The First Complete Mitochondrial Genomes for the Genus Dianema (Siluriformes: Callichthyidae): Dianema longibarbis and D. urostriatum
Abstract
:1. Introduction
2. Materials and Methods
2.1. Fish and DNA Extraction
2.2. DNA Sequencing, Assembly, and Gene Annotation
2.3. Mitogenome Analysis
2.4. Phylogenetic Analysis
3. Results
3.1. Mitogenome Structure and Base Composition
3.2. Protein-Coding Genes
3.3. tRNAs, rRNAs and Control Region
3.4. Phylogenetic Analysis
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Teugels, G.G. Taxonomy, phylogeny and biogeography of catfishes (Ostariophysi, Siluroidei): An overview. Aquat. Living Resour. 1996, 9, 9–34. [Google Scholar] [CrossRef]
- Armbruster, W.J. Global catfish biodiversity. Am. Fish. Soc. Symp. 2011, 77, 15–37. Available online: https://webhome.auburn.edu/~armbrjw/Global_Catfish.pdf (accessed on 28 February 2025).
- Nelson, J.; Grande, T.; Wilson, M. Fishes of the World, 5th ed.; John Wiley & Sons: Hoboken, NJ, USA, 2016; ISBN 9871118342336. [Google Scholar]
- Alexander, R. McN. Structure and function in the catfish. J. Zool. 1965, 148, 88–152. [Google Scholar] [CrossRef]
- Gee, J.H.; Graham, J.B. Respiratory and hydrostatic functions of the intestine of the catfishes Hoplosternum thoracatum and Brochis splendens (Callichthyidae). J. Exp. Biol. 1978, 74, 1–16. [Google Scholar] [CrossRef]
- Reis, R.E. Check List of the Freshwater Fishes of South and Central America; EDIPUCRS: Porto Alegre, Brazil, 2003; ISBN 85-7430-361-5. [Google Scholar]
- Reis, R.E. Anatomy and phylogenetic analysis of the neotropical Callichthyid catfishes (Ostariophysi, Siluriformes). Zool. J. Linn. Soc. 1998, 124, 105–168. [Google Scholar] [CrossRef]
- Shimabukuro-Dias, C.K.; Oliveira, C.; Reis, R.E.; Foresti, F. Molecular phylogeny of the armored catfish family Callichthyidae (Ostariophysi, Siluriformes). Mol. Phylogenet. Evol. 2004, 32, 152–163. [Google Scholar] [CrossRef]
- Mariguela, T.C.; Alexandrou, M.A.; Foresti, F.; Oliveira, C. Historical biogeography and cryptic diversity in the Callichthyinae (Siluriformes, Callichthyidae). J. Zool. Syst. Evol. Res. 2013, 51, 308–315. [Google Scholar] [CrossRef]
- Ruiz-Tafur, M.; Sánchez Riveiro, H.; García-Ayala, J. First record of Dianema urostriatum (Miranda Ribeiro, 1912) (Siluriformes: Callychthidae), in the Putumayo River, Amazon Basin, Peru. Folia Amaz. 2022, 31, 273–278. [Google Scholar] [CrossRef]
- Avise, J.C.; Arnold, J.; Ball, R.M.; Bermingham, E.; Lamb, T.; Neigel, J.E.; Reeb, C.A.; Saunders, N.C. Intraspecific phylogeography: The mitochondrial DNA bridge between population genetics and systematics. Annu. Rev. Ecol. Evol. Syst. 1987, 18, 489–522. [Google Scholar] [CrossRef]
- Boore, J.L. Animal mitochondrial genomes. Nucleic. Acids. Res. 1999, 27, 1767–1780. [Google Scholar] [CrossRef]
- Curole, J.P.; Kocher, T.D. Mitogenomics: Digging deeper with complete mitochondrial genomes. Trends. Ecol. Evol. 1999, 14, 394–398. [Google Scholar] [CrossRef] [PubMed]
- Parente, T.E.; Moreira, D.A.; Buckup, P.A.; de Andrade, P.C.C.; Magalhães, M.G.P.; Furtado, C.; Britto, M.R.; Val, A.L. Remarkable genetic homogeneity supports a single widespread species of Hoplosternum littorale (Siluriformes, Callichthyidae) in South America. Conserv. Genet. Resour. 2018, 10, 563–569. [Google Scholar] [CrossRef]
- Vera-Alcaraz, H.S. Relações Filogenéticas das Espécies da Família Callichthyidae (Ostariophysi, Siluriformes). Ph.D. Thesis, Pontifical Catholic University of Rio Grande do Sul, Porto Alegre, Brazil, 2013. Available online: https://tede2.pucrs.br/tede2/handle/tede/263 (accessed on 17 March 2025).
- Nam, S.-E.; Kim, J.; Rhee, J.-S. First complete mitochondrial genome from family Moinidae, Moina macrocopa (Straus, 1820) (Cladocera; Moinidae). Mitochondrial DNA B Resour. 2022, 7, 980–982. [Google Scholar] [CrossRef]
- Andrews, S. FastQC: A Quality Control Tool for High Throughput Sequence Data. 2010. Available online: https://www.bioinformatics.babraham.ac.uk/projects/fastqc (accessed on 17 January 2025).
- Bolger, A.M.; Lohse, M.; Usadel, B. Trimmomatic: A flexible trimmer for illumina sequence data. Bioinformatics 2014, 30, 2114–2120. [Google Scholar] [CrossRef] [PubMed]
- Dierckxsens, N.; Mardulyn, P.; Smits, G. NOVOPlasty: De novo assembly of organelle genomes from whole genome data. Nucleic. Acids. Res. 2017, 45, e18. [Google Scholar] [CrossRef]
- Bernt, M.; Donath, A.; Jühling, F.; Externbrink, F.; Florentz, C.; Fritzsch, G.; Pütz, J.; Middendorf, M.; Stadler, P.F. MITOS: Improved de novo metazoan mitochondrial genome annotation. Mol. Phylogenet. Evol. 2013, 69, 313–319. [Google Scholar] [CrossRef]
- Grant, J.R.; Enns, E.; Marinier, E.; Mandal, A.; Herman, E.K.; Chen, C.Y.; Graham, M.; Van Domselaar, G.; Stothard, P. Proksee: In-depth characterization and visualization of bacterial genomes. Nucleic. Acids. Res. 2023, 51, W484–W492. [Google Scholar] [CrossRef] [PubMed]
- Tamura, K.; Stecher, G.; Kumar, S. MEGA11: Molecular evolutionary genetics analysis version 11. Mol. Biol. Evol. 2021, 38, 3022–3027. [Google Scholar] [CrossRef]
- Lowe, T.M.; Chan, P.P. TRNAscan-SE On-Line: Integrating search and context for analysis of transfer RNA genes. Nucleic. Acids Res. 2016, 44, W54–W57. [Google Scholar] [CrossRef]
- Benson, G. Tandem repeats finder: A program to analyze DNA sequences. Nucleic Acids Res. 1999, 27, 573–580. [Google Scholar] [CrossRef]
- Kimura, M. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J. Mol. Evol. 1980, 16, 111–120. [Google Scholar] [CrossRef]
- Rozas, J.; Ferrer-Mata, A.; Sánchez-DelBarrio, J.C.; Guirao-Rico, S.; Librado, P.; Ramos-Onsins, S.E.; Sánchez-Gracia, A. DnaSP 6: DNA sequence polymorphism analysis of large data sets. Mol. Biol. Evol. 2017, 34, 3299–3302. [Google Scholar] [CrossRef]
- Katoh, K.; Standley, D.M. MAFFT multiple sequence alignment software version 7: Improvements in performance and usability. Mol. Biol. Evol. 2013, 30, 772–780. [Google Scholar] [CrossRef] [PubMed]
- Capella-Gutiérrez, S.; Silla-Martínez, J.M.; Gabaldón, T. TrimAl: A tool for automated alignment trimming in large-scale phylogenetic analyses. Bioinformatics 2009, 25, 1972–1973. [Google Scholar] [CrossRef] [PubMed]
- Vaidya, G.; Lohman, D.J.; Meier, R. SequenceMatrix: Concatenation software for the fast assembly of multi-gene datasets with character set and codon information. Cladistics 2011, 27, 171–180. [Google Scholar] [CrossRef] [PubMed]
- Kalyaanamoorthy, S.; Minh, B.Q.; Wong, T.K.F.; Von Haeseler, A.; Jermiin, L.S. ModelFinder: Fast model selection for accurate phylogenetic estimates. Nat. Methods 2017, 14, 587–589. [Google Scholar] [CrossRef]
- Minh, B.Q.; Schmidt, H.A.; Chernomor, O.; Schrempf, D.; Woodhams, M.D.; Von Haeseler, A.; Lanfear, R.; Teeling, E. IQ-TREE 2: New models and efficient methods for phylogenetic inference in the genomic era. Mol. Biol. Evol. 2020, 37, 1530–1534. [Google Scholar] [CrossRef]
- Ronquist, F.; Teslenko, M.; van der Mark, P.; Ayres, D.L.; Darling, A.; Höhna, S.; Larget, B.; Liu, L.; Suchard, M.A.; Huelsenbeck, J.P. MrBayes 3.2: Efficient bayesian phylogenetic inference and model choice across a large model space. Syst. Biol. 2012, 61, 539–542. [Google Scholar] [CrossRef]
- Rambaut, A.; Drummond, A.J.; Xie, D.; Baele, G.; Suchard, M.A. Posterior summarization in bayesian phylogenetics using tracer 1.7. Syst. Biol. 2018, 67, 901–904. [Google Scholar] [CrossRef]
- Bouckaert, R.; Heled, J.; Kühnert, D.; Vaughan, T.; Wu, C.H.; Xie, D.; Suchard, M.A.; Rambaut, A.; Drummond, A.J. BEAST 2: A software platform for bayesian evolutionary analysis. PLoS Comput. Biol. 2014, 10, e1003537. [Google Scholar] [CrossRef]
- Rambaut, A. FigTree. Tree Figure Drawing Tool. 2009. Available online: http://tree.bio.ed.ac.uk/software/figtree (accessed on 2 February 2025).
- Satoh, T.P.; Miya, M.; Mabuchi, K.; Nishida, M. Structure and variation of the mitochondrial genome of fishes. BMC Genom. 2016, 17, 719. [Google Scholar] [CrossRef]
- Dabrowski, M.; Bukowy-Bieryllo, Z.; Zietkiewicz, E. Translational readthrough potential of natural termination codons in eucaryotes—The impact of RNA sequence. RNA Biol. 2015, 12, 950–958. [Google Scholar] [CrossRef]
- Sun, C.H.; Huang, Q.; Zeng, X.S.; Li, S.; Zhang, X.L.; Zhang, Y.N.; Liao, J.; Lu, C.H.; Han, B.P.; Zhang, Q. Comparative analysis of the mitogenomes of two Corydoras (Siluriformes, Loricarioidei) with nine known corydoras, and a phylogenetic analysis of Loricarioidei. Zookeys 2022, 2022, 89–107. [Google Scholar] [CrossRef]
- Lv, L.; Su, H.; Xu, B.; Liu, Q.; Xiao, T. Complete mitochondrail genome of Corydoras agassizii. Mitochondrial DNA Part B Resour. 2020, 5, 727–728. [Google Scholar] [CrossRef]
- Liu, Y.; Xu, B.; Xiao, T.; Liu, Q. Characterization and phylogenetic analysis of Corydoras arcuatus mitochondrial genome. Mitochondrial DNA B Resour. 2019, 4, 2876–2877. [Google Scholar] [CrossRef]
- Liu, Q.; Xu, B.; Xiao, T. Complete mitochondrial genome of Corydoras duplicareus (Teleostei, Siluriformes, Callichthyidae). Mitochondrial DNA B Resour. 2019, 4, 1832–1833. [Google Scholar] [CrossRef]
- Chen, L.; Xu, B.; Xiao, T.; Liu, Q. Characterization and phylogenetic analysis of Corydoras trilineatus mitochondrial genome. Mitochondrial DNA B Resour. 2020, 5, 3017–3018. [Google Scholar] [CrossRef]
- Moreira, D.A.; Buckup, P.A.; Britto, M.R.; Magalhães, M.G.P.; De Andrade, P.C.C.; Furtado, C.; Parente, T.E. The complete mitochondrial genome of Corydoras nattereri (Callichthyidae: Corydoradinae). Neotrop. Ichthyol. 2016, 14, e150167. [Google Scholar] [CrossRef]
- Liu, Q.; Liu, Y.; Xiao, T.; Xu, B. Complete mitochondrail genome of Corydoras panda (Teleostei, Siluriformes, Callichthyidae, Corydoradinae). Mitochondrial DNA B Resour. 2019, 4, 2878–2879. [Google Scholar] [CrossRef]
- Qiao, Z.; Liu, S.; Wang, S.; Li, T.; Han, Y. Complete mitochondrial genomes of two Corydoras (Siluriformes, Callichthyidae) and their phylogenetic implications. Pakistan J. Zool. 2024, 1–9. [Google Scholar] [CrossRef]
- Zhang, H.; Gao, L.A.; Zhang, W. First complete mitochondrial genome of the Corydoras pygmaeus (Actinopteri: Callichthyidae) and its phylogenetic implications. Mitochondrial DNA B Resour. 2022, 7, 1688–1690. [Google Scholar] [CrossRef]
- Liu, Q.; Liu, Y.; Xu, B.; Xiao, T. Next-generation sequencing yields the complete mitochondrial genome of Corydoras sterbai (Teleostei, Siluriformes, Callichthyidae, Corydoradinae). Mitochondrial DNA B Resour. 2019, 4, 2880–2881. [Google Scholar] [CrossRef]
- Do, S.D.; Rhee, J.-S. First description of intergenic sequences in corydoradinae and introducing the complete mitogenome of Hoplisoma concolor (Siluriformes: Callichthyidae). Genes 2025, 16, 282. [Google Scholar] [CrossRef]
- Zhang, Z.; Li, J.; Zhao, X.-Q.; Wang, J.; Wong, G.K.-S.; Yu, J. KaKs_calculator: Calculating Ka and Ks through model selection and model averaging. Genom. Proteom. Bioinf. 2006, 4, 259–263. [Google Scholar] [CrossRef]
- Bronstein, O.; Kroh, A.; Haring, E. Mind the Gap! The mitochondrial control region and its power as a phylogenetic marker in Echinoids. BMC Evol. Biol. 2018, 18, 80. [Google Scholar] [CrossRef]
- Xu, B.; Su, H.; Liu, Q.; Lv, L.; Chen, K.; Xiao, T. Complete mitochondrial genome of Brochis multiradiatus. Mitochondrial DNA B Resour. 2020, 5, 646–647. [Google Scholar] [CrossRef]
- Moreira, D.A.; Buckup, P.A.; Furtado, C.; Val, A.L.; Schama, R.; Parente, T.E. Reducing the information gap on Loricarioidei (Siluriformes) mitochondrial genomics. BMC Genom. 2017, 18, 345. [Google Scholar] [CrossRef]
- Dalcin, R.H.; De La Ossa-Guerra, L.E.; Artoni, R.F.; Abilhoa, V. Complete mitochondrial genome of four Scleromystax barbatus (Siluriformes: Callichthyidae) populations. Neotrop. Ichthyol. 2023, 21, 1–11. [Google Scholar] [CrossRef]
- Saitoh, K.; Miya, M.; Inoue, J.G.; Ishiguro, N.B.; Nishida, M. Mitochondrial genomics of Ostariophysan fishes: Perspectives on phylogeny and biogeography. J. Mol. Evol. 2003, 56, 464–472. [Google Scholar] [CrossRef]
- Nakatani, M.; Miya, M.; Mabuchi, K.; Saitoh, K.; Nishida, M. Evolutionary history of Otophysi (Teleostei), a major clade of the modern freshwater fishes: Pangaean origin and Mesozoic radiation. BMC Evol. Biol. 2011, 11, 177. [Google Scholar] [CrossRef]
- Meng, F.; Yin, X.; Zhang, T.; Zhao, C.; Xue, X.; Xia, X.; Zhu, X.; Duan, Z.; Liu, B.; Liu, Y. The first determination and analysis of the complete mitochondrial genome of Ancistrus temmincki (Siluriformes: Loricariidae). Mitochondrial DNA B Resour. 2021, 6, 1583–1585. [Google Scholar] [CrossRef] [PubMed]
- Rocha-Reis, D.A.; Pasa, R.; Menegidio, F.B.; Heslop-Harrison, J.S.; Schwarzacher, T.; Kavalco, K.F. The complete mitochondrial genome of two armored catfish populations of the genus Hypostomus (Siluriformes, Loricariidae, Hypostominae). Front. Ecol. Evol. 2020, 8, 4–9. [Google Scholar] [CrossRef]
- Yang, N.; Li, Y.; Liu, Z.; Chen, Q.; Shen, Y. The complete mitochondrial genome of Silurus asotus (Siluriformes: Siluridae: Silurus) and its phylogenetic analysis. Mitochondrial DNA B Resour. 2019, 4, 2377–2378. [Google Scholar] [CrossRef]
- Wang, K.; Xu, J.; Cui, J.; Li, Q.; Xu, P.; Sun, X. Complete mitochondrial genome of Northern Sheatfish (Silurus soldatovi). Mitochondrial DNA 2015, 26, 891–892. [Google Scholar] [CrossRef]
Gene | Position | Codon | ||||||
---|---|---|---|---|---|---|---|---|
D. longibarbis/D. urostriatum | Strand | Start | Stop | Anticodon | ||||
Start | End | Length (bp) | Intergenic Nucleotide | |||||
trnF | 1/1 | 68/68 | 68/68 | 0/0 | H | GAA | ||
rrnS | 69/69 | 1017/1018 | 949/950 | 0/0 | H | |||
trnV | 1018/1019 | 1089/1090 | 72/72 | 0/0 | H | TAC | ||
rrnL | 1111/1113 | 2751/2754 | 1641/1642 | 0/0 | H | |||
trnL2 | 2752/2755 | 2826/2829 | 75/75 | 0/0 | H | TAA | ||
nad1 | 2827/2830 | 3798/3801 | 972/972 | 8/8 | H | ATG | TAG | |
trnI | 3807/3810 | 3878/3881 | 72/72 | −2/−2 | H | GAT | ||
trnQ | 3877/3950 | 3947/3880 | 71/71 | −1/−1 | L | TTG | ||
trnM | 3947/3950 | 4016/4019 | 70/70 | 0/0 | H | CAT | ||
nad2 | 4017/4020 | 5063/5064 | 1047/1045 | −2/−2 | H | ATG | TAG | |
trnW | 5062/5065 | 5133/5135 | 72/71 | 2/2 | H | TCA | ||
trnA | 5136/5206 | 5204/5138 | 69/69 | 1/1 | L | TGC | ||
trnN | 5206/5280 | 5278/5208 | 73/73 | 30/30 | L | GTT | ||
trnC | 5309/5378 | 5375/5311 | 67/68 | −1/−2 | L | GCA | ||
trnY | 5375/5447 | 5444/5378 | 70/70 | 1/1 | L | GTA | ||
cox1 | 5446/5449 | 7008/7011 | 1563/1563 | −13/−13 | H | GTG | AGG | |
trnS2 | 6996/7069 | 7066/6999 | 71/71 | 4/4 | L | TGA | ||
trnD | 7071/7074 | 7140/7143 | 70/70 | 3/6 | H | GTC | ||
cox2 | 7144/7150 | 7834/7840 | 691/691 | 0/0 | H | ATG | T- | |
trnK | 7835/7841 | 7908/7914 | 74/74 | 1/1 | H | TTT | ||
atp8 | 7910/7916 | 8077/8083 | 168/168 | 10/10 | H | ATG | TAG | |
atp6 | 8068/8074 | 8751/8757 | 684/684 | 29/30 | H | ATG | TAA | |
cox3 | 8781/8788 | 9565/9572 | 785/785 | 0/0 | H | ATG | TA- | |
trnG | 9565/9572 | 9635/9643 | 71/72 | 0/0 | H | TCC | ||
nad3 | 9636/9644 | 9986/9994 | 351/351 | −2/−2 | H | ATG | TAG | |
trnR | 9985/9993 | 10,054/10,062 | 70/70 | 0/0 | H | TCG | ||
nad4l | 10,055/10,063 | 10,351/10,359 | 297/297 | 7/7 | H | ATG | TAA | |
nad4 | 10,345/10,353 | 11,725/11,733 | 1381/1381 | 0/0 | H | ATG | T- | |
trnH | 11,726/11,734 | 11,795/11,803 | 70/70 | 0/0 | H | GTG | ||
trnS1 | 11,796/11,804 | 11,862/11,870 | 67/67 | 0/0 | H | GCT | ||
trnL1 | 11,863/11,871 | 11,935/11,943 | 73/73 | 0/0 | H | TAG | ||
nad5 | 11,936/11,944 | 13,759/13,767 | 1824/1824 | 4/4 | H | ATG | TAA | |
nad6 | 13,756/14,279 | 14,271/13,764 | 516/516 | 0/0 | L | ATG | TAA | |
trnE | 14,272/14,348 | 14,340/14,280 | 69/69 | 6/5 | L | TTC | ||
cytb | 14,347/14,354 | 15,484/15,491 | 1138/1138 | 0/0 | H | ATG | T- | |
trnT | 15,485/15,492 | 15,556/15,563 | 72/72 | −2/−2 | H | TGT | ||
trnP | 15,555/15,631 | 15,624/15,562 | 70/70 | 0/0 | L | TGG | ||
C.R. | 15,625/15,632 | 16,493/16,495 | 869/864 | 0/0 |
Gene | Nucleotide Composition | ||||||
---|---|---|---|---|---|---|---|
D. longibarbis/D. urostriatum | |||||||
Size (bp) | A (%) | T (%) | C (%) | G (%) | A + T (%) | G + C (%) | |
Total | 16,493/16,495 | 31.79/31.69 | 27.53/27.04 | 25.86/26.36 | 14.82/14.91 | 59.32/58.73 | 40.68/41.27 |
PCGs | 11,413/11,422 | 29.64/29.50 | 29.92/29.34 | 26.20/26.81 | 14.24/14.35 | 59.56/58.84 | 40.44/41.16 |
tRNAs | 1556/1556 | 28.98/29.13 | 27.76/27.90 | 20.24/19.95 | 23.01/23.02 | 56.74/57.03 | 43.25/42.97 |
rRNAs | 2611/2592 | 34.92/34.49 | 22.09/21.77 | 22.90/23.45 | 20.09/23.45 | 57.01/56.61 | 42.99/43.39 |
C.R. | 869/864 | 34.75/34.49 | 31.76/30.21 | 18.87/19.91 | 14.61/15.39 | 66.51/64.70 | 33.49/35.30 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Do, S.D.; Rhee, J.-S. The First Complete Mitochondrial Genomes for the Genus Dianema (Siluriformes: Callichthyidae): Dianema longibarbis and D. urostriatum. Genes 2025, 16, 355. https://doi.org/10.3390/genes16030355
Do SD, Rhee J-S. The First Complete Mitochondrial Genomes for the Genus Dianema (Siluriformes: Callichthyidae): Dianema longibarbis and D. urostriatum. Genes. 2025; 16(3):355. https://doi.org/10.3390/genes16030355
Chicago/Turabian StyleDo, Seong Duk, and Jae-Sung Rhee. 2025. "The First Complete Mitochondrial Genomes for the Genus Dianema (Siluriformes: Callichthyidae): Dianema longibarbis and D. urostriatum" Genes 16, no. 3: 355. https://doi.org/10.3390/genes16030355
APA StyleDo, S. D., & Rhee, J.-S. (2025). The First Complete Mitochondrial Genomes for the Genus Dianema (Siluriformes: Callichthyidae): Dianema longibarbis and D. urostriatum. Genes, 16(3), 355. https://doi.org/10.3390/genes16030355