Zhang, W. Drug-microbiota interactions: An emerging priority for precision medicine. Sig. Transduct. Target. Ther. 2023, 8, 386. [Google Scholar] [CrossRef]
- Vesell, E.S. Advances in pharmacogenetics and pharmacogenomics. J. Clin. Pharmacol. 2000, 40, 930–938. [Google Scholar]
- Hamilton, J.M. The role of pharmacogenomics in precision mental health care. J. Am. Assoc. Nurse Pract. 2024, 36, 143–146. [Google Scholar]
- Graham, D.P.; Harding, M.J.; Nielsen, D.A. Pharmacogenetics of addiction therapy. Methods Mol. Biol. 2022, 2547, 437–490. [Google Scholar]
- Cacabelos, R.; Cacabelos, N.; Carril, J.C. The role of pharmacogenomics in adverse drug reactions. Expert Rev. Clin. Pharmacol. 2019, 12, 407–442. [Google Scholar] [CrossRef]
- He, C.; Peng, L.; Xing, S.; Li, D.; Wang, L.; Jin, T. Population genetic difference of pharmacogenomic VIP variants in the Tibetan population. Pharmacogenom. Pers. Med. 2021, 14, 1027–1040. [Google Scholar]
- Malki, M.A.; Pearson, E.R. Drug-drug-gene interactions and adverse drug reactions. Pharmacogenom. J. 2020, 20, 355–366. [Google Scholar]
- Guo, J.; Zhou, W.; Ma, X.; Li, Y.; Zhang, H.; Wei, J.; Du, S.; Jin, T. Genetic variability of CYP4F2, CYP2D6, CYP2E1, and ACE in the Chinese Yi population. Biochem. Genet. 2024; Advance online publication. [Google Scholar] [CrossRef]
- Salvador-Martín, S.; Zapata-Cobo, P.; Velasco, M.; Palomino, L.M.; Clemente, S.; Segarra, O.; Sánchez, C.; Tolín, M.; Moreno-Álvarez, A.; Fernández-Lorenzo, A.; et al. Association between HLA DNA variants and long-term response to anti-TNF drugs in a Spanish pediatric inflammatory bowel disease cohort. Int. J. Mol. Sci. 2023, 24, 1797. [Google Scholar] [CrossRef] [PubMed]
- Gong, L.; Whirl-Carrillo, M.; Klein, T.E. PharmGKB, an integrated resource of pharmacogenomic knowledge. Curr. Protoc. 2021, 1, e226. [Google Scholar] [CrossRef]
- Li, D.; Peng, L.; Xing, S.; He, C.; Jin, T. Genetic analysis of pharmacogenomic VIP variants in the Wa population from Yunnan province of China. BMC Genom. Data 2021, 22, 51. [Google Scholar] [CrossRef]
- Diekhof, E.K.; Richter, A.; Brodmann, K.; Gruber, O. Dopamine multilocus genetic profiles predict sex differences in reactivity of the human reward system. Brain Struct. Funct. 2021, 226, 1099–1114. [Google Scholar] [CrossRef]
- Kiefer, F.; Witt, S.H.; Frank, J.; Richter, A.; Treutlein, J.; Lemenager, T.; Nothen, M.M.; Cichon, S.; Batra, A.; Berner, M.; et al. Involvement of the atrial natriuretic peptide transcription factor GATA4 in alcohol dependence, relapse risk and treatment response to acamprosate. Pharmacogenom. J. 2011, 11, 368–374. [Google Scholar] [CrossRef]
- Morley, K.C.; Luquin, N.; Baillie, A.; Fraser, I.; Trent, R.J.; Dore, G.; Phung, N.; Haber, P.S. Moderation of baclofen response by a GABAB receptor polymorphism: Results from the BacALD randomized controlled trial. Addiction 2018, 113, 2205–2213. [Google Scholar] [CrossRef]
- Guardia, J.; Caso, C.; Arias, F.; Gual, A.; Sanahuja, J.; Ramirez, M.; Mengual, I.; Gonzalvo, B.; Segura, L.; Trujols, J.; et al. A double-blind, placebo-controlled study of naltrexone in the treatment of alcohol-dependence disorder: Results from a multicenter clinical trial. Alcohol Clin. Exp. Res. 2002, 26, 1381–1387. [Google Scholar] [CrossRef]
- Setiawan, E.; Pihl, R.O.; Cox, S.M.; Gianoulakis, C.; Palmour, R.M.; Benkelfat, C.; Leyton, M. The effect of naltrexone on alcohol’s stimulant properties and self-administration behavior in social drinkers: Influence of gender and genotype. Alcohol Clin. Exp. Res. 2011, 35, 1134–1141. [Google Scholar] [CrossRef]
- Hutchison, K.E.; McGeary, J.; Smolen, A.; Bryan, A.; Swift, R.M. The DRD4 VNTR polymorphism moderates craving after alcohol consumption. Health Psychol. 2002, 21, 139–146. [Google Scholar] [CrossRef]
- Johnson, B.A.; Roache, J.D.; Javors, M.A.; DiClemente, C.C.; Cloninger, C.R.; Prihoda, T.J.; Bordnick, P.S.; Ait-Daoud, N.; Hensler, J. Ondansetron for reduction of drinking among biologically predisposed alcoholic patients: A randomized controlled trial. JAMA 2000, 284, 963–971. [Google Scholar] [CrossRef]
- Kranzler, H.R.; Wetherill, R.; Feinn, R.; Pond, T.; Gelernter, J.; Covault, J. Posttreatment effects of topiramate treatment for heavy drinking. Alcohol Clin. Exp. Res. 2014, 38, 3017–3023. [Google Scholar] [CrossRef] [PubMed]
- Preuss, U.W.; Wurst, F.M.; Ridinger, M.; Rujescu, D.; Fehr, C.; Koller, G.; Bondy, B.; Wodarz, N.; Soyka, M.; Zill, P. Association of functional DBH genetic variants with alcohol dependence risk and related depression and suicide attempt phenotypes: Results from a large multicenter association study. Drug Alcohol Depend. 2013, 133, 459–467. [Google Scholar] [CrossRef] [PubMed]
- Kampangkaew, J.P.; Spellicy, C.J.; Nielsen, E.M.; Harding, M.J.; Ye, A.; Hamon, S.C.; Kosten, T.R.; Nielsen, D.A. Pharmacogenetic roles of dopamine transporter (SLC6A3) variation on response to disulfiram treatment for cocaine addiction. Am. J. Addict. 2019, 28, 311–317. [Google Scholar] [CrossRef]
- Kosten, T.R.; Wu, G.; Huang, W.; Harding, M.J.; Hamon, S.C.; Lappalainen, J.; Nielsen, D.A. Pharmacogenetic randomized trial for cocaine abuse: Disulfiram and dopamine β-hydroxylase. Biol. Psychiatry 2013, 73, 219–224. [Google Scholar] [CrossRef]
- Shorter, D.; Nielsen, D.A.; Huang, W.; Harding, M.J.; Hamon, S.C.; Kosten, T.R. Pharmacogenetic randomized trial for cocaine abuse: Disulfiram and α1A-adrenoceptor gene variation. Eur. Neuropsychopharmacol. 2013, 23, 1401–1407. [Google Scholar] [CrossRef]
- Nielsen, D.A.; Harding, M.J.; Hamon, S.C.; Huang, W.; Kosten, T.R. Modifying the role of serotonergic 5-HTTLPR and TPH2 variants on disulfiram treatment of cocaine addiction: A preliminary study. Genes Brain Behav. 2012, 11, 1001–1008. [Google Scholar] [CrossRef]
- Zhang, X.; Nielsen, D.A.; Domingo, C.B.; Shorter, D.I.; Nielsen, E.M.; Kosten, T.R. Pharmacogenetics of dopamine β-hydroxylase in cocaine dependence therapy with doxazosin. Addict. Biol. 2019, 24, 531–538. [Google Scholar] [CrossRef]
- Nielsen, D.A.; Hamon, S.; Kosten, T.R. The κ-opioid receptor gene as a predictor of response in a cocaine vaccine trial. Psychiatr. Genet. 2013, 23, 225–232. [Google Scholar] [CrossRef]
- Kosten, T.R.; Domingo, C.B.; Hamon, S.C.; Nielsen, D.A. DBH gene as predictor of response in a cocaine vaccine clinical trial. Neurosci. Lett. 2013, 541, 29–33. [Google Scholar] [CrossRef]
- Zahari, Z.; Lee, C.S.; Ibrahim, M.A.; Musa, N.; Yasin, M.A.M.; Lee, Y.Y.; Tan, S.C.; Mohamad, N.; Ismail, R. Influence of DRD2 polymorphisms on the clinical outcomes of opioid-dependent patients on methadone maintenance therapy. J. Pharm. Bioallied Sci. 2020, 12, S787–S803. [Google Scholar] [CrossRef]
- Levran, O.; O’Hara, K.; Peles, E.; Li, D.; Barral, S.; Ray, B.; Borg, L.; Ott, J.; Adelson, M.; Kreek, M.J. ABCB1 (MDR1) genetic variants are associated with methadone doses required for effective treatment of heroin dependence. Hum. Mol. Genet. 2008, 17, 2219–2227. [Google Scholar] [PubMed]
- Cheng, C.Y.; Hong, C.J.; Yu, Y.W.Y.; Chen, T.J.; Wu, H.C.; Tsai, S.J. Brain-derived neurotrophic factor (Val66Met) genetic polymorphism is associated with substance abuse in males. Mol. Brain Res. 2005, 140, 86–90. [Google Scholar] [PubMed]
- Oneda, B.; Crettol, S.; Bochud, M.; Besson, J.; Croquette-Krokar, M.; Hammig, R.; Monnat, M.; Preisig, M.; Eap, C.B. β-Arrestin2 influences the response to methadone in opioid-dependent patients. Pharmacogenom. J. 2011, 11, 258–266. [Google Scholar]
- Levran, O.; Peles, E.; Hamon, S.; Randesi, M.; Adelson, M.; Kreek, M.J. CYP2B6 SNPs are associated with methadone dose required for effective treatment of opioid addiction. Addict. Biol. 2013, 18, 709–716. [Google Scholar]
- Dagostino, C.; Allegri, M.; Napolioni, V.; D’Agnelli, S.; Bignami, E.; Mutti, A.; van Schaik, R.H.N. CYP2D6 genotype can help to predict effectiveness and safety during opioid treatment for chronic low back pain: Results from a retrospective study in an Italian cohort. Pharmacogenom. Pers. Med. 2018, 11, 179–191. [Google Scholar]
- Fonseca, F.; Gratacos, M.; Escaramis, G.; De Cid, R.; Martin-Santos, R.; Fernandez-Espejo, E.; Estivill, X.; Torrens, M. Response to methadone maintenance treatment is associated with the MYOCD and GRM6 genes. Mol. Diagn. Ther. 2010, 14, 171–178. [Google Scholar]
- Fang, C.P.; Liu, T.H.; Chung, R.H.; Tsou, H.H.; Kuo, H.W.; Wang, S.C.; Liu, C.C.; Liu, S.C.; Chen, A.C.H.; Liu, Y.L. Genetic variants in NECTIN4 encoding an adhesion molecule are associated with continued opioid use. PLoS ONE 2020, 15, e0234549. [Google Scholar] [CrossRef]
- Kamarajan, C.; Pandey, A.K.; Chorlian, D.B.; Manz, N.; Stimus, A.T.; Edenberg, H.J.; Wetherill, L.; Schuckit, M.; Wang, J.C.; Kuperman, S.; et al. AKCNJ6 gene polymorphism modulates theta oscillations during reward processing. Int. J. Psychol. 2017, 115, 13–23. [Google Scholar]
- Burns, J.A.; Kroll, D.S.; Feldman, D.E.; Liu, C.K.; Manza, P.; Wiers, C.E.; Volkow, N.D.; Wang, G.J. Molecular imaging of opioid and dopamine systems: Insights into the pharmacogenetics of opioid use disorders. Front. Psych. 2019, 10, 626. [Google Scholar]
- Levran, O.; Peles, E.; Randesi, M.; Correa da Rosa, J.; Ott, J.; Rotrosen, J.; Adelson, M.; Kreek, M.J. Glutamatergic and GABAergic susceptibility loci for heroin and cocaine addiction in subjects of African and European ancestry. Prog. Neuropsychopharmacol. Biol. Psychiatry 2016, 64, 118–123. [Google Scholar]
- Nelson, E.C.; Lynskey, M.T.; Heath, A.C.; Wray, N.; Agrawal, A.; Shand, F.L.; Henders, A.K.; Wallace, L.; Todorov, A.A.; Schrage, A.J.; et al. Association of OPRD1 polymorphisms with heroin dependence in a large case-control series. Addict. Biol. 2014, 19, 111–121. [Google Scholar] [PubMed]
- Lindell, A.E.; Zimmermann-Kogadeeva, M.; Patil, K.R. Multimodal interactions of drugs, natural compounds and pollutants with the gut microbiota. Nat. Rev. Microbiol. 2022, 20, 431–443. [Google Scholar] [PubMed]
- Krystal, J.H.; Staley, J.; Mason, G.; Petrakis, I.L.; Kaufman, J.; Harris, R.A.; Gelernter, J.; Lappalainen, J. γ-aminobutyric acid type A receptors and alcoholism: Intoxication, dependence, vulnerability, and treatment. Arch. Gen. Psychiatry 2006, 63, 957–968. [Google Scholar] [CrossRef] [PubMed]
- Naassila, M.; Pierrefiche, O. GluN2B subunit of the NMDA receptor: The keystone of the effects of alcohol during neurodevelopment. Neurochem. Res. 2019, 44, 78–88. [Google Scholar]
- Yan, A.W.; Fouts, D.E.; Brandl, J.; Starkel, P.; Torralba, M.; Schott, E.; Tsukamoto, H.; Nelson, K.E.; Brenner, D.A.; Schnabl, B. Enteric dysbiosis associated with a mouse model of alcoholic liver disease. Hepatology 2011, 53, 96–105. [Google Scholar]
- Peterson, V.L.; Jury, N.J.; Cabrera-Rubio, R.; Draper, L.A.; Crispie, F.; Cotter, P.D.; Dinan, T.G.; Holmes, A.; Cryan, J.F. Drunk bugs: Chronic vapour alcohol exposure induces marked changes in the gut microbiome in mice. Behav. Brain Res. 2017, 323, 172–176. [Google Scholar]
- Bjørkhaug, S.T.; Aanes, H.; Neupane, S.P.; Bramness, J.G.; Malvik, S.; Henriksen, C.; Skar, V.; Medhus, A.W.; Valeur, J. Characterization of gut microbiota composition and functions in patients with chronic alcohol overconsumption. Gut Microbes 2019, 10, 663–675. [Google Scholar]
- Litwinowicz, K.; Choroszy, M.; Waszczuk, E. Changes in the composition of the human intestinal microbiome in alcohol use disorder: A systematic review. Am. J. Drug Alcohol Abus. 2020, 46, 4–12. [Google Scholar]
- Addolorato, G.; Ponziani, F.R.; Dionisi, T.; Mosoni, C.; Vassallo, G.A.; Sestito, L.; Petito, V.; Picca, A.; Marzetti, E.; Tarli, C.; et al. Gut microbiota compositional and functional fingerprint in patients with alcohol use disorder and alcohol-associated liver disease. Liver Int. 2020, 40, 878–888. [Google Scholar]
- Du, Y.; Li, L.; Gong, C.; Li, T.; Xia, Y. The diversity of the intestinal microbiota in patients with alcohol use disorder and its relationship to alcohol consumption and cognition. Front. Psychiatry 2022, 13, 1054685. [Google Scholar]
- Baltazar-Díaz, T.A.; González-Hernández, L.A.; Aldana-Ledesma, J.M.; Peña-Rodríguez, M.; Vega-Magaña, A.N.; Zepeda-Morales, A.S.M.; López-Roa, R.I.; Del Toro-Arreola, S.; Martínez-López, E.; Salazar-Montes, A.M.; et al. Escherichia/Shigella, SCFAs, and metabolic pathways—The triad that orchestrates intestinal dysbiosis in patients with decompensated alcoholic cirrhosis from Western Mexico. Microorganisms 2022, 10, 1231. [Google Scholar] [CrossRef] [PubMed]
- Ashok, A.H.; Mizuno, Y.; Volkow, N.D.; Howes, O.D. Association of stimulant use with dopaminergic alterations in users of cocaine, amphetamine, or methamphetamine: A systematic review and meta-analysis. JAMA Psychiatry 2017, 74, 511–519. [Google Scholar] [CrossRef] [PubMed]
- Morelli, M.; Tognotti, E. Brief history of the medical and non-medical use of amphetamine-like psychostimulants. Exp. Neurol. 2021, 342, 113754. [Google Scholar] [CrossRef] [PubMed]
- Asser, A.; Taba, P. Psychostimulants and movement disorders. Front. Neurol. 2015, 6, 75. [Google Scholar] [CrossRef]
- Ning, T.; Gong, X.; Xie, L.; Ma, B. Gut microbiota analysis in rats with methamphetamine-induced conditioned place preference. Front. Microbiol. 2017, 8, 1620. [Google Scholar] [CrossRef]
- Cook, R.R.; Fulcher, J.A.; Tobin, N.H.; Li, F.; Lee, D.J.; Woodward, C.; Javanbakht, M.; Brookmeyer, R.; Shoptaw, S.; Bolan, R.; et al. Alterations to the gastrointestinal microbiome associated with methamphetamine use among young men who have sex with men. Sci. Rep. 2019, 9, 14840. [Google Scholar] [CrossRef]
- Yang, Y.; Yu, X.; Liu, X.; Liu, G.; Zeng, K.; Wang, G. Altered fecal microbiota composition in individuals who abuse methamphetamine. Sci. Rep. 2021, 11, 18178. [Google Scholar] [CrossRef]
- He, L.; Yang, B.Z.; Ma, Y.J.; Wen, L.; Liu, F.; Zhang, X.J.; Liu, T.Q. Differences in clinical features and gut microbiota between individuals with methamphetamine casual use and methamphetamine use disorder. Front. Cell. Infect. Microbiol. 2023, 13, 1103919. [Google Scholar] [CrossRef]
- Volpe, G.E.; Ward, H.; Mwamburi, M.; Dinh, D.; Bhalchandra, S.; Wanke, C.; Kane, A.V. Associations of cocaine use and HIV infection with the intestinal microbiota, microbial translocation, and inflammation. J. Stud. Alcohol Drugs 2014, 75, 347–357. [Google Scholar] [CrossRef]
- Gerace, E.; Baldi, S.; Salimova, M.; Di Gloria, L.; Curini, L.; Cimino, V.; Nannini, G.; Russo, E.; Pallecchi, M.; Ramazzotti, M.; et al. Oral and fecal microbiota perturbance in cocaine users: Can rTMS-induced cocaine abstinence support eubiosis restoration? iScience 2023, 26, 106627. [Google Scholar] [CrossRef]
- Stein, C. New concepts in opioid analgesia. Expert Opin. Investig. Drugs 2018, 27, 765–775. [Google Scholar] [CrossRef] [PubMed]
- Benyamin, R.; Trescot, A.M.; Datta, S.; Buenaventura, R.; Adlaka, R.; Sehgal, N.; Glaser, S.E.; Vallejo, R. Opioid complications and side effects. Pain Physician 2008, 11, S105–S120. [Google Scholar] [PubMed]
- Trang, T.; Al-Hasani, R.; Salvemini, D.; Salter, M.W.; Gutstein, H.; Cahill, C.M. Pain and poppies: The good, the bad, and the ugly of opioid analgesics. J. Neurosci. 2015, 35, 13879–13888. [Google Scholar]
- Valentino, R.J.; Volkow, N.D. Untangling the complexity of opioid receptor function. Neuropsychopharmacology 2018, 43, 2514–2520. [Google Scholar] [CrossRef]
- Rosenberg, P.H.; Renkonen, O.V. Antimicrobial activity of bupivacaine and morphine. Anesthesiology 1985, 62, 178–179. [Google Scholar]
- Grimmond, T.R.; Brownridge, P. Antimicrobial activity of bupivacaine and pethidine. Anaesth. Intensive Care 1986, 14, 418–420. [Google Scholar]
- Kesici, S.; Demırci, M.; Kesici, U. Efeitos antimicrobianos do fentanil e da bupivacaína: Estudo in vitro [Antimicrobial effects of fentanyl and bupivacaine]. Braz. J. Anesthesiol. 2020, 70, 357–363. [Google Scholar]
- Sheagren, J.N.; Barsoum, I.S.; Lin, M.Y. Methadone: Antimicrobial activity and interaction with antibiotics. Antimicrob. Agents Chemother. 1977, 12, 748–750. [Google Scholar]
- Tamanai-Shacoori, Z.; Shacoori, V.; Jolivet-Gougeon, A.; Vo Van, J.M.; Repere, M.; Donnio, P.Y.; Bonnaure-Mallet, M. The antibacterial activity of tramadol against bacteria associated with infectious complications after local or regional anesthesia. Anesth. Analg. 2007, 105, 524–527. [Google Scholar]
- Cruz-Lebrón, A.; Johnson, R.; Mazahery, C.; Troyer, Z.; Joussef-Piña, S.; Quiñones-Mateu, M.E.; Strauch, C.M.; Hazen, S.L.; Levine, A.D. Chronic opioid use modulates human enteric microbiota and intestinal barrier integrity. Gut Microbes 2021, 13, 1946368. [Google Scholar] [CrossRef]
- Herlihy, B.; Roy, S. Gut-microbiome implications in opioid use disorder and related behaviors. Adv. Drug Alcohol Res. 2022, 2, 10311. [Google Scholar] [CrossRef] [PubMed]
- Wang, F.; Meng, J.; Zhang, L.; Johnson, T.; Chen, C.; Roy, S. Morphine induces changes in the gut microbiome and metabolome in a morphine dependence model. Sci. Rep. 2018, 8, 3596. [Google Scholar] [CrossRef] [PubMed]
- Farzam, H.; Farahani, A.; Tafkik, A.; Gorgin Karaji, A.; Mohajeri, P.; Rezaei, M.; Jalalvandi, F. Antibacterial effect of tramadol against Staphylococcus aureus and Pseudomonas aeruginosa: An in vivo study. New Microbes New Infect. 2018, 24, 42–46. [Google Scholar] [CrossRef]
- Xu, Y.; Xie, Z.; Wang, H.; Shen, Z.; Guo, Y.; Gao, Y.; Chen, X.; Wu, Q.; Li, X.; Wang, K. Bacterial diversity of intestinal microbiota in patients with substance use disorders revealed by 16S rRNA gene deep sequencing. Sci. Rep. 2017, 7, 3628. [Google Scholar] [CrossRef]
- Acharya, C.; Betrapally, N.S.; Gillevet, P.M.; Sterling, R.K.; Akbarali, H.; White, M.B.; Ganapathy, D.; Fagan, A.; Sikaroodi, M.; Bajaj, J.S. Chronic opioid use is associated with altered gut microbiota and predicts readmissions in patients with cirrhosis. Aliment. Pharmacol. Ther. 2017, 45, 319–331. [Google Scholar]
- Fraguas-Sánchez, A.I.; Torres-Suárez, A.I. Medical use of cannabinoids. Drugs 2018, 78, 1665–1703. [Google Scholar] [CrossRef]
- Legare, C.A.; Raup-Konsavage, W.M.; Vrana, K.E. Therapeutic potential of cannabis, cannabidiol, and cannabinoid-based pharmaceuticals. Pharmacology 2022, 107, 131–149. [Google Scholar] [CrossRef]
- Ali, E.; Almagboul, A.; Khogali, S.; Gergeir, U. Antimicrobial activity of Cannabis sativa L. Chin. Med. 2012, 3, 61–64. [Google Scholar]
- Appendino, G.; Gibbons, S.; Giana, A.; Pagani, A.; Grassi, G.; Stavri, M.; Smith, E.; Rahman, M.M. Antibacterial cannabinoids from Cannabis sativa: A structure-activity study. J. Nat. Prod. 2008, 71, 1427–1430. [Google Scholar]
- Nissen, L.; Zatta, A.; Stefanini, I.; Grandi, S.; Sgorbati, B.; Biavati, B.; Monti, A. Characterization and antimicrobial activity of essential oils of industrial hemp varieties (Cannabis sativa L.). Fitoterapia 2010, 81, 413–419. [Google Scholar] [CrossRef]
- Mehrpouya-Bahrami, P.; Chitrala, K.N.; Ganewatta, M.S.; Tang, C.; Murphy, E.A.; Enos, R.T.; Velazquez, K.T.; McCellan, J.; Nagarkatti, M.; Nagarkatti, P. Blockade of CB1 cannabinoid receptor alters gut microbiota and attenuates inflammation and diet-induced obesity. Sci. Rep. 2017, 7, 15645. [Google Scholar]
- Panee, J.; Gerschenson, M.; Chang, L. Associations between microbiota, mitochondrial function, and cognition in chronic marijuana users. J. Neuroimmune Pharmacol. 2018, 13, 113–122. [Google Scholar] [CrossRef] [PubMed]
- Vijay, A.; Kouraki, A.; Gohir, S.; Turnbull, J.; Kelly, A.; Chapman, V.; Barrett, D.A.; Bulsiewicz, W.J.; Valdes, A.M. The anti-inflammatory effect of bacterial short chain fatty acids is partially mediated by endocannabinoids. Gut Microbes 2021, 13, 1997559. [Google Scholar] [PubMed]
- Benowitz, N.L. Pharmacology of nicotine: Addiction, smoking-induced disease, and therapeutics. Annu. Rev. Pharmacol. Toxicol. 2009, 49, 57–71. [Google Scholar]
- Rice, M.E.; Cragg, S.J. Nicotine amplifies reward-related dopamine signals in striatum. Nat. Neurosci. 2004, 7, 583–584. [Google Scholar] [CrossRef]
- Pavia, C.S.; Pierre, A.; Nowakowski, J. Antimicrobial activity of nicotine against a spectrum of bacterial and fungal pathogens. J. Med. Microbiol. 2000, 49, 675–676. [Google Scholar]
- Zaidi, M.I.; Wattoo, F.H.; Wattoo, M.H.S.; Tirmizi, S.A.; Salman, S. Antibacterial activities of nicotine and its zinc complex. Afr. J. Microbiol. Res. 2012, 6, 5134–5137. [Google Scholar]
- Biedermann, L.; Zeitz, J.; Mwinyi, J.; Sutter-Minder, E.; Rehman, A.; Ott, S.J.; Steurer-Stey, C.; Frei, A.; Frei, P.; Scharl, M.; et al. Smoking cessation induces profound changes in the composition of the intestinal microbiota in humans. PLoS ONE 2013, 8, e59260. [Google Scholar]
- Vogtmann, E.; Flores, R.; Yu, G.; Freedman, N.D.; Shi, J.; Gail, M.H.; Dye, B.A.; Wang, G.Q.; Klepac-Ceraj, V.; Paster, B.J.; et al. Association between tobacco use and the upper gastrointestinal microbiome among Chinese men. Cancer Causes Control 2015, 26, 581–588. [Google Scholar]
- Opstelten, J.L.; Plassais, J.; van Mil, S.W.; Achouri, E.; Pichaud, M.; Siersema, P.D.; Oldenburg, B.; Cervino, A.C. Gut microbial diversity is reduced in smokers with Crohn’s disease. Inflamm. Bowel Dis. 2016, 22, 2070–2077. [Google Scholar]
- Lee, S.H.; Yun, Y.; Kim, S.J.; Lee, E.J.; Chang, Y.; Ryu, S.; Shin, H.; Kim, H.L.; Kim, H.N.; Lee, J.H. Association between cigarette smoking status and composition of gut microbiota: Population-based cross-sectional study. J. Clin. Med. 2018, 7, 282. [Google Scholar] [CrossRef] [PubMed]
- Savin, Z.; Kivity, S.; Yonath, H.; Yehuda, S. Smoking and the intestinal microbiome. Arch. Microbiol. 2018, 200, 677–684. [Google Scholar] [CrossRef] [PubMed]
- Shanahan, E.R.; Shah, A.; Koloski, N.; Walker, M.M.; Talley, N.J.; Morrison, M.; Holtmann, G.J. Influence of cigarette smoking on the human duodenal mucosa-associated microbiota. Microbiome 2018, 6, 150. [Google Scholar] [CrossRef]
- Stewart, C.J.; Auchtung, T.A.; Ajami, N.J.; Velasquez, K.; Smith, D.P.; De La Garza, R., II; Salas, R.; Petrosino, J.F. Effects of tobacco smoke and electronic cigarette vapor exposure on the oral and gut microbiota in humans: A pilot study. PeerJ 2018, 6, e4693. [Google Scholar] [CrossRef]
- Nolan-Kenney, R.; Wu, F.; Hu, J.; Yang, L.; Kelly, D.; Li, H.; Jasmine, F.; Kibriya, M.G.; Parvez, F.; Shaheen, I.; et al. The association between smoking and gut microbiome in Bangladesh. Nicotine Tob. Res. 2020, 22, 1339–1346. [Google Scholar] [CrossRef]
- Lin, R.; Zhang, Y.; Chen, L.; Qi, Y.; He, J.; Hu, M.; Zhang, Y.; Fan, L.; Yang, T.; Wang, L.; et al. The effects of cigarettes and alcohol on intestinal microbiota in healthy men. J. Microbiol. 2020, 58, 926–937. [Google Scholar] [CrossRef]
- Antinozzi, M.; Giffi, M.; Sini, N.; Gallè, F.; Valeriani, F.; De Vito, C.; Liguori, G.; Romano Spica, V.; Cattaruzza, M.S. Cigarette smoking and human gut microbiota in healthy adults: A systematic review. Biomedicines 2022, 10, 510. [Google Scholar] [CrossRef]
- Mirnics, Z.; Kövi, Z.; Tanyi, Z.; Grezsa, F. Adolescent drug use, relational variables and personality factors. Psychiatr. Danub. 2021, 33, 656–665. [Google Scholar]
- Hamdan-Mansour, A.; Mahmoud, K.; Shibi, A.; Arabiat, D. Impulsivity and sensation-seeking personality traits as predictors of substance use among university students. J. Psychosoc. Nurs. Ment. Health Serv. 2018, 56, 57–63. [Google Scholar]
- Mahoney, J.; Thompson-Lake, D.; Cooper, K.; Verrico, C.; Newton, T.; De La Garza, R., II. A comparison of impulsivity, depressive symptoms, lifetime stress and sensation seeking in healthy controls versus participants with cocaine or methamphetamine use disorders. J. Psychopharmacol. 2015, 29, 50–56. [Google Scholar]
- Ismael, F.; Baltieri, D. Role of personality traits in cocaine craving throughout an outpatient psychosocial treatment program. Braz. J. Psychiatry 2014, 36, 24–31. [Google Scholar] [PubMed]
- Wingo, T.; Nesil, T.; Choi, J.; Li, M. Novelty seeking and drug addiction in humans and animals: From behavior to molecules. J. Neuroimmune Pharmacol. 2016, 11, 456–470. [Google Scholar] [PubMed]
- Dugyala, S.; Ptacek, T.; Simon, J.; Li, Y.; Frohlich, F. Putative modulation of the gut microbiome by probiotics enhances preference for novelty in a preliminary double-blind placebo-controlled study in ferrets. Anim. Microbiome 2020, 2, 14. [Google Scholar]
- Hofford, R.; Mervosh, N.; Euston, T.; Meckel, K.; Orr, A.; Kiraly, D. Alterations in microbiome composition and metabolic byproducts drive behavioral and transcriptional responses to morphine. Neuropsychopharmacology 2021, 46, 2062–2072. [Google Scholar]
- Kiraly, D.; Walker, D.; Calipari, E.; Labonte, B.; Issler, O.; Pena, C.; Ribeiro, E.A.; Russo, S.J.; Nestler, E.J. Alterations of the host microbiome affect behavioral responses to cocaine. Sci. Rep. 2016, 6, 35455. [Google Scholar]
- Lee, K.; Vuong, H.; Nusbaum, D.; Hsiao, E.; Evans, C.; Taylor, A. The gut microbiota mediates reward and sensory responses associated with regimen selective morphine dependence. Neuropsychopharmacology 2018, 43, 2606–2614. [Google Scholar]
- Leeuwendaal, N.; Cryan, J.; Schellekens, H. Gut peptides and the microbiome: Focus on ghrelin. Curr. Opin. Endocrinol. Diabetes Obes. 2021, 28, 243–252. [Google Scholar] [CrossRef]
- Rahat-Rozenbloom, S.; Fernandes, J.; Cheng, J.; Wolever, T. Acute increases in serum colonic short-chain fatty acids elicited by inulin do not increase GLP-1 or PYY responses but may reduce ghrelin in lean and overweight humans. Eur. J. Clin. Nutr. 2017, 71, 953–958. [Google Scholar]
- Zallar, L.; Farokhnia, M.; Tunstall, B.; Vendruscolo, L.; Leggio, L. The role of the ghrelin system in drug addiction. Int. Rev. Neurobiol. 2017, 136, 89–119. [Google Scholar]
- Bromberg-Martin, E.S.; Matsumoto, M.; Hikosaka, O. Dopamine in motivational control: Rewarding, aversive, and alerting. Neuron 2010, 68, 815–834. [Google Scholar]
- García-Cabrerizo, R.; Carbia, C.; Riordan, K.; Schellekens, H.; Cryan, J. Microbiota-gut-brain axis as a regulator of reward processes. J. Neurochem. 2021, 157, 1495–1524. [Google Scholar] [CrossRef] [PubMed]
- Egecioglu, E.; Engel, J.; Jerlhag, E. The glucagon-like peptide 1 analogue, exendin-4, attenuates the rewarding properties of psychostimulant drugs in mice. PLoS ONE 2013, 8, e69010. [Google Scholar] [CrossRef] [PubMed]
- Harasta, A.; Power, J.; von Jonquieres, G.; Karl, T.; Drucker, D.; Housley, G.; Schneider, M.; Klugmann, M. Septal glucagon-like peptide 1 receptor expression determines suppression of cocaine-induced behavior. Neuropsychopharmacology 2015, 40, 1969–1978. [Google Scholar] [CrossRef]
- Cornejo-Pareja, I.; Martín-Núñez, G.; Roca-Rodríguez, M.; Cardona, F.; Coin-Aragüez, L.; Sánchez-Alcoholado, L.; Gutiérrez-Repiso, C.; Muñoz-Garach, A.; Fernández-García, J.C.; Moreno-Indias, I.; et al. H. pylori eradication treatment alters gut microbiota and GLP-1 secretion in humans. J. Clin. Med. 2019, 8, 451. [Google Scholar] [CrossRef] [PubMed]
- Tian, L.; Jin, T. The incretin hormone GLP-1 and mechanisms underlying its secretion. J. Diabetes 2016, 8, 753–765. [Google Scholar]
- Kolli, U.; Roy, S. The role of the gut microbiome and microbial metabolism in mediating opioid-induced changes in the epigenome. Front. Microbiol. 2023, 14, 1233194. [Google Scholar] [CrossRef]
- Borrego-Ruiz, A.; Borrego, J.J. Epigenetic mechanisms in aging: Extrinsic factors and gut microbiome. Genes 2024, 15, 1599. [Google Scholar] [CrossRef]
- Krautkramer, K.A.; Dhillon, R.S.; Denu, J.M.; Carey, H.V. Metabolic programming of the epigenome: Host and gut microbial metabolite interactions with host chromatin. Transl. Res. 2017, 189, 30–50. [Google Scholar] [CrossRef]
- van der Hee, B.; Wells, J.M. Microbial regulation of host physiology by short-chain fatty acids. Trends Microbiol. 2021, 29, 700–712. [Google Scholar] [CrossRef]
- Woo, V.; Alenghat, T. Epigenetic regulation by gut microbiota. Gut Microbes 2022, 14, 2022407. [Google Scholar] [CrossRef]
- Wu, S.E.; Hashimoto-Hill, S.; Woo, V.; Eshleman, E.M.; Whitt, J.; Engleman, L.; Karns, R.; Denson, L.A.; Haslam, D.B.; Alenghat, T. Microbiota-derived metabolite promotes HDAC3 activity in the gut. Nature 2020, 586, 108–112. [Google Scholar] [CrossRef] [PubMed]
- Fellows, R.; Denizot, J.; Stellato, C.; Cuomo, A.; Jain, P.; Stoyanova, E.; Balázsi, S.; Hajnády, Z.; Liebert, A.; Kazakevych, J.; et al. Microbiota derived short chain fatty acids promote histone crotonylation in the colon through histone deacetylases. Nat. Commun. 2018, 9, 105. [Google Scholar] [PubMed]
- Lund, P.J.; Gates, L.A.; Leboeuf, M.; Smith, S.A.; Chau, L.; Lopes, M.; Friedman, E.S.; Saiman, Y.; Kim, M.S.; Shoffler, C.A.; et al. Stable isotope tracing in vivo reveals a metabolic bridge linking the microbiota to host histone acetylation. Cell Rep. 2022, 41, 111809. [Google Scholar] [CrossRef] [PubMed]
- Stricker, S.H.; Köferle, A.; Beck, S. From profiles to function in epigenomics. Nat. Rev. Genet. 2017, 18, 51–66. [Google Scholar]
- Shock, T.; Badang, L.; Ferguson, B.; Martinez-Guryn, K. The interplay between diet, gut microbes, and host epigenetics in health and disease. J. Nutr. Biochem. 2021, 95, 108631. [Google Scholar]
- Engevik, M.A.; Morra, C.N.; Röth, D.; Engevik, K.; Spinler, J.K.; Devaraj, S.; Crawford, S.E.; Estes, M.K.; Kalkum, M.; Versalovic, J. Microbial metabolic capacity for intestinal folate production and modulation of host folate receptors. Front. Microbiol. 2019, 10, 2305. [Google Scholar]
- Hossain, K.S.; Amarasena, S.; Mayengbam, S. B vitamins and their roles in gut health. Microorganisms 2022, 10, 1168. [Google Scholar] [CrossRef]
- McAuley, E.; McNulty, H.; Hughes, C.; Strain, J.J.; Ward, M. Riboflavin status, MTHFR genotype and blood pressure: Current evidence and implications for personalised nutrition. Proc. Nutr. Soc. 2016, 75, 405–414. [Google Scholar]
- Patel, A.B.; He, Y.; Radhakrishnan, I. Histone acetylation and deacetylation—Mechanistic insights from structural biology. Gene 2023, 890, 147798. [Google Scholar]
- Siudeja, K.; Srinivasan, B.; Xu, L.; Rana, A.; de Jong, J.; Nollen, E.A.; Jackowski, S.; Sanford, L.; Hayflick, S.; Sibon, O.C. Impaired coenzyme A metabolism affects histone and tubulin acetylation in Drosophila and human cell models of pantothenate kinase associated neurodegeneration. EMBO Mol. Med. 2011, 3, 755–766. [Google Scholar]
- Pacey, S.; Workman, P.; Sarker, D. Pharmacokinetics and pharmacodynamics in drug development. In Encyclopedia of Cancer; Schwab, M., Ed.; Springer: Berlin/Heidelberg, Germany, 2011; pp. 2845–2848. [Google Scholar]
- Doogue, M.P.; Polasek, T.M. The ABCD of clinical pharmacokinetics. Ther. Adv. Drug Saf. 2013, 4, 5–7. [Google Scholar] [PubMed]
- Cussotto, S.; Clarke, G.; Dinan, T.G.; Cryan, J.F. Psychotropics and the microbiome: A chamber of secrets…. Psychopharmacology 2019, 236, 1411–1432. [Google Scholar] [PubMed]
- Zhang, X.; Han, Y.; Huang, W.; Jin, M.; Gao, Z. The influence of the gut microbiota on the bioavailability of oral drugs. Acta Pharm. Sin. B 2021, 11, 1789–1812. [Google Scholar]
- Pavlović, N.; Goločorbin-Kon, S.; Ðanić, M.; Stanimirov, B.; Al-Salami, H.; Stankov, K.; Mikov, M. Bile acids and their derivatives as potential modifiers of drug release and pharmacokinetic profiles. Front. Pharmacol. 2018, 9, 1283. [Google Scholar] [CrossRef]
- Ahmed Juvale, I.I.; Abdul Hamid, A.A.; Abd Halim, K.B.; Che Has, A.T. P-glycoprotein: New insights into structure, physiological function, regulation and alterations in disease. Heliyon 2022, 8, e09777. [Google Scholar] [CrossRef]
- Kinzi, J.; Grube, M.; Meyer Zu Schwabedissen, H.E. OATP2B1—The underrated member of the organic anion transporting polypeptide family of drug transporters? Biochem. Pharmacol. 2021, 188, 114534. [Google Scholar] [CrossRef]
- Fusco, W.; Lorenzo, M.B.; Cintoni, M.; Porcari, S.; Rinninella, E.; Kaitsas, F.; Lener, E.; Mele, M.C.; Gasbarrini, A.; Collado, M.C.; et al. Short-chain fatty-acid-producing bacteria: Key components of the human gut microbiota. Nutrients 2023, 15, 2211. [Google Scholar] [CrossRef]
- Pohl, K.; Moodley, P.; Dhanda, A. The effect of increasing intestinal short-chain fatty acid concentration on gut permeability and liver injury in the context of liver disease: A systematic review. J. Gastroenterol. Hepatol. 2022, 37, 1498–1506. [Google Scholar] [CrossRef]
- Patel, M.; Taskar, K.S.; Zamek-Gliszczynski, M.J. Importance of hepatic transporters in clinical disposition of drugs and their metabolites. J. Clin. Pharmacol. 2016, 56, S23–S39. [Google Scholar]
- Lakshmanan, M. Drug metabolism. In Introduction to Basics of Pharmacology and Toxicology; Raj, G., Raveendran, R., Eds.; Springer: Singapore, 2019; pp. 99–116. [Google Scholar]
- de Campos, E.G.; de Almeida, O.G.G.; De Martinis, E.C.P. The role of microorganisms in the biotransformation of psychoactive substances and its forensic relevance: A critical interdisciplinary review. Forensic Sci. Res. 2023, 8, 173–184. [Google Scholar]
- Otles, S.; Özyurt, V.H. Biotransformation in the production of secondary metabolites. Stud. Nat. Prod. Chem. 2021, 68, 435–457. [Google Scholar]
- Yousuf, M.; Jamil, W.; Mammadova, K. Microbial bioconversion: A regio-specific method for novel drug design and toxicolog-ical study of metabolites. Curr. Pharm. Biotechnol. 2019, 20, 1156–1162. [Google Scholar] [PubMed]
- Bresler, M.M.; Rosser, S.J.; Basran, A.; Bruce, N.C. Gene cloning and nucleotide sequencing and properties of a cocaine esterase from Rhodococcus sp. strain MB1. Appl. Environ. Microbiol. 2000, 66, 904–908. [Google Scholar]
- Britt, A.J.; Bruce, N.C.; Lowe, C.R. Identification of a cocaine esterase in a strain of Pseudomonas maltophilia. J. Bacteriol. 1992, 174, 2087–2094. [Google Scholar]
- Lister, D.L.; Sproulé, R.F.; Britt, A.J.; Lowe, C.R.; Bruce, N.C. Degradation of cocaine by a mixed culture of Pseudomonas fluorescens MBER and Comamonas acidovorans MBLF. Appl. Environ. Microbiol. 1996, 62, 94–99. [Google Scholar]
- Mustafa, S.A. The development of bacterial carboxylesterase biological recognition elements for cocaine detection. Mol. Biotechnol. 2018, 60, 601–607. [Google Scholar]
- Brim, R.L.; Nance, M.R.; Youngstrom, D.W.; Narasimhan, D.; Zhan, C.G.; Tesmer, J.J.; Sunahara, R.K.; Woods, J.H. A thermally stable form of bacterial cocaine esterase: A potential therapeutic agent for treatment of cocaine abuse. Mol. Pharmacol. 2010, 77, 593–600. [Google Scholar]
- Chen, X.; Deng, J.; Cui, W.; Hou, S.; Zhang, J.; Zheng, X.; Ding, X.; Wei, H.; Zhou, Z.; Kim, K.; et al. Development of Fc-fused cocaine hydrolase for cocaine addiction treatment: Catalytic and pharmacokinetic properties. AAPS J. 2018, 20, 53. [Google Scholar] [CrossRef]
- Howell, L.; Nye, J.; Stehouwer, J.; Voll, R.; Narasimhan, D.; Nichols, J.; Sunahara, R.; Goodman, M.; Carroll, F.; Woods, J.; et al. A thermostable bacterial cocaine esterase rapidly eliminates cocaine from brain in nonhuman primates. Transl. Psychiatry 2014, 4, e407. [Google Scholar] [CrossRef]
- Narasimhan, D.; Woods, J.H.; Sunahara, R.K. Bacterial cocaine esterase: A protein-based therapy for cocaine overdose and addiction. Future Med. Chem. 2012, 4, 137–150. [Google Scholar]
- Zhang, T.; Zheng, X.; Zhou, Z.; Chen, X.; Jin, Z.; Deng, J.; Zhan, C.G.; Zheng, F. Clinical potential of an enzyme-based novel therapy for cocaine overdose. Sci. Rep. 2017, 7, 15303. [Google Scholar] [CrossRef] [PubMed]
- Coutts, R.T.; Foster, B.C. Metabolism of amphetamines by Mycobacterium smegmatis. Can. J. Microbiol. 1980, 26, 343–349. [Google Scholar] [CrossRef] [PubMed]
- Foster, B.C.; Wilson, D.L.; Marwood, T.; Ethier, J.C.; Zamecnik, J. Microbial transformation of 3,4-methylenedioxy-N-methylamphetamine and 3,4-methylenedioxyamphetamine. Can. J. Microbiol. 1996, 42, 851–854. [Google Scholar]
- Kumar, K.; Dhoke, G.V.; Sharma, A.K.; Jaiswal, S.K.; Sharma, V.K. Mechanistic elucidation of amphetamine metabolism by tyramine oxidase from human gut microbiota using molecular dynamics simulations. J. Cell. Biochem. 2019, 120, 11206–11215. [Google Scholar]
- Bruce, N.C.; Wilmot, C.J.; Jordan, K.N.; Stephens, L.D.; Lowe, C.R. Microbial degradation of the morphine alkaloids. Purification and characterization of morphine dehydrogenase from Pseudomonas putida M10. Biochem. J. 1991, 274, 875–880. [Google Scholar] [CrossRef]
- Walker, E.H.; French, C.E.; Rathbone, D.A.; Bruce, N.C. Mechanistic studies of morphine dehydrogenase and stabilization against covalent inactivation. Biochem. J. 2000, 345, 687–692. [Google Scholar] [CrossRef]
- Boonstra, B.; Rathbone, D.A.; Bruce, N.C. Engineering novel biocatalytic routes for production of semisynthetic opiate drugs. Biomol. Eng. 2001, 18, 41–47. [Google Scholar]
- Hailes, A.M.; Bruce, N.C. Biological synthesis of the analgesic hydromorphone, an intermediate in the metabolism of morphine, by Pseudomonas putida M10. Appl. Environ. Microbiol. 1993, 59, 2166–2170. [Google Scholar]
- Long, M.T.; Hailes, A.M.; Kirby, G.W.; Bruce, N.C. Transformations of morphine alkaloids by Pseudomonas putida M10. Appl. Environ. Microbiol. 1995, 61, 3645–3649. [Google Scholar]
- Shraddha, N.; Shekher, R.; Sehgal, S.; Kamthania, M.; Kumar, A. Laccase: Microbial sources, production, purification, and potential biotechnological applications. Enzyme Res. 2011, 2011, 217861. [Google Scholar]
- Martins, L.O.; Soares, C.M.; Pereira, M.M.; Teixeira, M.; Costa, T.; Jones, G.H.; Henriques, A.O. Molecular and biochemical characterization of a highly stable bacterial laccase that occurs as a structural component of the Bacillus subtilis endospore coat. J. Biol. Chem. 2002, 277, 18849–18859. [Google Scholar] [CrossRef] [PubMed]
- Lister, D.L.; Kanungo, G.; Rathbone, D.A.; Bruce, N.C. Transformations of codeine to important semisynthetic opiate derivatives by Pseudomonas putida M10. FEMS Microbiol. Lett. 1999, 181, 137–144. [Google Scholar] [CrossRef] [PubMed]
- Kunz, D.A.; Reddy, G.S.; Vatvars, A. Identification of transformation products arising from bacterial oxidation of codeine by Streptomyces griseus. Appl. Environ. Microbiol. 1985, 50, 831–836. [Google Scholar] [CrossRef]
- Kyslíková, E.; Babiak, P.; Stepánek, V.; Zahradnik, J.; Palyzova, A.; Maresova, H.; Valesova, R.; Hajicek, J.; Kyslik, P. Biotransformation of codeine to 14-OH-codeine derivatives by Rhizobium radiobacter R89-1. J. Mol. Catal. B Enzym. 2013, 87, 1–5. [Google Scholar] [CrossRef]
- Niknam, S.; Faramarzi, M.A.; Abdi, K.; Yazdi, M.T.; Amini, M.; Rastegar, H. Bioconversion of codeine to semi-synthetic opiate derivatives by the cyanobacterium Nostoc muscorum. World J. Microbiol. Biotechnol. 2010, 26, 119–123. [Google Scholar] [CrossRef]
- Cameron, G.W.; Jordan, K.N.; Holt, P.J.; Baker, P.B.; Lowe, C.R.; Bruce, N.C. Identification of a heroin esterase in Rhodococcus sp. strain H1. Appl. Environ. Microbiol. 1994, 60, 3881–3883. [Google Scholar] [CrossRef]
- Stabler, P.J.; Bruce, N.C. Oxidation of morphine to 2,2′-bimorphine by Cylindrocarpon didymum. Appl. Environ. Microbiol. 1998, 64, 4106–4108. [Google Scholar] [CrossRef]
- Chaudhary, V.; Leisch, H.; Moudra, A.; Allen, B.; De Luca, V.; Cox, D.P.; Hudlicky, T. Biotransformations of morphine alkaloids by fungi: N-demethylations, oxidations, and reductions. Collect. Czechoslov. Chem. Commun. 2009, 74, 1179–1193. [Google Scholar] [CrossRef]
- Gibson, M.; Soper, C.J.; Parfitt, R.T.; Sowell, G.J. Studies on the mechanism of microbial N-demethylation of codeine by cell-free extracts of Cunninghamella bainieri. Enzyme Microb. Technol. 1984, 6, 471–475. [Google Scholar] [CrossRef]
- Akhtar, M.T.; Shaari, K.; Verpoorte, R. Biotransformation of tetrahydrocannabinol. Phytochem. Rev. 2016, 15, 921–934. [Google Scholar] [CrossRef]
- Rashidi, H.; Akhtar, M.T.; van der Kooy, F.; Verpoorte, R.; Duetz, W.A. Hydroxylation and further oxidation of delta 9-tetrahydrocannabinol by alkane-degrading bacteria. Appl. Environ. Microbiol. 2009, 75, 7135–7141. [Google Scholar] [PubMed]
- Binder, M.; Popp, A. Microbial transformation of cannabinoids. Part 3. Major metabolites of (3R, 4R)-∆1-tetrahydrocannabinol. Helv. Chim. Acta 1980, 63, 2515–2518. [Google Scholar]
- Robertson, L.W.; Koh, S.W.; Huff, S.R.; Malhotra, R.K.; Ghosh, A. Microbiological oxidation of the pentyl side chain of cannabinoids. Experientia 1978, 34, 1020–1022. [Google Scholar] [PubMed]
- Robertson, L.W.; Lyle, M.A.; Billets, S. Biotransformation of cannabinoids by Syncephalastrum racemosum. Biol. Mass Spectrom. 1975, 2, 266–271. [Google Scholar] [CrossRef]
- Merali, Z.; Ross, S.; Paré, G. The pharmacogenetics of carboxylesterases: CES1 and CES2 genetic variants and their clinical effect. Drug Metabol. Drug Interact. 2014, 29, 143–151. [Google Scholar] [CrossRef]
- Willey, D.L.; Caswell, D.A.; Lowe, C.R.; Bruce, N.C. Nucleotide sequence and over-expression of morphine dehydrogenase, a plasmid-encoded gene from Pseudomonas putida M10. Biochem. J. 1993, 290, 539–544. [Google Scholar] [CrossRef]
- French, C.E.; Bruce, N.C. Bacterial morphinone reductase is related to old yellow enzyme. Biochem. J. 1995, 312, 671–678. [Google Scholar]
- Abalain, J.H.; Di Stefano, S.; Amet, Y.; Quemener, E.; Abalain-Colloc, M.L.; Floch, H.H. Cloning, DNA sequencing and expression of (3-17)β hydroxysteroid dehydrogenase from Pseudomonas testosteroni. J. Steroid Biochem. Mol. Biol. 1993, 44, 133–139. [Google Scholar]
- Yaver, D.S.; Overjero, M.D.; Xu, F.; Nelson, B.A.; Brown, K.M.; Halkier, T.; Bernauer, S.; Brown, S.H.; Kauppinen, S. Molecular characterization of laccase genes from the basidiomycete Coprinus cinereus and heterologous expression of the laccase lcc1. Appl. Environ. Microbiol. 1999, 65, 4943–4948. [Google Scholar]
- Basheer, S.; Rashid, N.; Akram, M.S.; Akhtar, M. A highly stable laccase from Bacillus subtilis strain R5: Gene cloning and characterization. Biosci. Biotechnol. Biochem. 2018, 83, 436–445. [Google Scholar]
- Chmelová, D.; Ondrejovič, M.; Miertuš, S. Laccases as effective tools in the removal of pharmaceutical products from aquatic systems. Life 2024, 14, 230. [Google Scholar] [CrossRef] [PubMed]
- Lamb, D.C.; Waterman, M.R.; Zhao, B. Streptomyces cytochromes P450: Applications in drug metabolism. Expert Opin. Drug Metab. Toxicol. 2013, 9, 1279–1294. [Google Scholar] [CrossRef] [PubMed]
- Rathbone, D.A.; Holt, P.J.; Lowe, C.R.; Bruce, N.C. Molecular analysis of the Rhodococcus sp. strain H1 her gene and characterization of its product, a heroin esterase, expressed in Escherichia coli. Appl. Environ. Microbiol. 1997, 63, 2062–2066. [Google Scholar] [CrossRef]
- United Nations Office on Drugs and Crime. World Drug Report 2022; United Nations: New York, NY, USA, 2022.
- Nielsen, D.A.; Nielsen, E.M.; Dasari, T.; Spellicy, C.J. Pharmacogenetics of addiction therapy. Methods Mol. Biol. 2014, 1175, 589–624. [Google Scholar]
- Zastrozhin, M.S.; Skryabin, V.Y.; Miroshkin, S.S.; Bryun, E.A.; Sychev, D.A. Pharmacogenetics of alcohol addiction: Current perspectives. Appl. Clin. Genet. 2019, 12, 131–140. [Google Scholar]
- Lohoff, F.W. Pharmacotherapies and personalized medicine for alcohol use disorder: A review. Pharmacogenomics 2020, 21, 1117–1138. [Google Scholar] [CrossRef]
- Bailey, K.R.; Cheng, C. Conference Scene: The great debate: Genome-wide association studies in pharmacogenetics research, good or bad? Pharmacogenomics 2010, 11, 305–308. [Google Scholar] [CrossRef]
- Liu, X.; Tong, X.; Zhu, J.; Tian, L.; Jie, Z.; Zou, Y.; Lin, X.; Liang, H.; Li, W.; Ju, Y.; et al. Metagenome-genome-wide association studies reveal human genetic impact on the oral microbiome. Cell Discov. 2021, 7, 117. [Google Scholar]
- McCarthy, S.; Das, S.; Kretzschmar, W.; Delaneau, O.; Wood, A.R.; Teumer, A.; Kang, H.M.; Fuchsberger, C.; Danecek, P.; Sharp, K.; et al. A reference panel of 64,976 haplotypes for genotype imputation. Nat. Genet. 2016, 48, 1279–1283. [Google Scholar]
- Cantor, R.M.; Lange, K.; Sinsheimer, J.S. Prioritizing GWAS results: A review of statistical methods and recommendations for their application. Am. J. Human Genet. 2010, 86, 6–22. [Google Scholar]
- Crist, R.C.; Reiner, B.C.; Berrettini, W.H. A review of opioid addiction genetics. Curr. Opin. Psychol. 2019, 27, 31–35. [Google Scholar] [CrossRef] [PubMed]
- Huang, Q.Q.; Wigdor, E.M.; Malawsky, D.S.; Campbell, P.; Samocha, K.E.; Chundru, V.K.; Danecek, P.; Lindsay, S.; Marchant, T.; Koko, M.; et al. Examining the role of common variants in rare neurodevelopmental conditions. Nature 2024, 636, 404–411. [Google Scholar] [CrossRef]
- Uffelmann, E.; Huang, Q.Q.; Munung, N.S.; de Vries, J.; Okada, Y.; Martin, H.C.; Lappalainen, T.; Posthuma, D. Genome-wide association studies. Nat. Rev. Methods Primers 2021, 1, 59. [Google Scholar] [CrossRef]
- Rizkallah, M.R.; Saad, R.; Aziz, R.K. The Human Microbiome Project, personalized medicine and the birth of pharmacomicrobiomics. Curr. Pharmacogenom. Person. Med. 2010, 8, 182–193. [Google Scholar] [CrossRef]
- Aziz, R.K.; Rizkallah, M.R.; Saad, R.; ElRakaiby, M.T. Translating Pharmacomicrobiomics: Three Actionable Challenges/Prospects in 2020. Omics 2020, 24, 60–61. [Google Scholar] [CrossRef]
- Satam, H.; Joshi, K.; Mangrolia, U.; Waghoo, S.; Zaidi, G.; Rawool, S.; Thakare, R.P.; Banday, S.; Mishra, A.K.; Das, G.; et al. Next-generation sequencing technology: Current trends and advancements. Biology 2023, 12, 997. [Google Scholar] [CrossRef]
- Sorbara, M.T.; Pamer, E.G. Microbiome-based therapeutics. Nat. Rev. Microbiol. 2022, 20, 365–380. [Google Scholar] [CrossRef]
- Jimonet, P.; Druart, C.; Blanquet-Diot, S.; Boucinha, L.; Kourula, S.; Le Vacon, F.; Maubant, S.; Rabot, S.; Van de Wiele, T.; Schuren, F.; et al. Gut microbiome integration in drug discovery and development of small molecules. Drug Metab. Dispos. 2024, 52, 274–287. [Google Scholar] [CrossRef]
- Borrego-Ruiz, A.; Borrego, J.J. Psychobiotics: A new perspective on the treatment of stress, anxiety, and depression. Anxiety Stress 2024, 30, 79–93. [Google Scholar]
- Pavlovic, S.; Kotur, N.; Stankovic, B.; Zukic, B.; Gasic, V.; Dokmanovic, L. Pharmacogenomic and pharmacotranscriptomic profiling of childhood acute lymphoblastic leukemia: Paving the way to personalized treatment. Genes 2019, 10, 191. [Google Scholar] [CrossRef]
- Evans, P.; Nagai, T.; Konkashbaev, A.; Zhou, D.; Knapik, E.W.; Gamazon, E.R. Transcriptome-wide association studies (TWAS): Methodologies, applications, and challenges. Curr. Protoc. 2024, 4, e981. [Google Scholar] [PubMed]
- Jabbarzadeh Kaboli, P.; Luo, S.; Chen, Y.; Jomhori, M.; Imani, S.; Xiang, S.; Wu, Z.; Li, M.; Shen, J.; Zhao, Y.; et al. Pharmacotranscriptomic profiling of resistant triple-negative breast cancer cells treated with lapatinib and berberine shows upregulation of PI3K/Akt signaling under cytotoxic stress. Gene 2022, 816, 146171. [Google Scholar] [CrossRef] [PubMed]
- Yang, H.; Zhao, L.; Gao, Y.; Yao, F.; Marti, T.M.; Schmid, R.A.; Peng, R.W. Pharmacotranscriptomic analysis reveals novel drugs and gene networks regulating ferroptosis in cancer. Cancers 2020, 12, 3273. [Google Scholar] [CrossRef] [PubMed]
Concepts | Pharmacogenomics | Pharmacomicrobiomics |
---|---|---|
Independent variables | Inherited variations in the human genome or epigenetic modifications. | Changes in microbial composition as well as in the microbial genome, transcriptome, and proteome. |
Intraindividual variations | The human genome is a relatively stable entity, with only rare mutations occurring throughout an individual’s lifetime. | The microbiome and its composition vary over time, across different locations, and within an individual due to physiological influences. While subtle, continuous variations arise from intrinsic factors, significant changes can result from dietary shifts and other environmental influences. |
Interindividual variations | The study of genetic and genomic variations explains inter-individual differences in drug response. Allelic variations in drug-metabolizing enzymes, such as cytochromes, are among the most extensively investigated. Other allelic variations that may influence drug action include those affecting transporters, target molecules, or receptors. | Initial studies clustered GM profiles into enterotypes. Later research revealed a gradient or continuum of types that can be described using certain β-diversity metrics. Another approach to assessing inter-individual differences focuses on functional rather than microbial profile-based classifications, describing functional clusters or metabotypes. |
Pharmacotherapy | Substance | Gene | Variants | Effects |
---|---|---|---|---|
Acamprosate | Alcohol | DRD2 | rs6277, rs6275, and rs1799978 | Reward-related activation [46] |
GATA4 | rs13273672 | Withdrawal and dependence [47] | ||
Baclofen | Alcohol | GABBR1 | rs29220 | Relapse and follow-up consumption [48] |
Bromocriptine | Alcohol | DRD2 | rs6277, rs6275, and rs1799978 | Reward-related activation [46] |
Naltrexone | Alcohol | OPRM1 | rs1799971 | Reduced consumption and produced lower relapse rates [49,50] |
Olanzapine | Alcohol | DRD4 | Exon 3 VNTR | Craving and related responses [51] |
Ondansetrom | Alcohol | SLC6A4 | 5-HTTLPRVNTR | Reduction in craving and heavy drinking [52] |
Topiramate | Alcohol | GRIK1 | rs2832407 | Reduced rate of heavy drinking [53] |
Disulfiram | Alcohol | ANKK1 | rs1800497 (TaqI A) | Dependence in females [54] |
Disulfiram | Cocaine | DRD2 | rs6277, rs6275, and rs1799978 | Reward-related activation [46] |
ANKK1 | rs1800497 | Drug dependence [55] | ||
DBH | rs1611115 | Reduction in drug use [56] | ||
ADRA1A | rs1048101 | Reduced signaling efficiency [57] | ||
TPH2 | rs4290270 | Increased serotonin levels [58] | ||
Doxazosin | Cocaine | DBH | rs1611115 | Reduction in drug use [59] |
Cocaine vaccine | Cocaine | OPRK1 | rs6473797 | Reduced the rate of dopamine [60] |
DBH | rs1611115 | Reduction in drug use [61] | ||
Methadone | Opioids | DRD2 | rs6277, rs6275, and rs1799978 | Maintenance therapy for opioid addiction [62] |
ABCB1 | rs1045642, rs1128503, and rs2032582 | Multidrug resistance [63] | ||
BDNF | rs988748, rs1967554, rs2030324, rs2239622, rs7127507, rs11030118, and rs11030119 | Maintenance therapy for opioid addiction [64] | ||
ARRB2 | rs2036657, rs3786047, and rs1045280 | Maintenance therapy for opioid addiction [65] | ||
CYP2B6 | rs2279343 and rs3745274 | Maintenance therapy for opioid addiction [66] | ||
CYP2D6 | rs1065852 | Maintenance therapy for opioid addiction [42,67] | ||
MYOCD | rs1714984 | Maintenance therapy for opioid addiction [68] | ||
GRM6 | rs953741 | Maintenance therapy for opioid addiction [68] | ||
NECTIN4 | rs3820097, rs4656978, and rs11265549 | Maintenance therapy for opioid addiction [69] | ||
KCNJ6 | rs2070995 | Opioid receptor signaling and reward processing [70] | ||
OPRM1 | rs558025 and rs2075572 | Maintenance therapy for opioid addiction [71] | ||
GABRB2 | rs3219151 | Maintenance therapy for opioid addiction [72] | ||
Buprenorphine | Opioids | OPRD1 | rs529520 and rs581111 | Maintenance therapy for opioid addiction [73] |
Substance | Enzyme | Gene | Microorganism | Microbial Product | Ref. |
---|---|---|---|---|---|
Cocaine | Cocaine esterase | cocE | Rhodococcus spp. | Ecgonine methyl ester and benzoic acid | [177] |
Carboxyesterase | CES1, CES2 | Bacillus spp. | Benzoylecgonime and methanol | [180,209] | |
Amphetamine | Tyramine oxidase | tynA, tynB | Escherichia coli | R-(-) enantiomers | [188] |
Morphine | Morphine dehydrogenase | morA | Pseudomonas putida | Dehydromorphine | [210] |
Morphinone reductase | morB | P. putida | Hydromorphine | [211] | |
17-Hydroxysteroid dehydrogenase 3 | HSD17B3 | Comamonas testosteroni | Morphimone | [212] | |
Laccase | lcc1, lcc2, and lcc3 | Coprinus cinereus | Morphine-glucuronide derivatives | [213] | |
Laccase | cotA | Bacillus subtilis | Di-, oligo-, and polymers of drug | [214,215] | |
Codeine | Morphine dehydrogenase | morA | P. putida | Codeinone | [190,210] |
Cytochrome P450 monooxygenases | CYP2D6 | Streptomyces spp. | Norcodeine | [216] | |
Heroine | Heroine esterase | her | Rhodococcus spp. | 6-monoacetylmorphine | [217] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Borrego-Ruiz, A.; Borrego, J.J. Pharmacogenomic and Pharmacomicrobiomic Aspects of Drugs of Abuse. Genes 2025, 16, 403. https://doi.org/10.3390/genes16040403
Borrego-Ruiz A, Borrego JJ. Pharmacogenomic and Pharmacomicrobiomic Aspects of Drugs of Abuse. Genes. 2025; 16(4):403. https://doi.org/10.3390/genes16040403
Chicago/Turabian StyleBorrego-Ruiz, Alejandro, and Juan J. Borrego. 2025. "Pharmacogenomic and Pharmacomicrobiomic Aspects of Drugs of Abuse" Genes 16, no. 4: 403. https://doi.org/10.3390/genes16040403
APA StyleBorrego-Ruiz, A., & Borrego, J. J. (2025). Pharmacogenomic and Pharmacomicrobiomic Aspects of Drugs of Abuse. Genes, 16(4), 403. https://doi.org/10.3390/genes16040403