Genetically Transitional Disease and the Road to Personalized Medicine
Abstract
:1. Introduction
1.1. Genetically Transitional Disease Definition
1.2. Impact of Genetic Background and Environment on Diseases
1.3. Challenges and Opportunities in Detecting Missing Heritability
2. Genetic Testing Result Interpretations and Reports
2.1. Current Status
2.2. Limitations of Searching for High Penetrance Variants Using Monogenic Model
3. Potential Utility of the Genetically Transitional Disease (GTD) Concept
3.1. The GTD Concept and VUS
3.2. Underdiagnosis and Overdiagnosis
4. Variants of Uncertain Significance (VUS) and Interplay with Genetic Background and Environment
4.1. Diagnostic Consideration of Target/Candidate and Modifier Genes in Diseases
4.2. GTD and Digenic or Oligogenic Variants
4.3. GTD and Its Dynamic Nature
4.4. Gene x Environment Interaction
5. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Yao, Q.; Gorevic, P.; Shen, B.; Gibson, G. Genetically transitional disease: A new concept in genomic medicine. Trends Genet. 2023, 39, 98–108. [Google Scholar] [CrossRef]
- Niewold, T.B.; Aksentijevich, I.; Gorevic, P.D.; Gibson, G.; Yao, Q. Genetically transitional disease: Conceptual understanding and applicability to rheumatic disease. Nat. Rev. Rheumatol. 2024, 20, 301–310. [Google Scholar] [CrossRef] [PubMed]
- Hasballa, I.; Maggi, D. MODY Only Monogenic? A Narrative Review of the Novel Rare and Low-Penetrant Variants. Int. J. Mol. Sci. 2024, 25, 8790. [Google Scholar] [CrossRef] [PubMed]
- Sosnay, P.R.; White, T.B.; Farrell, P.M.; Ren, C.L.; Derichs, N.; Howenstine, M.S.; Nick, J.A.; De Boeck, K. Diagnosis of Cystic Fibrosis in Nonscreened Populations. J. Pediatr. 2017, 181S, S52–S57.e52. [Google Scholar] [CrossRef] [PubMed]
- Emond, M.J.; Louie, T.; Emerson, J.; Zhao, W.; Mathias, R.A.; Knowles, M.R.; Wright, F.A.; Rieder, M.J.; Tabor, H.K.; Nickerson, D.A.; et al. Exome sequencing of extreme phenotypes identifies DCTN4 as a modifier of chronic Pseudomonas aeruginosa infection in cystic fibrosis. Nat. Genet. 2012, 44, 886–889. [Google Scholar] [CrossRef]
- Visscher, P.M.; Yengo, L.; Cox, N.J.; Wray, N.R. Discovery and implications of polygenicity of common diseases. Science 2021, 373, 1468–1473. [Google Scholar] [CrossRef]
- Santos-Reboucas, C.B.; Piergiorge, R.M.; Dos Santos Ferreira, C.; Seixas Zeitel, R.; Gerber, A.L.; Rodrigues, M.C.F.; Guimaraes, A.P.C.; Silva, R.M.; Fonseca, A.R.; Souza, R.C.; et al. Host genetic susceptibility underlying SARS-CoV-2-associated Multisystem Inflammatory Syndrome in Brazilian Children. Mol. Med. 2022, 28, 153. [Google Scholar] [CrossRef]
- Chou, J.; Platt, C.D.; Habiballah, S.; Nguyen, A.A.; Elkins, M.; Weeks, S.; Peters, Z.; Day-Lewis, M.; Novak, T.; Armant, M.; et al. Mechanisms underlying genetic susceptibility to multisystem inflammatory syndrome in children (MIS-C). J. Allergy Clin. Immunol. 2021, 148, 732–738. [Google Scholar] [CrossRef]
- Senol-Cosar, O.; Schmidt, R.J.; Qian, E.; Hoskinson, D.; Mason-Suares, H.; Funke, B.; Lebo, M.S. Considerations for clinical curation, classification, and reporting of low-penetrance and low effect size variants associated with disease risk. Genet. Med. 2019, 21, 2765–2773. [Google Scholar] [CrossRef]
- Bomba, L.; Walter, K.; Soranzo, N. The impact of rare and low-frequency genetic variants in common disease. Genome Biol. 2017, 18, 77. [Google Scholar] [CrossRef]
- Nomani, H.; Wu, S.; Saif, A.; Hwang, F.; Metzger, J.; Navetta-Modrov, B.; Gorevic, P.D.; Aksentijevich, I.; Yao, Q. Comprehensive clinical phenotype, genotype and therapy in Yao syndrome. Front. Immunol. 2024, 15, 1458118. [Google Scholar] [CrossRef] [PubMed]
- Richards, S.; Aziz, N.; Bale, S.; Bick, D.; Das, S.; Gastier-Foster, J.; Grody, W.W.; Hegde, M.; Lyon, E.; Spector, E.; et al. Standards and guidelines for the interpretation of sequence variants: A joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology. Genet. Med. 2015, 17, 405–424. [Google Scholar] [CrossRef] [PubMed]
- Drost, M.; Tiersma, Y.; Glubb, D.; Kathe, S.; van Hees, S.; Calleja, F.; Zonneveld, J.B.M.; Boucher, K.M.; Ramlal, R.P.E.; Thompson, B.A.; et al. Two integrated and highly predictive functional analysis-based procedures for the classification of MSH6 variants in Lynch syndrome. Genet. Med. 2020, 22, 847–856. [Google Scholar] [CrossRef]
- Toh, M.R.; Chong, S.T.; Chan, S.H.; Low, C.E.; Ishak, N.D.B.; Lim, J.Q.; Courtney, E.; Ngeow, J. Functional analysis of clinical BARD1 germline variants. Cold Spring Harb. Mol. Case Stud. 2019, 5, a004093. [Google Scholar] [CrossRef] [PubMed]
- Wright, C.F.; Campbell, P.; Eberhardt, R.Y.; Aitken, S.; Perrett, D.; Brent, S.; Danecek, P.; Gardner, E.J.; Chundru, V.K.; Lindsay, S.J.; et al. Genomic Diagnosis of Rare Pediatric Disease in the United Kingdom and Ireland. N. Engl. J. Med. 2023, 388, 1559–1571. [Google Scholar] [CrossRef]
- Le Goueff, A.; Smits, G.; Delaunoy, M.; Vandernoot, I.; Vandergheynst, F. Genetic testing in autoinflammatory diseases—Past, current and future perspectives. Eur. J. Intern. Med. 2022, 106, 71–79. [Google Scholar] [CrossRef]
- Grunseich, C.; Sarkar, N.; Lu, J.; Owen, M.; Schindler, A.; Calabresi, P.A.; Sumner, C.J.; Roda, R.H.; Chaudhry, V.; Lloyd, T.E.; et al. Improving the efficacy of exome sequencing at a quaternary care referral centre: Novel mutations, clinical presentations and diagnostic challenges in rare neurogenetic diseases. J. Neurol. Neurosurg. Psychiatry 2021, 92, 1186–1196. [Google Scholar] [CrossRef]
- Rayner, E.; Tiersma, Y.; Fortuno, C.; van Hees-Stuivenberg, S.; Drost, M.; Thompson, B.; Spurdle, A.B.; de Wind, N. Predictive functional assay-based classification of PMS2 variants in Lynch syndrome. Hum. Mutat. 2022, 43, 1249–1258. [Google Scholar] [CrossRef]
- Nomani, H.; Deng, Z.; Navetta-Modrov, B.; Yang, J.; Yun, M.; Aroniadis, O.; Gorevic, P.; Aksentijevich, I.; Yao, Q. Implications of combined NOD2 and other gene mutations in autoinflammatory diseases. Front. Immunol. 2023, 14, 1265404. [Google Scholar] [CrossRef]
- Gigli, M.; Begay, R.L.; Morea, G.; Graw, S.L.; Sinagra, G.; Taylor, M.R.; Granzier, H.; Mestroni, L. A Review of the Giant Protein Titin in Clinical Molecular Diagnostics of Cardiomyopathies. Front. Cardiovasc. Med. 2016, 3, 21. [Google Scholar] [CrossRef]
- Kars, M.E.; Stein, D.; Stenson, P.D.; Cooper, D.N.; Chung, W.K.; Gruber, P.J.; Seidman, C.E.; Shen, Y.; Tristani-Firouzi, M.; Gelb, B.D.; et al. Deciphering the digenic architecture of congenital heart disease using trio exome sequencing data. Am. J. Hum. Genet. 2025, 112, 583–598. [Google Scholar] [CrossRef] [PubMed]
- Anderson, C.L.; Munawar, S.; Reilly, L.; Kamp, T.J.; January, C.T.; Delisle, B.P.; Eckhardt, L.L. How Functional Genomics Can Keep Pace With VUS Identification. Front. Cardiovasc. Med. 2022, 9, 900431. [Google Scholar] [CrossRef]
- Mallawaarachchi, A.C.; Lundie, B.; Hort, Y.; Schonrock, N.; Senum, S.R.; Gayevskiy, V.; Minoche, A.E.; Hollway, G.; Ohnesorg, T.; Hinchcliffe, M.; et al. Genomic diagnostics in polycystic kidney disease: An assessment of real-world use of whole-genome sequencing. Eur. J. Hum. Genet. 2021, 29, 760–770. [Google Scholar] [CrossRef]
- Yao, Q. The same genotype gives rise to a spectrum of disorders. Lancet. Rheumatol. 2025. [Google Scholar] [CrossRef]
- Fitzpatrick, M.J.; Ben-Shahar, Y.; Smid, H.M.; Vet, L.E.; Robinson, G.E.; Sokolowski, M.B. Candidate genes for behavioural ecology. Trends Ecol. Evol. 2005, 20, 96–104. [Google Scholar] [CrossRef] [PubMed]
- Riordan, J.D.; Nadeau, J.H. From Peas to Disease: Modifier Genes, Network Resilience, and the Genetics of Health. Am. J. Hum. Genet. 2017, 101, 177–191. [Google Scholar] [CrossRef]
- Cutting, G.R. Modifier genes in Mendelian disorders: The example of cystic fibrosis. Ann. N. Y. Acad. Sci. 2010, 1214, 57–69. [Google Scholar] [CrossRef]
- Rahit, K.; Tarailo-Graovac, M. Genetic Modifiers and Rare Mendelian Disease. Genes 2020, 11, 239. [Google Scholar] [CrossRef]
- Huang, Q.Q.; Wigdor, E.M.; Malawsky, D.S.; Campbell, P.; Samocha, K.E.; Chundru, V.K.; Danecek, P.; Lindsay, S.; Marchant, T.; Koko, M.; et al. Examining the role of common variants in rare neurodevelopmental conditions. Nature 2024, 636, 404–411. [Google Scholar] [CrossRef]
- Eichler, E.E. Genetic Variation, Comparative Genomics, and the Diagnosis of Disease. N. Engl. J. Med. 2019, 381, 64–74. [Google Scholar] [CrossRef]
- De La Vega, F.M.; Chowdhury, S.; Moore, B.; Frise, E.; McCarthy, J.; Hernandez, E.J.; Wong, T.; James, K.; Guidugli, L.; Agrawal, P.B.; et al. Artificial intelligence enables comprehensive genome interpretation and nomination of candidate diagnoses for rare genetic diseases. Genome Med. 2021, 13, 153. [Google Scholar] [CrossRef] [PubMed]
- Hatchell, K.E.; Poll, S.R.; Russell, E.M.; Williams, T.J.; Ellsworth, R.E.; Facio, F.M.; Aguilar, S.; Esplin, E.D.; Popejoy, A.B.; Nussbaum, R.L.; et al. Experience using conventional compared to ancestry-based population descriptors in clinical genomics laboratories. Am. J. Hum. Genet. 2025, 112, 481–491. [Google Scholar] [CrossRef] [PubMed]
- Ottman, R. Gene-environment interaction: Definitions and study designs. Prev. Med. 1996, 25, 764–770. [Google Scholar] [CrossRef]
- Iannone, L.F.; Preda, A.; Blottiere, H.M.; Clarke, G.; Albani, D.; Belcastro, V.; Carotenuto, M.; Cattaneo, A.; Citraro, R.; Ferraris, C.; et al. Microbiota-gut brain axis involvement in neuropsychiatric disorders. Expert. Rev. Neurother. 2019, 19, 1037–1050. [Google Scholar] [CrossRef]
- Varga, N.A.; Pentelenyi, K.; Balicza, P.; Gezsi, A.; Remenyi, V.; Harsfalvi, V.; Bencsik, R.; Illes, A.; Prekop, C.; Molnar, M.J. Mitochondrial dysfunction and autism: Comprehensive genetic analyses of children with autism and mtDNA deletion. Behav. Brain Funct. 2018, 14, 4. [Google Scholar] [CrossRef]
- Viggiano, M.; Ceroni, F.; Visconti, P.; Posar, A.; Scaduto, M.C.; Sandoni, L.; Baravelli, I.; Cameli, C.; Rochat, M.J.; Maresca, A.; et al. Genomic analysis of 116 autism families strengthens known risk genes and highlights promising candidates. NPJ Genom. Med. 2024, 9, 21. [Google Scholar] [CrossRef]
- Caballero, M.; Satterstrom, F.K.; Buxbaum, J.D.; Mahjani, B. Identification of moderate effect size genes in autism spectrum disorder through a novel gene pairing approach. medRxiv 2024. [Google Scholar] [CrossRef]
- Zhou, X.; Feliciano, P.; Shu, C.; Wang, T.; Astrovskaya, I.; Hall, J.B.; Obiajulu, J.U.; Wright, J.R.; Murali, S.C.; Xu, S.X.; et al. Integrating de novo and inherited variants in 42,607 autism cases identifies mutations in new moderate-risk genes. Nat. Genet. 2022, 54, 1305–1319. [Google Scholar] [CrossRef]
- Koko, M.; Satterstrom, F.K.; Autism Sequencing, C.; Consortium, A.; Warrier, V.; Martin, H. Contribution of autosomal rare and de novo variants to sex differences in autism. Am. J. Hum. Genet. 2025, 112, 599–614. [Google Scholar] [CrossRef]
- Lovato, D.V.; Herai, R.R.; Pignatari, G.C.; Beltrao-Braga, P.C.B. The Relevance of Variants With Unknown Significance for Autism Spectrum Disorder Considering the Genotype-Phenotype Interrelationship. Front. Psychiatry 2019, 10, 409. [Google Scholar] [CrossRef]
- Yu, X.; Mostafijur Rahman, M.; Carter, S.A.; Lin, J.C.; Zhuang, Z.; Chow, T.; Lurmann, F.W.; Kleeman, M.J.; Martinez, M.P.; van Donkelaar, A.; et al. Prenatal air pollution, maternal immune activation, and autism spectrum disorder. Environ. Int. 2023, 179, 108148. [Google Scholar] [CrossRef]
- Cheroni, C.; Caporale, N.; Testa, G. Autism spectrum disorder at the crossroad between genes and environment: Contributions, convergences, and interactions in ASD developmental pathophysiology. Mol. Autism 2020, 11, 69. [Google Scholar] [CrossRef]
- Gao, Y.; Shonai, D.; Trn, M.; Zhao, J.; Soderblom, E.J.; Garcia-Moreno, S.A.; Gersbach, C.A.; Wetsel, W.C.; Dawson, G.; Velmeshev, D.; et al. Proximity analysis of native proteomes reveals phenotypic modifiers in a mouse model of autism and related neurodevelopmental conditions. Nat. Commun. 2024, 15, 6801. [Google Scholar] [CrossRef] [PubMed]
- Wojcik, M.H.; Lemire, G.; Berger, E.; Zaki, M.S.; Wissmann, M.; Win, W.; White, S.M.; Weisburd, B.; Wieczorek, D.; Waddell, L.B.; et al. Genome Sequencing for Diagnosing Rare Diseases. N. Engl. J. Med. 2024, 390, 1985–1997. [Google Scholar] [CrossRef]
- Alves, M.M.; Sribudiani, Y.; Brouwer, R.W.; Amiel, J.; Antinolo, G.; Borrego, S.; Ceccherini, I.; Chakravarti, A.; Fernandez, R.M.; Garcia-Barcelo, M.M.; et al. Contribution of rare and common variants determine complex diseases-Hirschsprung disease as a model. Dev. Biol. 2013, 382, 320–329. [Google Scholar] [CrossRef] [PubMed]
- Moore, J.H.; Asselbergs, F.W.; Williams, S.M. Bioinformatics challenges for genome-wide association studies. Bioinformatics 2010, 26, 445–455. [Google Scholar] [CrossRef]
- West, K.M.; Blacksher, E.; Burke, W. Genomics, Health Disparities, and Missed Opportunities for the Nation’s Research Agenda. JAMA 2017, 317, 1831–1832. [Google Scholar] [CrossRef] [PubMed]
- Kammenga, J.E. The background puzzle: How identical mutations in the same gene lead to different disease symptoms. FEBS J. 2017, 284, 3362–3373. [Google Scholar] [CrossRef]
- Aksentijevich, I.; Schnappauf, O. Molecular mechanisms of phenotypic variability in monogenic autoinflammatory diseases. Nat. Rev. Rheumatol. 2021, 17, 405–425. [Google Scholar] [CrossRef]
- Yun, M.; Deng, Z.; Navetta-Modrov, B.; Xin, B.; Yang, J.; Nomani, H.; Aroniadis, O.; Gorevic, P.D.; Yao, Q. Genetic variations in NLRP3 and NLRP12 genes in adult-onset patients with autoinflammatory diseases: A comparative study. Front. Immunol. 2023, 14, 1321370. [Google Scholar] [CrossRef]
- Rose, C.D.; Martin, T.M.; Wouters, C.H. Blau syndrome revisited. Curr. Opin. Rheumatol. 2011, 23, 411–418. [Google Scholar] [CrossRef] [PubMed]
- Hugot, J.P.; Chamaillard, M.; Zouali, H.; Lesage, S.; Cezard, J.P.; Belaiche, J.; Almer, S.; Tysk, C.; O’Morain, C.A.; Gassull, M.; et al. Association of NOD2 leucine-rich repeat variants with susceptibility to Crohn’s disease. Nature 2001, 411, 599–603. [Google Scholar] [PubMed]
- Hadjadj, J.; Wolfers, A.; Borisov, O.; Hazard, D.; Leahy, R.; Jeanpierre, M.; Belot, A.; Bakhtiar, S.; Hauck, F.; Lee, P.Y.; et al. Clinical manifestations, disease penetrance, and treatment in individuals with SOCS1 insufficiency: A registry-based and population-based study. Lancet. Rheumatol. 2025. [Google Scholar] [CrossRef]
- Brehm, A.; Liu, Y.; Sheikh, A.; Marrero, B.; Omoyinmi, E.; Zhou, Q.; Montealegre, G.; Biancotto, A.; Reinhardt, A.; Almeida de Jesus, A.; et al. Additive loss-of-function proteasome subunit mutations in CANDLE/PRAAS patients promote type I IFN production. J. Clin. Investig. 2015, 125, 4196–4211. [Google Scholar] [CrossRef]
- Yao, Q.; Li, E.; Shen, B. Autoinflammatory disease with focus on NOD2-associated disease in the era of genomic medicine. Autoimmunity 2019, 52, 48–56. [Google Scholar] [CrossRef]
- Corso, G.; Magnoni, F.; Veronesi, P. Points to Consider Regarding De-Escalation Surgery in High-Risk Breast Cancer. Ann. Surg. Oncol. 2022, 29, 8084–8089. [Google Scholar] [CrossRef]
- Guttmacher, A.E.; McGuire, A.L.; Ponder, B.; Stefansson, K. Personalized genomic information: Preparing for the future of genetic medicine. Nat. Rev. Genet. 2010, 11, 161–165. [Google Scholar] [CrossRef]
- Patch, C.; Middleton, A. Genetic counselling in the era of genomic medicine. Br. Med. Bull. 2018, 126, 27–36. [Google Scholar] [CrossRef]
- Ramos, E. Genetic Counseling, Personalized Medicine, and Precision Health. Cold Spring Harb. Perspect. Med. 2020, 10, a036699. [Google Scholar] [CrossRef]
Monogenic Disease | Genetically Transitional Disease | Genetically Complex Disease | |
---|---|---|---|
Single gene mutation necessity | Yes | Yes | No |
Single gene mutation sufficiency | Yes | Insufficient | No |
Single gene mutation penetrance | High | Low to moderate | Minimal |
Single gene effect size | Large | Medium | Small |
Genetic background impact | Yes, small | Yes, several related genes? | Yes, multiple minor genes |
Environmental triggers required | No or small | Yes, small to moderate? | Yes, large? |
Examples | Huntington’s disease Cystic fibrosis | Monoallelic carriers for recessive disease; low penetrance variants for dominant disease (Cryopyrin-associated periodic syndrome with NLRP3 Q705K), Yao syndrome | Diabetes Mellitus Coronary artery disease |
Inheritance pattern | Mendelian (autosomal dominant, recessive) | Atypical for Mendelian disorders or no fixed pattern | No pattern |
Gene editing utility | Promising | Depending on gene penetrance | No |
Genetic counseling | Traditional counseling for Mendelian disorders | Supplementary, genomic knowledge, dynamic | Multifactorial |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yao, Q.; Gorevic, P.D.; Gibson, G. Genetically Transitional Disease and the Road to Personalized Medicine. Genes 2025, 16, 401. https://doi.org/10.3390/genes16040401
Yao Q, Gorevic PD, Gibson G. Genetically Transitional Disease and the Road to Personalized Medicine. Genes. 2025; 16(4):401. https://doi.org/10.3390/genes16040401
Chicago/Turabian StyleYao, Qingping, Peter D. Gorevic, and Greg Gibson. 2025. "Genetically Transitional Disease and the Road to Personalized Medicine" Genes 16, no. 4: 401. https://doi.org/10.3390/genes16040401
APA StyleYao, Q., Gorevic, P. D., & Gibson, G. (2025). Genetically Transitional Disease and the Road to Personalized Medicine. Genes, 16(4), 401. https://doi.org/10.3390/genes16040401