Changes in Vertical Jump Parameters After Training Unit in Relation to ACE, ACTN3, PPARA, HIF1A, and AMPD1 Gene Polymorphisms in Volleyball and Basketball Players
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Genotyping
2.3. Motor Test
2.4. Acute Exercise
2.5. Statistical Analysis
3. Results
3.1. Frequency of Alleles and Genotypes
3.2. Indicators of Speed-Strength Abilities According to the Genotype of Selected Genes
3.2.1. ACTN3
3.2.2. ACE
3.2.3. PPARA
3.2.4. HIF1A
3.2.5. AMPD1
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Guth, L.M.; Roth, S.M. Genetic influence on athletic performance. Curr. Opin. Pediatr. 2013, 25, 653–658. [Google Scholar] [CrossRef] [PubMed]
- Davids, K.; Baker, J. Genes, environment and sport performance: Why the nature-nurture dualism is no longer relevant. Sports Med. 2007, 37, 961–980. [Google Scholar] [CrossRef] [PubMed]
- De Moor, M.H.; Spector, T.D.; Cherkas, L.F.; Falchi, M.; Hottenga, J.J.; Boomsma, D.I.; De Geus, E.J. Genome-wide linkage scan for player status in 700 British female DZ twin pairs. Twin Res. Hum. Genet. 2007, 10, 812–820. [Google Scholar] [CrossRef] [PubMed]
- Montgomery, H.E.; Clarkson, P.; Barnard, M.; Bell, J.; Brynes, A.; Dollery, C.; Hajnal, J.; Hemingway, H.; Mercer, D.; Jarman, P.; et al. Angiotensin-converting-enzyme gene insertion/deletion polymorphism and response to physical training. Lancet 1999, 353, 541–545. [Google Scholar] [CrossRef] [PubMed]
- Gayagay, G.; Yu, B.; Hambly, B.; Boston, T.; Hahn, A.; Celermajer, D.S.; Trent, R.J. Elite endurance players and the ACE I allele–the role of genes in athletic performance. Hum. Genet. 1998, 103, 48–50. [Google Scholar] [CrossRef]
- Yang, N.; MacArthur, D.G.; Gulbin, J.P.; Hahn, A.G.; Beggs, A.H.; Easteal, S.; North, K. ACTN3 genotype is associated with human elite athletic performance. Am. J. Hum. Genet. 2003, 73, 627–631. [Google Scholar] [CrossRef]
- Lucia, A.; Gomez-Gallego, F.; Chicharro, J.L.; Hoyos, J.; Celaya, S.; Cordova, A.; Earnest, C. Is there an optimal endurance polygenic profile? J. Physiol. 2005, 582, 1239–1242. [Google Scholar]
- Garatachea, N.; Verde, Z.; Santos-Lozano, A.; Yvert, T.; Rodríguez-Romo, G.; Sarasa, F.J.; Hernández-Sánchez, S.; Santiago, C.; Lucia, A. ACTN3 R577X polymorphism and explosive leg-muscle power in elite basketball players. Int. J. Sports Physiol. Perform. 2014, 9, 226–232. [Google Scholar] [CrossRef]
- Ahmetov, I.I.; Mozhayskaya, I.A.; Flavell, D.M.; Astratenkova, I.V.; Komkova, A.I.; Lyubaeva, E.V.; Tarakin, P.P.; Shenkman, B.S.; Vdovina, A.B.; Netreba, A.I.; et al. PPARalpha gene variation and physical performance in Russian athletes. Eur. J. Appl. Physiol. 2006, 97, 103–108. [Google Scholar] [CrossRef]
- Bray, M.S.; Hagberg, J.M.; Pérusse, L.; Rankinen, T.; Roth, S.M.; Wolfarth, B.; Bouchard, C. The human gene map for performance and health-related fitness phenotypes: The 2006–2007 update. Med. Sci. Sports Exerc. 2009, 41, 35–73. [Google Scholar] [CrossRef]
- Gineviciene, V.; Jakaitiene, A.; Tubelis, L.; Kucinskas, V. Variation in the ACE, PPARGC1A and PPARA genes in Lithuanian football players. Eur. J. Sport Sci. 2011, 11, 259–263. [Google Scholar] [CrossRef]
- Kikuchi, N.; Miyamoto-Mikami, E.; Murakami, H.; Nakamura, T.; Min, S.; Mizuno, M.; Naito, H.; Miyachi, M.; Nakazato, K.; Fuku, N. ACTN3 R577X genotype and athletic performance in a large cohort of Japanese athletes. Eur. J. Sport Sci. 2016, 16, 694–701. [Google Scholar] [CrossRef] [PubMed]
- Cagnin, S.; Chemello, F.; Ahmetov, I.I. Genes and response to aerobic training. In Sports Exercise and Nutritional Genomics: Current Status and Future Directions; Barh, D., Ahmetov, I., Eds.; Academic Press: Cambridge, MA, USA, 2019; pp. 169–188. [Google Scholar] [CrossRef]
- Ma, F.; Yang, Y.; Li, X.; Zhou, F.; Gao, C.; Li, M.; Gao, L. The association of sport performance with ACE and ACTN3 genetic polymorphisms: A systematic review and meta-analysis. PLoS ONE 2013, 8, e54685. [Google Scholar] [CrossRef] [PubMed]
- Massidda, M.; Corrias, L.; Scorcu, M.; Calò, C.M. ACTN-3 and ACE genotypes in elite male Italian athletes. Anthropol. Rev. 2012, 75, 51–59. [Google Scholar] [CrossRef]
- Massidda, M.; Scorcu, M.; Calò, C.M. New genetic model for predicting phenotype traits in sports. Int. J. Sports Physiol. Perform. 2014, 9, 554–560. [Google Scholar] [CrossRef] [PubMed]
- McKay, A.K.A.; Stellingwerff, T.; Smith, E.S.; Martin, D.T.; Mujika, I.; Goosey-Tolfrey, V.L.; Sheppard, J.; Burke, L.M. Defining training and performance caliber. Int. J. Sports Physiol. Perform. 2022, 17, 317–331. [Google Scholar] [CrossRef] [PubMed]
- Sharma, Y.; Mishra, M.; Uttahasi, U. Comparison of strength ability of volleyball and basketball players. J. Posit. Sch. Psychol. 2022, 6, 9494–9498. Available online: http://journalppw.com (accessed on 20 January 2025).
- Pette, D.; Staron, R.S. Transitions of muscle fiber phenotypic profiles. Histochem. Cell Biol. 2001, 115, 359–372. [Google Scholar] [CrossRef]
- Wilson, J.M.; Loenneke, J.P.; Jo, E.; Wilson, G.J.; Zourdos, M.C.; Kim, J.S. The effects of endurance, strength, and power training on muscle fiber type shifting. J. Strength Cond. Res. 2012, 26, 1724–1729. [Google Scholar] [CrossRef]
- MacIntosh, B.R.; Robillard, M.-E.; Tomaras, E.K. Should postactivation potentiation be the goal of your warm-up? Appl. Physiol. Nutr. Metab. 2012, 37, 546–550. [Google Scholar] [CrossRef]
- Cuenca-Fernández, F.; Smith, I.C.; Jordan, M.J.; MacIntosh, B.R.; López-Contreras, G.; Arellano, R.; Herzog, W. Nonlocalized postactivation performance enhancement (PAPE) effects in trained players: A pilot study. Appl. Physiol. Nutr. Metab. 2017, 42, 1122–1125. [Google Scholar] [CrossRef] [PubMed]
- Gołaś, A.; Maszczyk, A.; Zajac, A.; Mikołajec, K.; Stastny, P. Optimizing postactivation potentiation for explosive activities in competitive sports. J. Hum. Kinet. 2016, 52, 95–106. [Google Scholar] [CrossRef] [PubMed]
- Timon, R.; Gracia-Marco, L.; Olcina, G. Post-activation performance enhancement after a high-intensity exercise protocol in male handball players: A randomized crossover trial. J. Hum. Kinet. 2019, 69, 271–281. [Google Scholar] [CrossRef] [PubMed]
- Maroto-Izquierdo, S.; Bautista, I.J.; Rivera, F.M. Post-activation performance enhancement (PAPE) after a single bout of high-intensity flywheel resistance training. Biol. Sport 2020, 37, 343–350. [Google Scholar] [CrossRef]
- Beato, M.; Stiff, A.; Coratella, G. Effects of postactivation potentiation after an eccentric overload bout on countermovement jump and lower-limb muscle strength. J. Strength Cond. Res. 2021, 35, 1825–1832. [Google Scholar] [CrossRef]
- Fu, K.; Chen, L.; Poon, E.T.-C.; Wang, R.; Li, Q.; Liu, H.; Ho, I.M.K. Post-activation performance enhancement of flywheel training on lower limb explosive power performance. Front. Physiol. 2023, 14, 1217045. [Google Scholar] [CrossRef]
- Blazevich, A.; Babault, N. Post-activation potentiation versus post-activation performance enhancement in humans: Historical perspective, underlying mechanisms and current issues. Front. Physiol. 2019, 10, 1359. [Google Scholar] [CrossRef]
- McCann, M.R.; Flanagan, S.P. The effects of exercise selection and rest interval on postactivation potentiation of vertical jump performance. J. Strength Cond. Res. 2010, 24, 1285–1291. [Google Scholar] [CrossRef]
- Seitz, L.B.; Haff, G.G.; Reidy, P.T.; Carlock, J.M.; Kilgore, J.L. Factors modulating post-activation potentiation of jump, sprint, throw, and upper-body ballistic performances: A meta-analysis. Sports Med. 2015, 45, 553–564. [Google Scholar] [CrossRef]
- Jeffreys, I. Contextology—Is this a new approach to effective coaching? Prof. Strength Cond. 2020, 56, 25–34. [Google Scholar] [CrossRef]
- Hornig, B.; Drexler, H. Endothelial function and bradykinin in humans. Clin. Pharmacokinet. 1997, 54 (Suppl. 5), 42–47. [Google Scholar] [CrossRef] [PubMed]
- Zhang, B.; Tanaka, H.; Shono, N.; Miura, S.; Kiyonaga, A.; Shindo, M.; Saku, K. The I allele of the angiotensin-converting enzyme gene is associated with an increased percentage of slow-twitch type I fibers in human skeletal muscle. Clin. Genet. 2003, 63, 139–144. [Google Scholar] [CrossRef] [PubMed]
- Williams, A.G.; Rayson, M.P.; Jubb, M.; World, M.; Woods, D.R.; Hayward, M.; Martin, J.; Humphries, S.E.; Montgomery, H.E. The ACE gene and muscle performance. Nature 2000, 403, 614. [Google Scholar] [CrossRef] [PubMed]
- Pimjan, L.; Ongvarrasopone, C.; Chantratita, W.; Polpramool, C.; Cherdrungsi, P.; Bangrak, P.; Yimlamai, T. A study on ACE, ACTN3, and VDR gene polymorphisms in Thai weightlifters. Walailak J. Sci. Technol. 2018, 15, 609–626. [Google Scholar] [CrossRef]
- Eynon, N.; Banting, L.K.; Ruiz, J.R.; Cieszczyk, P.; Dyatlov, D.A.; Maciejewska-Karlowska, A.; Sawczuk, M.; Pushkarev, V.P.; Kulikov, L.M.; Pushkarev, E.D.; et al. ACTN3 R577X polymorphism and team-sport performance: A study involving three European cohorts. J. Sci. Med. Sport 2014, 17, 45–49. [Google Scholar] [CrossRef]
- Puthucheary, Z.; Skipworth, J.R.; Rawal, J.; Loosemore, M.; Van Someren, K.; Montgomery, H.E. The ACE gene and human performance. Sports Med. 2011, 41, 433–448. [Google Scholar] [CrossRef]
- Grenda, A.; Leońska-Duniec, A.; Cięszczyk, P.; Zmijewski, P. BDKRB2 gene −9/+9 polymorphism and swimming performance. Biol. Sport 2014, 31, 109–113. [Google Scholar] [CrossRef]
- Ahmetov, I.I.; Gavrilov, D.N.; Astratenkova, I.V.; Druzhevskaya, A.M.; Malinin, A.V.; Romanova, E.E.; Rogozkin, V.A. The association of ACE, ACTN3 and PPARA gene variants with strength phenotypes in middle school-age children. J. Physiol. Sci. 2013, 63, 79–85. [Google Scholar] [CrossRef]
- Jeremić, D.; Macuzic, I.Z.; Vulović, M.; Stevanović, J.; Radovanović, D.; Varjačić, V.; Djordjević, D. ACE/ACTN3 genetic polymorphisms and athletic performance. Cell. Mol. Biol. 2019, 65, 1–6. [Google Scholar]
- Scott, R.A.; Moran, C.; Wilson, R.H.; Onywera, V.O.; Boit, M.K.; Pitsiladis, Y.P. No association between angiotensin-converting enzyme (ACE) gene variation and endurance player status in Kenyans. Comp. Biochem. Physiol. A Mol. Integr. Physiol. 2009, 153, 188–193. [Google Scholar]
- Ahmetov, I.I.; Fedotovskaya, O.N. Current progress in sports genomics. Adv. Clin. Chem. 2015, 70, 247–314. [Google Scholar] [PubMed]
- Carvajal-Espinoza, R.; Trejos-Montoya, J.; Montoya-Fuentes, H. ACE and ACTN3 polymorphisms analysis on agility test in national players in team sports of Costa Rica. MHSalud 2023, 1, 23–30. [Google Scholar] [CrossRef]
- Yang, S.; Lin, W.; Jia, M.; Chen, H. Association between ACE and ACTN3 gene polymorphisms and athletic performance in elite and sub-elite Chinese youth male football players. PeerJ 2023, 11, e14893. [Google Scholar] [CrossRef] [PubMed]
- Ahmetov, I.I.; Fedotovskaya, O.N. Sports genomics: Current state of knowledge and future directions. Cell Mol. Exerc. Physiol. 2012, 1, e1. [Google Scholar] [CrossRef]
- Pickering, C.; Kiely, J. ACTN3: More than just a gene for speed. Front. Physiol. 2017, 8, 1080. [Google Scholar] [CrossRef]
- Ruiz, J.R.; Fernández del Valle, M.; Verde, Z.; Díez-Vega, I.; Santiago, C.; Yvert, T.; Rodríguez-Romo, G.; Gómez-Gallego, F.; Molina, J.J.; Lucia, A. ACTN3 R577X polymorphism does not influence explosive leg muscle power in elite volleyball players. Scand. J. Med. Sci. Sports 2011, 21, e34–e41. [Google Scholar] [CrossRef]
- Yang, R.; Shen, X.; Wang, Y.; Voisin, S.; Cai, G.; Fu, Y.; Xu, W.; Eynon, N.; Bishop, D.J.; Yan, X. ACTN3 R577X gene variant is associated with muscle-related phenotypes in elite Chinese sprint/power athletes. J. Strength Cond. Res. 2017, 31, 1107–1115. [Google Scholar] [CrossRef]
- Kikuchi, N.; Nakazato, K.; Min, S.K.; Ueda, D.; Igawa, S. The ACTN3 R577X polymorphism is associated with muscle power in male Japanese athletes. J. Strength Cond. Res. 2014, 28, 1783–1789. [Google Scholar] [CrossRef]
- Chae, J.H.; Eom, S.H.; Lee, S.K.; Jung, J.H.; Kim, C.H. Association between complex ACTN3 and ACE gene polymorphisms and elite endurance sports in Koreans: A case-control study. Genes 2024, 15, 1110. [Google Scholar] [CrossRef]
- Dionísio, T.J.; Queiroz, J.D.; Aquino, V.M.; Maciel, L.R.; Dantas, M.J.; Saito, M.; Carvalho, M.R. ACTN3 and ACE polymorphisms in endurance and power players. Int. J. Sports Med. 2017, 38, 49–56. [Google Scholar]
- Eynon, N.; Hanson, E.D.; Lucia, A.; Houweling, P.J.; Garton, F.; North, K.N.; Bishop, D.J. Genes for elite power and sprint performance: ACTN3 leads the way. Sports Med. 2013, 43, 803–817. [Google Scholar] [CrossRef] [PubMed]
- Erskine, R.M.; Williams, A.G.; Jones, D.A.; Stewart, C.E.; Degens, H. The individual and combined influence of ACE and ACTN3 genotypes on muscle phenotypes before and after strength training. Scand. J. Med. Sci. Sports 2014, 24, 642–648. [Google Scholar] [CrossRef] [PubMed]
- MacArthur, D.G.; North, K.N. ACTN3: A genetic influence on muscle function and athletic performance. Exerc. Sport Sci. Rev. 2007, 35, 30–34. [Google Scholar] [CrossRef] [PubMed]
- Vincent, B.; Clarkson, P.M.; Hwang, J.; MacArthur, D.G. ACTN3 (R577X) genotype is associated with fiber type distribution. Physiol. Genom. 2007, 32, 58–63. [Google Scholar] [CrossRef]
- Yang, N.; MacArthur, D.G.; Wolde, B.; Onywera, V.O.; Boit, M.K.; Lau, S.Y.; Wilson, R.H.; Scott, R.A.; Pitsiladis, Y.P.; North, K. The ACTN3 R577X polymorphism in East and West African athletes. Med. Sci. Sports Exerc. 2007, 39, 1985–1988. [Google Scholar] [CrossRef]
- Silva, M.S.; Bolani, W.; Alves, C.R.; Biagi, D.G.; Lemos, J.R.; da Silva, J.L.; Pereira, A.C. Elimination of influences of the ACTN3 R577X variant on oxygen uptake by endurance training in healthy individuals. Int. J. Sports Physiol. Perform. 2015, 10, 636–641. [Google Scholar] [CrossRef]
- Jamshidi, Y.; Montgomery, H.E.; Hense, H.W.; Myerson, S.G.; Torra, I.P.; Staels, B.; World, M.J.; Doering, A.; Erdmann, J.; Hengstenberg, C.; et al. Peroxisome proliferator-activated receptor alpha gene regulates left ventricular growth in response to exercise and hypertension. Circulation 2002, 105, 950–955. [Google Scholar] [CrossRef]
- Russell, A.P.; Feilchenfeldt, J.; Schreiber, S.; Praz, M.; Crettenand, A.; Gobelet, C.; Meier, C.A.; Bell, D.R.; Kralli, A.; Giacobino, J.P.; et al. Endurance training in humans leads to fiber type-specific increases in levels of peroxisome proliferator-activated receptor-gamma coactivator-1 and peroxisome proliferator-activated receptor-alpha in skeletal muscle. Diabetes 2003, 52, 2874–2881. [Google Scholar] [CrossRef]
- Lopez-Leon, S.; Tuvblad, C.; Forero, D.A. Sports genetics: The PPARA gene and athletes’ high ability in endurance sports. A systematic review and meta-analysis. Biol. Sport 2016, 33, 3–6. [Google Scholar]
- Ahmetov, I.I.; Mozhayskaya, I.A.; Lyubaeva, E.V.; Vinogradova, O.L.; Rogozkin, V.A. PPARG gene polymorphism and locomotor activity in humans. Bull. Exp. Biol. Med. 2008, 146, 630–632. [Google Scholar] [CrossRef]
- Ahmetov, I.I.; Egorova, E.S.; Mustafina, L.J. The PPARA gene polymorphism in team sports players. Cent. Eur. J. Sport Sci. Med. 2013, 1, 19–24. [Google Scholar]
- Eynon, N.; Meckel, Y.; Sagiv, M.; Yamin, C.; Amir, R.; Sagiv, M.; Goldhammer, E.; Duarte, J.A.; Oliveira, J. Do PPARGC1A and PPARα polymorphisms influence sprint or endurance phenotypes? Scand. J. Med. Sci. Sports 2010, 20, e145–e150. [Google Scholar] [CrossRef] [PubMed]
- Petr, M.; Šťastný, P.; Pecha, O.; Šteffl, M.; Šeda, O.; Kohlíková, E. PPARA intron polymorphism associated with power performance in 30-s anaerobic Wingate Test. PLoS ONE 2014, 9, e107171. [Google Scholar] [CrossRef]
- Eynon, N.; Ruiz, J.R.; Oliveira, J.; Duarte, J.A.; Lucia, A. Genes and elite players: A roadmap for future research. J. Physiol. 2010, 589, 3063–3070. [Google Scholar] [CrossRef] [PubMed]
- Maciejewska, A.; Sawczuk, M.; Cięszczyk, P. Variation in the PPARα gene in Polish rowers. J. Sci. Med. Sport 2011, 14, 58–64. [Google Scholar] [CrossRef]
- Kurtulus, M.; Keskin, K.; Gyunay, M.; Kesici, T.; Gokdemir, K. Genetic differences in peroxisome proliferator-activated receptor alpha gene in endurance athletes (long distance runners) and power/endurance athletes (wrestlers, football players). J. Athl. Perform. Sports Sci. 2023, 4, 70–79. [Google Scholar] [CrossRef]
- Semenza, G.L. Structural and functional analysis of hypoxia-inducible factor 1. Kidney Int. 1997, 51, 553–555. [Google Scholar] [CrossRef]
- Pisani, A.; Dechesne, C. Skeletal muscle HIF-1α expression is dependent on muscle fiber type. J. Gen. Physiol. 2005, 126, 173–178. [Google Scholar] [CrossRef]
- Tanimoto, K.; Yoshiga, K.; Eguchi, H.; Kaneyasu, M.; Ukon, K.; Kumazaki, T.; Oue, N.; Yasui, W.; Imai, K.; Nakachi, K.; et al. Hypoxia-inducible factor-1α polymorphisms associated with enhanced transactivation capacity, implying clinical significance. Carcinogenesis 2003, 24, 1779–1783. [Google Scholar] [CrossRef]
- Ahmetov, I.I.; Hakimullina, A.M.; Lyubaeva, E.V.; Rogozkin, V.A. Effect of HIF1A gene polymorphism on human muscle performance. Bull. Exp. Biol. Med. 2008, 146, 351–353. [Google Scholar] [CrossRef]
- Rubio, J.C.; Martín, M.A.; Rabadán, M.; Gómez-Gallego, F.; San Juan, A.F.; Alonso, J.M.; Chicharro, J.L.; Pérez, M.; Arenas, J.; Lucia, A. Frequency of the C34T mutation of the AMPD1 gene in world-class endurance athletes: Does this mutation impair performance? J. Appl. Physiol. 2005, 98, 2108–2112. [Google Scholar] [CrossRef] [PubMed]
- Juffer, P.; Furrer, R.; Goncalves, C.; Metelkina, A.; Lionikas, A.; Kayser, B. Genotype distributions in top-level soccer players: A role for ACE? Int. J. Sports Med. 2009, 30, 387–392. [Google Scholar] [CrossRef]
- Ginevičiené, V.; Jaktitiné, A.; Pranculis, A.; Milašius, K.; Tubelis, T.; Utkus, A. AMPD1 rs17602729 is associated with physical performance of sprint and power in elite Lithuanian athletes. BMC Genet. 2014, 15, 58. [Google Scholar] [CrossRef] [PubMed]
- Gross, M. Clinical heterogeneity and molecular mechanisms in inborn muscle AMP deaminase deficiency. J. Inherit. Metab. Dis. 1997, 20, 186–192. [Google Scholar] [CrossRef]
- Rico-Sanz, J.; Rankinen, T.; Joanisse, D.R.; Leon, A.S.; Skinner, J.S.; Wilmore, J.H.; Rao, D.C.; Bouchard, C. Associations between cardiorespiratory responses to exercise and the C34T AMPD1 gene polymorphism in the HERITAGE Family study. Physiol. Genom. 2003, 14, 161–166. [Google Scholar] [CrossRef]
- Tiret, L.; Rigat, B.; Visvikis, S.; Breda, C.; Corvol, P.; Cambien, F.; Soubrier, F. Evidence, from combined segregation and linkage analysis, that a variant of the angiotensin I-converting enzyme (ACE) gene controls plasma ACE levels. Am. J. Hum. Genet. 1992, 51, 197–205. [Google Scholar]
- Morisaki, T.; Gross, M.; Morisaki, H.; Pongratz, D.; Zöllner, N.; Holmes, E.W. Molecular basis of AMP deaminase deficiency in skeletal muscle. Proc. Natl. Acad. Sci. USA 1992, 89, 6457–6461. [Google Scholar] [CrossRef]
- Glatthorn, J.F.; Gouge, S.; Nussbaumer, S.; Stauffacher, S.; Impellizzeri, F.M.; Maffiuletti, N.A. Validity and reliability of Optojump photoelectric cells for estimating vertical jump height. J. Strength Cond. Res. 2011, 25, 556–560. [Google Scholar] [CrossRef]
- Zemková, E.; Hamar, D. Jump ergometer in sport performance testing. Acta Univ. Palacki. Olomuc. Gymnica 2005, 35, 7–16. [Google Scholar]
- Turner, A.; Comfort, P. Advanced Strength and Conditioning: An Evidence-Based Approach; Routledge: London, UK, 2022; ISBN 9780367491352. [Google Scholar]
- Cohen, J. Statistical Power Analysis for the Behavioral Sciences, 2nd ed.; Lawrence Erlbaum Associates: Mahwah, NJ, USA, 1988. [Google Scholar]
- Shapiro, S.S.; Wilk, M.B. An analysis of variance test for normality (complete samples). Biometrika 1965, 52, 591–611. [Google Scholar] [CrossRef]
- Huberty, C.J. A history of effect sizes indices. Educ. Psychol. Meas. 2002, 62, 227–240. [Google Scholar] [CrossRef]
- Hopkins, W.G. A New View of Statistics: Effect Magnitudes. Sportsci.org. Available online: https://www.sportsci.org/resource/stats/effectmag.html (accessed on 20 January 2025).
- Xu, J.; Xiao, G.; Trujillo, C.; Chang, V.; Blanco, L.; Joseph, S.B.; Bassilian, S.; Saad, M.F.; Tontonoz, P.; Lee, W.N.; et al. Peroxisome proliferator-activated receptor alpha (PPARα) influences substrate utilization for hepatic glucose production. J. Biol. Chem. 2002, 277, 50237–50244. [Google Scholar] [CrossRef] [PubMed]
- Bougarne, N.; Weyers, B.; Desmet, S.J.; Deckers, J.; Ray, D.W.; Staels, B.; De Bosscher, K. Molecular actions of PPARα in lipid metabolism and inflammation. Endocr. Rev. 2018, 39, 760–802. [Google Scholar] [CrossRef] [PubMed]
- Végh, D.; Reichwalderová, K.; Slaninová, M.; Vavák, M. The Effect of Selected Polymorphisms of the ACTN3, ACE, HIF1A and PPARA Genes on the Immediate Supercompensation Training Effect of Elite Slovak Endurance Runners and Football Players. Genes 2022, 13, 1525. [Google Scholar] [CrossRef]
- Charbonneau, D.E.; Hanson, E.D.; Ludlow, A.T.; Delmonico, M.J.; Hurley, B.F.; Roth, S.M. ACE Genotype and the Muscle Hypertrophic and Strength Responses to Strength Training. Med. Sci. Sports Exerc. 2008, 40, 677–683. [Google Scholar] [CrossRef]
- McAuley, A.B.T.; Hughes, D.C.; Tsaprouni, L.G.; Varley, I.; Suraci, B.; Roos, T.R.; Herbert, A.J.; Kelly, A.L. Genetic association research in football: A systematic review. Eur. J. Sport Sci. 2021, 21, 714–752. [Google Scholar] [CrossRef]
Player Group (N = 100) | Control Group (N = 54) | p-Values | |
---|---|---|---|
Mean ± SD (95% CI) | Mean ± SD (95% CI) | ||
Age (years) | 25.98 ± 5.01 (16.16; 35.80) | 19.81 ± 0.75 (18.34; 21.29) | <0.001 |
Body height (cm) | 195.42 ± 7.16 (181.40; 209.44) | 182.72 ± 6.53 (169.92; 195.53) | <0.001 |
Body mass (kg) | 91.06 ± 9.82 (71.82; 110.30) | 77.89 ± 13.91 (50.63; 105.15) | <0.001 |
Player Group (n = 100) | Control Group (n = 54) | Player Group (n = 100) | Control Group (n = 54) | p-Values | |||||
---|---|---|---|---|---|---|---|---|---|
Gene | Allele | Genotype | N | % | N | % | |||
ACTN3 | RR | 45 | 45.0 | 20 | 37.0 | ||||
R | 65.5 | 59.3 | RX | 41 | 41.0 | 24 | 44.5 | 0.212 | |
X | 34.5 | 40.7 | XX | 14 | 14.0 | 10 | 18.5 | ||
ACE | DD | 35 | 35.0 | 13 | 24.1 | ||||
D | 55.5 | 53.7 | ID | 41 | 41.0 | 32 | 59.2 | 0.001 | |
I | 44.5 | 46.3 | II | 24 | 24.0 | 9 | 16.7 | ||
PPARA | CC | 7 | 7.0 | 1 | 1.9 | ||||
G | 77 | 85.2 | GC | 32 | 32.0 | 14 | 25.9 | <0.001 | |
C | 23 | 14.8 | GG | 61 | 61.0 | 39 | 72.2 | ||
HIF1A | Pro | 93.5 | 93.5 | Pro/Pro | 87 | 87.0 | 47 | 87.0 | 1 |
Ser | 6.5 | 6.5 | Pro/Ser | 13 | 13.0 | 7 | 13.0 | ||
AMPD1 | C | 89 | 89.8 | CC | 78 | 78.0 | 43 | 79.6 | 0.691 |
T | 11 | 10.2 | CT | 22 | 22.0 | 11 | 20.4 |
Player Group | Control Group | |||||
---|---|---|---|---|---|---|
RR (n = 45) | RX (n = 41) | XX (n = 14) | RR (n = 20) | RX (n = 24) | XX (n = 10) | |
tc (s) | 0.190 (±0.020) | 0.187 (±0.017) | 0.199 (±0.032) | 0.216 (±0.039) | 0.216 (±0.040) | 0.236 (±0.030) |
P (W/kg) | 50.16 (±10.23) | 49.84 (±8.30) | 46.16 (±10.70) | 36.38 (±7.15) | 38.80 (±8.07) | 32.89 (±7.23) |
h (cm) | 37.01 (±6.84) | 36.94 (±5.47) | 34.41 (±5.66) | 27.68 (±4.46) | 29.59 (±5.14) | 26.03 (±4.96) |
∆tc (s) | 0.002 (±0.011) | 0.003 (±0.012) | 0.000 (±0.015) | 0.004 (±0.015) | 0.000 (±0.015) | 0.001 (±0.018) |
∆P (W/kg) | 1.95 (±2.69) | 1.86 (±2.77) | 1.54 (±3.99) | 0.98 (±2.87) | 0.76 (±2.63) | 0.72 (±3.23) |
∆h (cm) | 1.82 (±1.77) | 2.29 (±1.93) | 1.79 (±2.33) | 1.30 (±3.54) | 0.60 (±2.91) | 1.00 (±3.97) |
Player Group | Control Group | |||||
---|---|---|---|---|---|---|
DD (n = 35) | ID (n = 41) | II (n = 24) | DD (n = 13) | ID (n = 32) | II (n = 9) | |
tc (s) | 0.188 (±0.024) | 0.190 (±0.021) | 0.193 (±0.015) | 0.224 (±0.046) | 0.216 (±0.034) | 0.229 (±0.042) |
P (W/kg) | 49.77 (±9.82) | 49.18 (±10.08) | 49.54 (±8.56) | 38.33 (±9.07) | 36.52 (±7.45) | 35.62 (±7.39) |
h (cm) | 36.68 (±6.27) | 36.26 (±6.17) | 37.14 (±6.19) | 29.44 (±5.64) | 27.91 (±5.04) | 27.60 (±3.57) |
∆tc (s) | 0.004 (±0.012) | 0.001 (±0.012) | 0.001 (±0.013) | 0.001 (±0.016) | 0.003 (±0.015) | 0.003 (±0.016) |
∆P (W/kg) | 1.41 (±3.45) | 2.00 (±2.43) | 2.26 (±2.80) | 1.73 (±2.62) | 0.06 (±2.77) | 2.30 a (±2.25) |
∆h (cm) | 2.01 (±2.10) | 1.92 (±1.99) | 2.16 (±1.53) | 1.72 (±3.11) | 0.23 (±3.58) | 2.32 (±1.80) |
Player Group | Control Group | |||||
---|---|---|---|---|---|---|
CC (n = 7) | GC (n = 32) | GG (n = 61) | CC (n = 1) | GC (n = 14) | GG (n = 39) | |
tc (s) | 0.188 (±0.021) | 0.194 (±0.023) | 0.189 (±0.020) | 0.205 | 0.223 (±0.046) | 0.219 (±0.036) |
P (W/kg) | 48.09 (±10.07) | 49.70 (±9.60) | 49.51 (±9.62) | 52.54 | 35.91 (±6.49) | 36.73 (±7.92) |
h (cm) | 35.44 (±5.26) | 36.90 (±6.40) | 36.60 (±6.19) | 40.38 | 27.17 (±3.17) | 28.29 (±5.16) |
∆tc (s) | 0.004 (±0.016) | 0.000 (±0.011) | 0.003 (±0.012) | 0.017 | 0.004 (±0.011) | 0.001 (±0.017) |
∆P (W/kg) | 1.30 (±3.13) | 2.29 (±3.04) | 1.70 (±2.82) | −3.34 | 1.24 (±2.44) | 0.79 (±2.87) |
∆h (cm) | 1.67 (±2.20) | 2.30 (±2.09) | 1.90 (±1.81) | −2.41 | 1.66 (±2.34) | 0.76 (±3.59) |
Player Group | Control Group | |||
---|---|---|---|---|
Pro/Pro (n = 87) | Pro/Ser (n = 13) | Pro/Pro (n = 47) | Pro/Ser (n = 7) | |
tc (s) | 0.191 (±0.022) | 0.188 (±0.012) | 0.220 (±0.033) | 0.222 (0.068) |
P (W/kg) | 49.30 (±9.47) | 50.64 (±10.40) | 36.80 (±7.55) | 36.84 (9.72) |
h (cm) | 36.41 (±5.78) | 38.02 (±8.40) | 28.26 (±5.12) | 27.96 (4.12) |
∆tc (s) | 0.002 (±0.012) | 0.002 (±0.012) | 0.001 (±0.015) | 0.007 (±0.017) |
∆P (W/kg) | 1.93 (±2.87) | 1.35 (±3.15) | 0.50 (±2.58) | 3.08 a (±3.29) |
∆h (cm) | 2.00 (±1.93) | 2.10 (±1.88) | 0.69 (±3.20) | 2.59 (±3.83) |
Player Group | Control Group | |||
---|---|---|---|---|
CC (n = 78) | CT (n = 22) | CC (n = 43) | CT(n = 11) | |
tc (s) | 0.190 (±0.022) | 0.192 (±0.017) | 0.218 (±0.041) | 0.228(±0.026) |
P (W/kg) | 50.36 (±9.45) | 46.32 (±9.44) | 37.14 (±7.15) | 35.53(±10.09) |
h (cm) | 37.29 (±6.08) | 34.25 a (±5.95) | 28.28 (±4.45) | 27.99(±6.90) |
∆tc (s) | 0.003 (±0.012) | 0.000 (±0.012) | 0.003 (±0.016) | −0.002(±0.012) |
∆P (W/kg) | 1.77 (±3.06) | 2.16 (±2.31) | 1.49 (±2.52) | −1.74 b(±2.27) |
∆h (cm) | 1.98 (±2.00) | 2.12 (±1.65) | 1.66 (±3.12) | −1.89 c(±2.50) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vavak, M.; Cihova, I.; Reichwalderova, K.; Vegh, D.; Dolezajova, L.; Slaninova, M. Changes in Vertical Jump Parameters After Training Unit in Relation to ACE, ACTN3, PPARA, HIF1A, and AMPD1 Gene Polymorphisms in Volleyball and Basketball Players. Genes 2025, 16, 250. https://doi.org/10.3390/genes16030250
Vavak M, Cihova I, Reichwalderova K, Vegh D, Dolezajova L, Slaninova M. Changes in Vertical Jump Parameters After Training Unit in Relation to ACE, ACTN3, PPARA, HIF1A, and AMPD1 Gene Polymorphisms in Volleyball and Basketball Players. Genes. 2025; 16(3):250. https://doi.org/10.3390/genes16030250
Chicago/Turabian StyleVavak, Miroslav, Iveta Cihova, Katarina Reichwalderova, David Vegh, Ladislava Dolezajova, and Miroslava Slaninova. 2025. "Changes in Vertical Jump Parameters After Training Unit in Relation to ACE, ACTN3, PPARA, HIF1A, and AMPD1 Gene Polymorphisms in Volleyball and Basketball Players" Genes 16, no. 3: 250. https://doi.org/10.3390/genes16030250
APA StyleVavak, M., Cihova, I., Reichwalderova, K., Vegh, D., Dolezajova, L., & Slaninova, M. (2025). Changes in Vertical Jump Parameters After Training Unit in Relation to ACE, ACTN3, PPARA, HIF1A, and AMPD1 Gene Polymorphisms in Volleyball and Basketball Players. Genes, 16(3), 250. https://doi.org/10.3390/genes16030250