Expression Profile of Twelve Transcripts as a Supporting Tool for the Molecular Characterization of Canine Cutaneous Mast Cell Tumors at Diagnosis: Association with Histological Grading and Clinical Staging
Abstract
:1. Introduction
2. Materials and Methods
2.1. Gene Expression Profiling Datasets from cMCT Samples
2.2. Sample Collection and Background Information
2.3. Total RNA Isolation and KIT Mutational Analysis of the 50 cMCT Samples
2.4. Quantitative Real-Time PCR of the 50 cMCT Samples
2.5. Principal Component Analysis of the Expression Profiles from the Giantin2014 Dataset
2.6. Development of a Logistic Regression Classifier Based on the Expression Profiles from the Giantin2014 Dataset
2.7. Classification of cMCT Samples of the I-2014–2019 Dataset Through the Logistic Regression Classifier
2.8. Statistical Analysis
3. Results
3.1. cMCT Samples of the I-2014–2019 Dataset: Caseload Description
3.2. Principal Component Analysis of the Gene Expression Data from the Giantin2014 Dataset
3.3. Test of the Logistic Regression Classifier on cMCTs from the I-2014–2019 Dataset
3.4. Association Between the Expression Profile-Based Classification and the WHO Clinical Stage in 50 cMCTs
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- London, C.A.; Seguin, B. Mast cell tumors in the dog. Vet. Clin. N. Am. Small Anim. Pract. 2003, 33, 473–489. [Google Scholar] [CrossRef] [PubMed]
- Misdorp, W. Mast cells and canine mast cell tumours. A review. Vet. Q. 2004, 26, 156–169. [Google Scholar] [CrossRef] [PubMed]
- Sledge, D.G.; Webster, J.; Kiupel, M. Canine cutaneous mast cell tumors: A combined clinical and pathologic approach to diagnosis, prognosis, and treatment selection. Vet. J. 2016, 215, 43–54. [Google Scholar] [CrossRef] [PubMed]
- Pizzoni, S.; Sabattini, S.; Stefanello, D.; Dentini, A.; Ferrari, R.; Dacasto, M.; Giantin, M.; Laganga, P.; Amati, M.; Tortorella, G.; et al. Features and prognostic impact of distant metastases in 45 dogs with de novo stage IV cutaneous mast cell tumours: A prospective study. Vet. Comp. Oncol. 2018, 16, 28–36. [Google Scholar] [CrossRef]
- Stefanello, D.; Valenti, P.; Faverzani, S.; Bronzo, V.; Fiorbianco, V.; Pinto da Cunha, N.; Romussi, S.; Cantatore, M.; Caniatti, M. Ultrasound-guided cytology of spleen and liver: A prognostic tool in canine cutaneous mast cell tumor. J. Vet. Intern. Med. 2009, 23, 1051–1057. [Google Scholar] [CrossRef]
- Willmann, M.; Yuzbasiyan-Gurkan, V.; Marconato, L.; Dacasto, M.; Hadzijusufovic, E.; Hermine, O.; Sadovnik, I.; Gamperl, S.; Schneeweiss-Gleixner, M.; Gleixner, K.V.; et al. Proposed Diagnostic Criteria and Classification of Canine Mast Cell Neoplasms: A Consensus Proposal. Front. Vet. Sci. 2021, 8, 755258. [Google Scholar] [CrossRef]
- de Nardi, A.B.; Dos Santos Horta, R.; Fonseca-Alves, C.E.; de Paiva, F.N.; Linhares, L.C.M.; Firmo, B.F.; Ruiz Sueiro, F.A.; de Oliveira, K.D.; Lourenço, S.V.; De Francisco Strefezzi, R.; et al. Diagnosis, prognosis and treatment of canine cutaneous and subcutaneous mast cell tumours. Cells 2022, 11, 618. [Google Scholar] [CrossRef]
- Śmiech, A.; Ślaska, B.; Łopuszyński, W.; Jasik, A.; Bochyńska, D.; Dąbrowski, R. Epidemiological assessment of the risk of canine mast cell tumours based on the Kiupel two-grade malignancy classification. Acta Vet. Scand. 2018, 60, 70. [Google Scholar] [CrossRef]
- Pakhrin, B.; Kang, M.-S.; Bae, I.-H.; Park, M.-S.; Jee, H.; You, M.-H.; Kim, J.-H.; Yoon, B.-I.; Choi, Y.-K.; Kim, D.-Y. Retrospective study of canine cutaneous tumors in Korea. J. Vet. Sci. 2007, 8, 229–236. [Google Scholar] [CrossRef]
- Villamil, J.A.; Henry, C.J.; Bryan, J.N.; Ellersieck, M.; Schultz, L.; Tyler, J.W.; Hahn, A.W. Identification of the most common cutaneous neoplasms in dogs and evaluation of breed and age distributions for selected neoplasms. J. Am. Vet. Med. Assoc. 2011, 239, 960–965. [Google Scholar] [CrossRef]
- Warland, J.; Dobson, J.M. Breed predispositions in canine mast cell tumour: A single centre experience in the United Kingdom. Vet. J. 2013, 197, 496–498. [Google Scholar] [CrossRef] [PubMed]
- Leidinger, E.F.; Freeman, K.; Kirtz, G.; Hooijberg, E.H.; Sick, K. Breed related odds ratio and anatomic distribution of canine mast cell tumours in Austria. Retrospective study of cases in the years 200–2010. Tierarztl. Prax. Ausg. K 2014, 42, 367–373. [Google Scholar] [CrossRef]
- Shoop-Worrall, S.; Marlow, S.; Church, D.B.; English, K.; McGreevy, P.D.; Stell, A.J.; Thomson, P.C.; O’Neill, D.G.; Brodbelt, D.C. Prevalence and risk factors for mast cell tumours in dogs in England. Canine Genet. Epidemiol. 2015, 2, 1. [Google Scholar] [CrossRef] [PubMed]
- Baioni, E.; Scanziani, E.; Vincenti, M.C.; Leschiera, M.; Bozzetta, E.; Pezzolato, M.; Desiato, R.; Bertolini, S.; Maurella, C.; Ru, G. Estimating canine cancer incidence: Findings from a population-based tumour registry in northwestern Italy. BMC Vet. Res. 2017, 13, 203. [Google Scholar] [CrossRef]
- Graf, R.; Pospischil, A.; Guscetti, F.; Meier, D.; Welle, M.; Dettwiler, M. Cutaneous Tumors in Swiss Dogs: Retrospective Data From the Swiss Canine Cancer Registry, 2008–2013. Vet. Pathol. 2018, 55, 809–820. [Google Scholar] [CrossRef]
- Kok, M.K.; Chambers, J.; Tsuboi, M.; Nishimura, R.; Tsujimoto, H.; Uchida, K.; Nakayama, H. Retrospective study of canine cutaneous tumors in Japan, 2008–2017. J. Vet. Med. Sci. 2019, 81, 1133–1143. [Google Scholar] [CrossRef]
- Crescio, M.I.; Ru, G.; Aresu, L.; Bozzetta, E.; Cancedda, M.G.; Capello, K.; Castagnaro, M.; Carnio, A.; Cocumelli, C.; Degli Uberti, B.; et al. The Italian Network of Laboratories for Veterinary Oncology (NILOV) 2.0: Improving Knowledge on Canine Tumours. Vet. Sci. 2022, 9, 394. [Google Scholar] [CrossRef]
- Oliveira, M.T.; Campos, M.; Lamego, L.; Magalhães, D.; Menezes, R.; Oliveira, R.; Patanita, F.; Ferreire, D.A. Canine and feline cutaneous mast cell tumor: A comprehensive review of treatments and outcomes. Top. Companion Anim. Med. 2020, 41, 100472. [Google Scholar] [CrossRef]
- Bellamy, E.; Berlato, D. Canine cutaneous and subcutaneous mast cell tumours: A narrative review. J. Small Anim. Pract. 2022, 63, 497–511. [Google Scholar] [CrossRef]
- Marconato, L.; Faroni, E.; Battisti, E.; Zaccone, R.; Stefanello, D.; Sabattini, S. Incorporation of Biologic Variables Into the Staging for Canine Cutaneous and Subcutaneous Mast Cell Tumours: Proposal of the UBo pTNM System. Vet. Comp. Oncol. 2024, 22, 513–522. [Google Scholar] [CrossRef]
- Stefanello, D.; Gariboldi, E.M.; Boracchi, P.; Ferrari, R.; Ubiali, A.; De Zani, D.; Zani, D.D.; Grieco, V.; Giudice, C.; Recordati, C.; et al. Weishaar’s classification system for nodal metastasis in sentinel lymph nodes: Clinical outcome in 94 dogs with mast cell tumor. J. Vet. Intern. Med. 2024, 38, 1675–1685. [Google Scholar] [CrossRef] [PubMed]
- Horta, R.S.; Lavalle, G.E.; Monteiro, L.N.; Souza, M.C.C.; Cassali, G.D.; Araújo, R.B. Assessment of Canine Mast Cell Tumor Mortality Risk Based on Clinical, Histologic, Immunohistochemical, and Molecular Features. Vet. Pathol. 2018, 55, 212–223. [Google Scholar] [CrossRef] [PubMed]
- Moore, A.S.; Frimberger, A.E.; Taylor, D.; Sullivan, N. Retrospective outcome evaluation for dogs with surgically excised, solitary Kiupel high-grade, cutaneous mast cell tumours. Vet. Comp. Oncol. 2020, 18, 402–408. [Google Scholar] [CrossRef]
- Sabattini, S.; Kiupel, M.; Finotello, R.; Stefanello, D.; Faroni, E.; Bertazzolo, W.; Bonfanti, U.; Rigillo, A.; Del Magno, S.; Foglia, A.; et al. A retrospective study on prophylactic regional lymphadenectomy versus nodal observation only in the management of dogs with stage I, completely resected, low-grade cutaneous mast cell tumors. BMC Vet. Res. 2021, 17, 331. [Google Scholar] [CrossRef]
- Chalfon, C.; Sabattini, S.; Finotello, R.; Faroni, E.; Guerra, D.; Pisoni, L.; Ciammaichella, L.; Vasconi, M.E.; Annoni, M.; Marconato, L. Lymphadenectomy improves outcome in dogs with resected Kiupel high-grade cutaneous mast cell tumours and overtly metastatic regional lymph nodes. J. Small Anim. Pract. 2022, 63, 661–669. [Google Scholar] [CrossRef]
- Guerra, D.; Faroni, E.; Sabattini, S.; Agnoli, C.; Chalfon, C.; Stefanello, D.; Del Magno, S.; Cola, V.; Grieco, V.; Marconato, L. Histologic grade has a higher-weighted value than nodal status as predictor of outcome in dogs with cutaneous mast cell tumours and overtly metastatic sentinel lymph nodes. Vet. Comp. Oncol. 2022, 20, 551–558. [Google Scholar] [CrossRef]
- Giantin, M.; Granato, A.; Baratto, C.; Marconato, L.; Vascellari, M.; Morello, E.; Vercelli, A.; Mutinelli, F.; Dacasto, M. Global gene expression analysis of canine cutaneous mast cell tumour: Could molecular profiling be useful for subtype classification and prognostication? PLoS ONE 2014, 9, e95481. [Google Scholar] [CrossRef]
- Giantin, M.; Baratto, C.; Marconato, L.; Vascellari, M.; Mutinelli, F.; Dacasto, M.; Granato, A. Transcriptomic analysis identified up-regulation of a solute carrier transporter and UDP glucuronosyltransferases in dogs with aggressive cutaneous mast cell tumours. Vet. J. 2016, 212, 36–43. [Google Scholar] [CrossRef]
- Kiupel, M.; Webster, J.D.; Bailey, K.L.; Best, S.; DeLay, J.; Detrisac, C.J.; Fitzgerald, S.D.; Gamble, D.; Ginn, P.E.; Goldschmidt, M.H.; et al. Proposal of a 2-tier histologic grading system for canine cutaneous mast cell tumors to more accurately predict biological behaviour. Vet. Pathol. 2011, 48, 147–155. [Google Scholar] [CrossRef]
- Patnaik, A.K.; Ehler, W.J.; MacEwewn, E.G. Canine cutaneous mast cell tumor: Morphologic grading and survival time in 83 dogs. Vet. Pathol. 1984, 21, 469–474. [Google Scholar] [CrossRef]
- Romansik, E.M.; Reilly, C.M.; Kass, P.H.; Moore, P.F.; London, C.A. Mitotic index is predictive for survival for canine cutaneous mast cell tumors. Vet. Pathol. 2007, 44, 335–341. [Google Scholar] [CrossRef] [PubMed]
- Weishaar, K.M.; Thamm, D.H.; Worley, D.R.; Kamstock, D.A. Correlation of nodal mast cells with clinical outcome in dogs with mast cell tumour and a proposed classification system for the evaluation of node metastasis. J. Comp. Pathol. 2014, 151, 329–338. [Google Scholar] [CrossRef] [PubMed]
- Marconato, L.; Zorzan, E.; Giantin, M.; Di Palma, S.; Cancedda, S.; Dacasto, M. Concordance of c-kit mutational status in matched primary and metastatic cutaneous canine mast cell tumors at baseline. J. Vet. Intern. Med. 2014, 28, 547–553. [Google Scholar] [CrossRef]
- Livak, K.J.; Schmittgen, T.D. Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method. Methods 2001, 25, 402–408. [Google Scholar] [CrossRef]
- Pedregosa, F.; Varoquaux, G.; Gramfort, A.; Michel, V.; Thirion, B. Scikit-learn: Machine Learning in Python. J. Mach. Learn. Res. 2011, 12, 2825–2830. [Google Scholar]
- Aupperle-Lellbach, H.; Kehl, A.; de Brot, S.; van der Weyden, L. Clinical use of molecular biomarkers in canine and feline oncology: Current and future. Vet. Sci. 2024, 11, 199. [Google Scholar] [CrossRef]
- Selvarajah, G.T.; Kirpensteijn, J.; van Wolferen, M.E.; Rao, N.A.S.; Fieten, H.; Mol, J.A. Gene expression profiling of canine osteosarcoma reveals genes associated with short and long survival times. Mol. Cancer 2009, 8, 72. [Google Scholar] [CrossRef]
- Klopfleisch, R.; Lenze, D.; Hummel, M.; Gruber, A.D. Metastatic canine mammary carcinomas can be identified by a gene expression profile that partly overlaps with human breast cancer profiles. BMC Cancer 2010, 10, 618. [Google Scholar] [CrossRef]
- O’Donoghue, L.E.; Ptitsyn, A.A.; Kamstock, D.A.; Siebert, J.; Thomas, R.S.; Duval, D.L. Expression profiling in canine osteosarcoma: Identification of biomarkers and pathways associated with outcome. BMC Cancer 2010, 10, 506. [Google Scholar] [CrossRef]
- Tamburini, B.A.; Phang, T.L.; Fosmire, S.P.; Scott, M.C.; Trapp, S.C.; Duckett, M.M.; Robinson, S.R.; Slansky, J.E.; Sharkey, L.C.; Cutter, G.R.; et al. Gene expression profiling identifies inflammation and angiogenesis as distinguishing features of canine hemangiosarcoma. BMC Cancer 2010, 10, 619. [Google Scholar] [CrossRef]
- Boerkamp, K.M.; Van der Kooij, M.; Van Steenbeek, F.G.; Van Wolferen, M.E.; Groot Koerkamp, M.J.A.; Van Leenen, D.; Grinwis, G.C.M.; Penning, L.C.; Wiemer, E.A.; Rutteman, G.R. Gene Expression Profiling of Histiocytic Sarcomas in a Canine Model: The Predisposed Flatcoated Retriever Dog. PLoS ONE 2013, 8, e71094. [Google Scholar] [CrossRef] [PubMed]
- Frantz, A.M.; Sarver, A.L.; Ito, D.; Phang, T.L.; Karimpour-Fard, A.; Scott, M.C.; Valli, V.E.O.; Lindblad-Toh, K.; Burgess, K.E.; Husbands, B.D.; et al. Molecular Profiling Reveals Prognostically Significant Subtypes of Canine Lymphoma. Vet. Pathol. 2013, 50, 693–703. [Google Scholar] [CrossRef] [PubMed]
- Mooney, M.; Bond, J.; Monks, N.; Eugster, E.; Cherba, D.; Berlinski, P.; Kamerling, S.; Marotti, K.; Simpson, H.; Rusk, T.; et al. Comparative RNA-Seq and Microarray Analysis of Gene Expression Changes in B-Cell Lymphomas of Canis familiaris. PLoS ONE 2013, 8, e61088. [Google Scholar] [CrossRef]
- Mudaliar, M.A.V.; Haggart, R.D.; Miele, G.; Sellar, G.; Tan, K.A.L.; Goodlad, J.R.; Milne, E.; Vail, D.M.; Kurzman, I.; Crowther, D.; et al. Comparative Gene Expression Profiling Identifies Common Molecular Signatures of NF-kB Activation in Canine and Human Diffuse Large B Cell Lymphoma (DLBCL). PLoS ONE 2013, 8, e72591. [Google Scholar] [CrossRef]
- Liu, D.; Xiong, H.; Ellis, A.E.; Northrup, N.C.; Rodriguez, C.O.; O’Regan, R.M.; Dalton, S.; Zhao, S. Molecular homology and difference between spontaneous canine mammary cancer and human breast cancer. Cancer Res. 2014, 74, 5045–5056. [Google Scholar] [CrossRef]
- Gorden, B.H.; Kim, J.H.; Sarver, A.L.; Frantz, A.M.; Breen, M.; Lindblad-Toh, K.; O’Brien, T.; Sharkey, L.C.; Modiano, J.F.; Dickerson, E.B. Identification of three molecular and functional subtypes in canine hemangiosarcoma through gene expression profiling and progenitor cell characterization. Am. J. Pathol. 2014, 184, 985–995. [Google Scholar] [CrossRef]
- Pang, L.Y.; Gatenby, E.L.; Kamida, A.; Whitelaw, B.A.; Hupp, T.R.; Argyle, D.J. Global gene expression analysis of canine osteosarcoma stem cells reveals a novel role for COX-2 in tumour initiation. PLoS ONE. 2014, 9, e83144. [Google Scholar] [CrossRef]
- Thomas, R.; Borst, L.; Rotroff, D.; Motsinger-Reif, A.; Lindblad-Toh, K.; Modiano, J.F.; Breen, M. Genomic profiling reveals extensive heterogeneity in somatic DNA copy number aberrations of canine hemangiosarcoma. Chromosom. Res. 2014, 22, 305–319. [Google Scholar] [CrossRef]
- Fowles, J.S.; Denton, C.L.; Gustafson, D.L. Comparative analysis of MAPK and PI3K/AKT pathway activation and inhibition in human and canine melanoma. Vet. Comp. Oncol. 2015, 13, 288–304. [Google Scholar] [CrossRef]
- Liu, D.; Xiong, H.; Ellis, A.E.; Northrup, N.C.; Dobbin, K.K.; Shin, D.M.; Zhao, S. Canine Spontaneous Head and Neck Squamous Cell Carcinomas Represent Their Human Counterparts at the Molecular Level. PLoS Genet. 2015, 11, e1005277. [Google Scholar] [CrossRef]
- Ramsey, S.A.; Xu, T.; Goodall, C.; Rhodes, A.C.; Kashyap, A.; He, J.; Bracha, S. Cross-Species Analysis of the Canine and Human Bladder Cancer Transcriptome and Exome. Genes Chromosom. Cancer 2017, 56, 328–343. [Google Scholar] [CrossRef] [PubMed]
- Aresu, L.; Ferraresso, S.; Marconato, L.; Cascione, L.; Napoli, S.; Gaudio, E.; Kwee, I.; Tarantelli, C.; Testa, A.; Maniaci, C.; et al. New molecular and therapeutic insights into canine diffuse large B-cell lymphoma elucidates the role of the dog as a model for human disease. Haematologica 2019, 104, e256–e259. [Google Scholar] [CrossRef] [PubMed]
- Megquier, K.; Turner-Maier, J.; Swofford, R.; Kim, J.H.; Sarver, A.L.; Wang, C.; Sakthikumar, S.; Johnson, J.; Koltookian, M.; Lewellen, M.; et al. Comparative Genomics Reveals Shared Mutational Landscape in Canine Hemangiosarcoma and Human Angiosarcoma. Mol. Cancer Res. 2019, 17, 2410–2421. [Google Scholar] [CrossRef] [PubMed]
- Pulz, L.H.; Barra, C.N.; Alexandre, P.A.; Huete, G.C.; Cadrobbi, K.G.; Nishiya, A.T.; de Freitas, S.H.; Fukumasu, H.; Strefezzi, R.F. Identification of two molecular subtypes in canine mast cell tumours through gene expression profiling. PLoS ONE 2019, 14, e0217343. [Google Scholar] [CrossRef]
- Simpson, S.; Dunning, M.; de Brot, S.; Alibhai, A.; Bailey, C.; Woodcock, C.L.; Mestas, M.; Akhtar, S.; Jeyapalan, J.N.; Lothion-Roy, J.; et al. Molecular Characterisation of Canine Osteosarcoma in High Risk Breeds. Cancers 2020, 12, 2405. [Google Scholar] [CrossRef]
- Cheng, N.; Schulte, A.J.; Santosa, F.; Kim, J.H. Machine learning application identifies novel gene signatures from transcriptomic data of spontaneous canine hemangiosarcoma. Brief. Bioinform. 2021, 22, bbaa252. [Google Scholar] [CrossRef]
- Selvarajah, G.T.; Kirpensteijn, J. Prognostic and predictive biomarkers of canine osteosarcoma. Vet. J. 2010, 185, 28–35. [Google Scholar] [CrossRef]
- An, J.H.; Kim, J.W.; Jang, S.M.; Kim, C.H.; Kang, E.J.; Choi, K.H. Gelsolin negatively regulates the activity of tumor suppressor p53 through their physical interaction in hepatocarcinoma HepG2 cells. Biochem. Biophys. Res. Commun. 2011, 412, 44–49. [Google Scholar] [CrossRef]
- Jark, P.C.; Mundin, D.B.; de Carvalho, M.; Ferioli, R.B.; Anai, L.A.; Marchi, F.A.; Rogatto, S.R.; Laufer-Amorim, R.; Tinucci-Costa, M. Genomic copy number variation associated with clinical outcome in canine cutaneous mast cell tumors. Res. Vet. Sci. 2017, 111, 26–30. [Google Scholar] [CrossRef]
- Lu, Z.; Wang, Z.; Li, G. High expression of CCNB2 is an independent predictive poor prognostic biomarker and correlates with immune infiltrates in breast carcinoma. Heliyon 2024, 10, e31586. [Google Scholar] [CrossRef]
- Zheng, W.; Zhao, Y.; Wang, T.; Zhao, X.; Tan, Z. Identification of hub genes associated with bladder cancer using bioinformatic analyses. Transl. Cancer Res. 2022, 11, 1330–1343. [Google Scholar] [CrossRef] [PubMed]
- Xiao, Y.; Ma, J.; Guo, C.; Liu, D.; Pan, J.; Huang, X. Cyclin B2 overexpression promotes tumour growth by regulating jagged 1 in hepatocellular carcinoma. Aging 2022, 14, 2855–2867. [Google Scholar] [CrossRef] [PubMed]
- Yang, Z.; Wu, X.; Li, J.; Zheng, Q.; Niu, J.; Li, S. CCNB2, CDC20, AURKA, TOP2A, MELK, NCAPG, KIF20A, UBE2C, PRC1, and ASPM May Be Potential Therapeutic Targets for Hepatocellular Carcinoma Using Integrated Bioinformatic Analysis. Int. J. Gen. Med. 2021, 14, 10185–10194. [Google Scholar] [CrossRef] [PubMed]
- Ding, X.; Shi, J.; Lei, Z.; Wang, G.; Fu, C.; Su, X.; Zhu, G. FOXM1 promotes malignant biological behavior and metabolic reprogramming by targeting SPINK1 in hepatocellular carcinoma and affecting the p53 pathway. Biochim. Biophys. Acta Mol. Basis Dis. 2025, 1871, 167673. [Google Scholar] [CrossRef]
- Dilmac, S.; Hamurcu, Z.; Ozpolat, B. Therapeutic Landscape of FOXM1 in Triple-Negative Breast Cancer and Aggressive Solid Cancers. Cancers 2024, 16, 3823. [Google Scholar] [CrossRef]
- He, W.; Meng, J. CDC20: A novel therapeutic target in cancer. Am. J. Transl. Res. 2023, 15, 678–693. [Google Scholar]
- Li, W.; Qin, Y.; Chen, X.; Wang, X. Cell division cycle associated 8 promotes the growth and inhibits the apoptosis of endometrial cancer cells by regulating cell cycle and P53/Rb signaling pathway. Am. J. Transl. Res. 2023, 15, 3864–3881. [Google Scholar]
- Chen, E.; He, Y.; Jiang, J.; Yi, J.; Zou, Z.; Song, Q.; Ren, Q.; Lin, Z.; Lu, Y.; Liu, J.; et al. CDCA8 induced by NF-YA promotes hepatocellular carcinoma progression by regulating the MEK/ERK pathway. Exp. Hematol. Oncol. 2023, 12, 9. [Google Scholar] [CrossRef]
- AiErken, N.; Wang, X.; Wang, J.; Ma, W.; Cui, L.; Zhang, M.; Ma, W.; Liu, D. NUF2 Promotes Breast Cancer Metastasis via Activating Wnt/β-Catenin Pathways. Front. Biosci. 2024, 29, 371. [Google Scholar] [CrossRef]
- Leng, R.; Meng, Y.; Sun, X.; Zhao, Y. NUF2 overexpression contributes to epithelial ovarian cancer progression via ERBB3-mediated PI3K-AKT and MAPK signaling axes. Front. Oncol. 2022, 12, 1057198. [Google Scholar] [CrossRef]
- Jiang, F.; Huang, X.; Yang, X.; Zhou, H.; Wang, Y. NUF2 Expression Promotes Lung Adenocarcinoma Progression and Is Associated With Poor Prognosis. Front. Oncol. 2022, 12, 795971. [Google Scholar] [CrossRef] [PubMed]
- Lee, H.; Bae, A.N.; Yang, H.; Lee, J.H.; Park, J.H. Modulation of PRC1 Promotes Anticancer Effects in Pancreatic Cancer. Cancers 2024, 16, 3310. [Google Scholar] [CrossRef] [PubMed]
- Li, S.; Motiño, O.; Lambertucci, F.; Martins, I.; Sun, L.; Kroemer, G. Protein regulator of cytokinesis 1: A potential oncogenic driver. Mol. Cancer 2023, 22, 128. [Google Scholar] [CrossRef] [PubMed]
- Wu, G.; Fan, Z.; Li, X. CENPA knockdown restrains cell progression and tumor growth in breast cancer by reducing PLA2R1 promoter methylation and modulating PLA2R1/HHEX axis. Cell Mol. Life Sci. 2024, 81, 27. [Google Scholar] [CrossRef]
- Guo, Y.; Chen, X.; Zhang, X.; Hu, X. UBE2S and UBE2C confer a poor prognosis to breast cancer via downregulation of Numb. Front. Oncol. 2023, 13, 992233. [Google Scholar] [CrossRef]
- Zhang, C.Y.; Yang, M. Functions of three ubiquitin-conjugating enzyme 2 genes in hepatocellular carcinoma diagnosis and prognosis. World J. Hepatol. 2022, 14, 956–971. [Google Scholar] [CrossRef]
- Wu, M.; Huang, X.; Wu, B.; Zhu, M.; Zhu, Y.; Yu, L.; Lan, T.; Liu, J. The endonuclease FEN1 mediates activation of STAT3 and facilitates proliferation and metastasis in breast cancer. Mol. Biol. Rep. 2024, 51, 553. [Google Scholar] [CrossRef]
- Wang, R.; Zhang, H.; Huang, D.; Xu, J.; Zhang, Y.; Wang, T. FEN1 Promotes Hepatocellular Carcinoma Progression by Activating Cell Cycle Transition from G2 To M Phase. J. Cancer 2024, 15, 981–989. [Google Scholar] [CrossRef]
- Tsai, Y.F.; Chan, L.P.; Chen, Y.K.; Su, C.W.; Hsu, C.W.; Wang, Y.Y.; Yuan, S.F. RAD51 is a poor prognostic marker and a potential therapeutic target for oral squamous cell carcinoma. Cancer Cell Int. 2023, 23, 231. [Google Scholar] [CrossRef]
- Bai, J.; Chen, P.; Zhou, Q.; Tie, X.; Xia, X.; Wang, Y.; Jin, L. KPNA2/KPNB1 promotes the malignant progression of gastric cancer induced by M2 macrophage polarization. Tissue Cell 2024, 93, 102714. [Google Scholar] [CrossRef]
- Liao, L.M.; Gu, Z.B.; Fang, M.; Yao, G.J.; Huang, L. Overexpression of Karyopherin alpha2 in small cell carcinoma of the cervix correlates with poor prognosis. Int. J. Clin. Exp. Pathol. 2022, 15, 241–246. [Google Scholar] [PubMed]
- La Perle, K.M.D. Machine Learning and Veterinary Pathology: Be Not Afraid! Vet. Pathol. 2019, 56, 506–507. [Google Scholar] [CrossRef] [PubMed]
- Bhinder, B.; Gilvary, C.; Madhukar, N.S.; Elemento, O. Artificial Intelligence in Cancer Research and Precision Medicine. Cancer Discov. 2021, 11, 900–915. [Google Scholar] [CrossRef] [PubMed]
- Frangoso-Garcia, M.; Wilm, F.; Bertram, C.A.; Merz, S.; Schmidt, A.; Donovan, T.; Fuchs-Baumgartinger, A.; Bartel, A.; Marzahl, C.; Diehl, L.; et al. Automated diagnosis of 7 canine skin tumors using machine learning on H&E-stained whole slide images. Vet. Pathol. 2023, 60, 865–875. [Google Scholar] [CrossRef]
- Stefanello, D.; Buracco, P.; Sabattini, S.; Finotello, R.; Giudice, C.; Grieco, V.; Iussich, S.; Tursi, M.; Scase, T.; Di Palma, S.; et al. Comparison of 2- and 3-category histologic grading systems for predicting the presence of metastasis at the time of initial evaluation in dogs with cutaneous mast cell tumors: 386 cases (2009–2014). J. Am. Vet. Med. Assoc. 2015, 246, 765–769. [Google Scholar] [CrossRef]
- Owen, L.N. TNM Classification of Tumors in Domestic Animal, 1st ed.; World Health Organization: Geneva, Switzerland, 1980. [Google Scholar]
- Kiupel, M.; Camus, M. Diagnosis and Prognosis of Canine Cutaneous Mast Cell Tumors. Vet. Clin. N. Am. Small Anim. Pract. 2019, 49, 819–836. [Google Scholar] [CrossRef]
- Montanucci, L.; Guidolin, E.; Lopparelli, R.M.; Mucignat, G.; Pauletto, M.; Giantin, M.; Dacasto, M. Mutational landscape of KIT proto-oncogene coding sequence in 62 canine cutaneous and subcutaneous mast cell tumors. Vet. Sci. 2024, 11, 593. [Google Scholar] [CrossRef]
- Downing, S.; Chien, M.B.; Kass, P.H.; Moore, P.E.; London, C.A. Prevalence and importance of internal tandem duplications in 611 exons 11 and 12 of c-kit in mast cell tumors of dogs. Am. J. Vet. Res. 2002, 63, 1718–1723. [Google Scholar] [CrossRef]
- Zemke, D.; Yamini, B.; Yuzbasiyan-Gurkan, V. Mutations in the juxtamembrane domain of c-KIT are associated with higher 613 grade mast cell tumors in dogs. Vet. Pathol. 2002, 39, 529–535. [Google Scholar] [CrossRef]
- Thamm, D.H.; Avery, A.C.; Berlato, D.; Bulman-Fleming, J.; Clifford, C.A.; Hershey, A.E.; Intile, J.L.; Jones, P.D.; Kamstock, D.A.; Liptak, J.M.; et al. Prognostic and predictive signifi-541 cance of KIT protein expression and c-kit gene mutation in canine cutaneous mast cell tumours: A consensus of the Oncology-542 Pathology Working Group. Vet. Comp. Oncol. 2019, 17, 451–455. [Google Scholar] [CrossRef]
Transcript | Description | Ensembl Genome Browser Transcript ID |
---|---|---|
Target transcripts | ||
CCNB2 | Cyclin B2 | ENSCAFT00000026290 |
CDC20 | Cell division cycle 20 | ENSCAFT00000008495 |
CDCA8 | Cell division cycle associated 8 | ENSCAFT00000005257 |
CENPP | Centromere protein P | ENSCAFT00000003607 |
FEN1 | Flap structure specific endonuclease 1 | ENSCAFT00000049322 |
FOXM1 | Forkhead box M1 | ENSCAFT00000024793 |
GSN | Gelsolin | ENSCAFT00000005907 |
KPNA2 | Karyopherin α 2 | ENSCAFT00000018435 |
NUF2 | NDC80 kinetochore complex component, homolog | ENSCAFT00000021052 |
NUSAP1 | Nucleolar and spindle-associated protein 1 | ENSCAFT00000015151 |
PRC1 | Protein regulator of cytokinesis 1 | ENSCAFT00000019302 |
RAD51 | DNA repair protein RAD51 homolog 1 | ENSCAFT00000014658 |
UBE2S | Ubiquitin-conjugating enzyme E2S | ENSCAFT00000045087 |
Internal control transcripts | ||
CCZ1 | CCZ1 homolog, vacuolar protein trafficking, and biogenesis associated | ENSCAFT00845017131 |
GUSB | Glucuronidase β | ENSCAFT00000062136 |
RPL8 | Ribosomal protein L8 | ENSCAFT00000002627 |
RPS5 | Ribosomal protein S5 | ENSCAFT00000109444 |
Accuracy | AUC | MCC | TNR | NPV | TPR | PPV |
---|---|---|---|---|---|---|
0.674 | 0.761 | 0.428 | 0.606 | 0.952 | 0.900 | 0.409 |
Clinical Stages | Samples | cMCTs Predicted as Low-Grade | cMCTs Predicted as High-Grade | Fisher Exact Test (p) |
---|---|---|---|---|
I-II-III | 36 | 20 | 16 | 0.0481 * |
IV | 8 | 1 | 7 | |
NP | 1 | 1 | 0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Giantin, M.; Montanucci, L.; Lopparelli, R.M.; Tolosi, R.; Dentini, A.; Grieco, V.; Stefanello, D.; Sabattini, S.; Marconato, L.; Pauletto, M.; et al. Expression Profile of Twelve Transcripts as a Supporting Tool for the Molecular Characterization of Canine Cutaneous Mast Cell Tumors at Diagnosis: Association with Histological Grading and Clinical Staging. Genes 2025, 16, 340. https://doi.org/10.3390/genes16030340
Giantin M, Montanucci L, Lopparelli RM, Tolosi R, Dentini A, Grieco V, Stefanello D, Sabattini S, Marconato L, Pauletto M, et al. Expression Profile of Twelve Transcripts as a Supporting Tool for the Molecular Characterization of Canine Cutaneous Mast Cell Tumors at Diagnosis: Association with Histological Grading and Clinical Staging. Genes. 2025; 16(3):340. https://doi.org/10.3390/genes16030340
Chicago/Turabian StyleGiantin, Mery, Ludovica Montanucci, Rosa Maria Lopparelli, Roberta Tolosi, Alfredo Dentini, Valeria Grieco, Damiano Stefanello, Silvia Sabattini, Laura Marconato, Marianna Pauletto, and et al. 2025. "Expression Profile of Twelve Transcripts as a Supporting Tool for the Molecular Characterization of Canine Cutaneous Mast Cell Tumors at Diagnosis: Association with Histological Grading and Clinical Staging" Genes 16, no. 3: 340. https://doi.org/10.3390/genes16030340
APA StyleGiantin, M., Montanucci, L., Lopparelli, R. M., Tolosi, R., Dentini, A., Grieco, V., Stefanello, D., Sabattini, S., Marconato, L., Pauletto, M., & Dacasto, M. (2025). Expression Profile of Twelve Transcripts as a Supporting Tool for the Molecular Characterization of Canine Cutaneous Mast Cell Tumors at Diagnosis: Association with Histological Grading and Clinical Staging. Genes, 16(3), 340. https://doi.org/10.3390/genes16030340