Underlying Mechanisms of GBA1 in Parkinson’s Disease and Dementia with Lewy Bodies: Narrative Review
Abstract
1. Introduction
2. Materials and Methods
3. Results
3.1. GBA1: Gene, Enzyme Structure, Physiology
3.2. GBA1 Mutations and Pd/Dlb: Epidemiology and Phenotype
3.3. Mechanism 1: Loss-of-Function of Gcase → Lysosomal/Autophagic Impairment
3.3.1. Evidence for Gcase Deficiency
3.3.2. Lysosomal/Autophagy Dysfunction
3.4. Mechanism 2: Lipid Metabolism, Substrate Accumulation and A-Synuclein Aggregation
3.5. Mechanism 3: Gain-of-Function Effects—Misfolded Gcase, Er Stress, Trafficking Defects
3.6. Mechanism 4: A-Synuclein Homeostasis, Aggregation, Seeding and Propagation
3.7. Mechanism 5: Mitochondrial Dysfunction, Oxidative Stress and Other Organellar Cross-Talk
3.8. Mechanism 6: Neuroinflammation, Glial and Immune Responses
3.9. Therapeutic Implications: Targeting Gcase and Downstream Pathways
3.9.1. Gcase Augmentation in Animal and Human Cells Models
3.9.2. Substrate Reduction Therapy (Srt)
3.9.3. Pharmacological Chaperones
3.9.4. Gene Therapy for GBA1 Mutations
3.9.5. Enhancing Autophagy/Lysosome Function and Mitochondrial Support
3.9.6. Biomarker Development
4. Discussion
- Is substrate reduction alone sufficient, or is the timing too late (i.e., after neurodegeneration is advanced)?
- Are there cell-type differences (neurons vs. glia) or region-specific vulnerabilities that require targeted delivery?
- Is GCase deficiency necessary and sufficient, or only a modifier in a multi-step pathogenic cascade?
- How to cross the blood–brain barrier effectively, target the correct brain regions, and achieve sustained effects?
- Given the heterogeneity of GBA1 variants (and differences in residual GCase activity), personalized approaches may be needed.
Future Directions and Challenges
5. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bougea, A. Synuclein in neurodegeneration. Adv. Clin. Chem. 2021, 103, 97–134. [Google Scholar] [CrossRef] [PubMed]
- Vieira, S.R.L.; Schapira, A.H.V. Glucocerebrosidase mutations and Parkinson disease. J. Neural Transm. 2022, 129, 1105–1117. [Google Scholar] [CrossRef] [PubMed]
- Robak, L.A.; Jansen, I.E.; van Rooij, J.; Uitterlinden, A.G.; Kraaij, R.; Jankovic, J.; Heutink, P.; Shulman, J.M. Excessive burden of lysosomal storage disorder gene variants in Parkinson’s disease. Brain A J. Neurol. 2017, 140, 3191–3203. [Google Scholar] [CrossRef]
- Anheim, M.; Elbaz, A.; Lesage, S.; Durr, A.; Condroyer, C.; Viallet, F.; Pollak, P.; Bonaïti, B.; Bonaïti-Pellié, C.; Brice, A. Penetrance of Parkinson disease in glucocerebrosidase gene mutation carriers. Neurology 2012, 78, 417–420. [Google Scholar] [CrossRef]
- Balestrino, R.; Tunesi, S.; Tesei, S.; Lopiano, L.; Zecchinelli, A.L.; Goldwurm, S. Penetrance of Glucocerebrosidase (GBA) Mutations in Parkinson’s Disease: A Kin Cohort Study. Mov. Disord. Off. J. Mov. Disord. Soc. 2020, 35, 2111–2114. [Google Scholar] [CrossRef]
- Smith, L.; Schapira, A.H.V. GBA Variants and Parkinson Disease: Mechanisms and Treatments. Cells 2022, 11, 1261. [Google Scholar] [CrossRef]
- Drobny, A.; Boros, F.A.; Balta, D.; Prieto Huarcaya, S.; Caylioglu, D.; Qazi, N.; Vandrey, J.; Schneider, Y.; Dobert, J.P.; Pitcairn, C.; et al. Reciprocal effects of alpha-synuclein aggregation and lysosomal homeostasis in synucleinopathy models. Transl. Neurodegener. 2023, 12, 31. [Google Scholar] [CrossRef] [PubMed]
- Leak, R.K.; Clark, R.N.; Abbas, M.; Xu, F.; Brodsky, J.L.; Chen, J.; Hu, X.; Luk, K.C. Current insights and assumptions on α-synuclein in Lewy body disease. Acta Neuropathol. 2024, 148, 18. [Google Scholar] [CrossRef]
- Yoon, J.; Lee, C.Y.; Schapira, A.H.V. Biochemical consequences of glucocerebrosidase 1 mutations in Parkinson’s disease. Neural Regen. Res. 2024, 19, 725–727. [Google Scholar] [CrossRef]
- Zhang, X.; Wu, H.; Tang, B.; Guo, J. Clinical, mechanistic, biomarker, and therapeutic advances in GBA1-associated Parkinson’s disease. Transl. Neurodegener. 2024, 13, 48. [Google Scholar] [CrossRef] [PubMed]
- Dos Santos, J.C.C.; Mano, G.B.C.; da Cunha Barreto-Vianna, A.R.; Garcia, T.F.M.; de Vasconcelos, A.V.; Sá, C.S.G.; de Souza Santana, S.L.; Farias, A.G.P.; Seimaru, B.; Lima, M.P.P.; et al. The Molecular Impact of Glucosylceramidase Beta 1 (Gba1) in Parkinson’s Disease: A New Genetic State of the Art. Mol. Neurobiol. 2024, 61, 6754–6770. [Google Scholar] [CrossRef]
- Amaral, C.E.M.; Lopes, P.F.; Ferreira, J.C.C.; Alves, E.A.C.; Montenegro, M.V.B.; Costa, E.T.D.; Yamada, E.S.; Cavalcante, F.O.Q.; Santana-da-Silva, L.C. GBA mutations p.N370S and p.L444P are associated with Parkinson’s disease in patients from Northern Brazil. Arq. Neuro-Psiquiatr. 2019, 77, 73–79. [Google Scholar] [CrossRef]
- Blauwendraat, C.; Reed, X.; Krohn, L.; Heilbron, K.; Bandres-Ciga, S.; Tan, M.; Gibbs, J.R.; Hernandez, D.G.; Kumaran, R.; Langston, R.; et al. Genetic modifiers of risk and age at onset in GBA associated Parkinson’s disease and Lewy body dementia. Brain A J. Neurol. 2020, 143, 234–248. [Google Scholar] [CrossRef] [PubMed]
- Navarro-Romero, A.; Fernandez-Gonzalez, I.; Riera, J.; Montpeyo, M.; Albert-Bayo, M.; Lopez-Royo, T.; Castillo-Sanchez, P.; Carnicer-Caceres, C.; Arranz-Amo, J.A.; Castillo-Ribelles, L.; et al. Lysosomal lipid alterations caused by glucocerebrosidase deficiency promote lysosomal dysfunction, chaperone-mediated-autophagy deficiency, and alpha-synuclein pathology. npj Park. Dis. 2022, 8, 126. [Google Scholar] [CrossRef] [PubMed]
- Blauwendraat, C.; Heilbron, K.; Vallerga, C.L.; Bandres-Ciga, S.; von Coelln, R.; Pihlstrøm, L.; Simón-Sánchez, J.; Schulte, C.; Sharma, M.; Krohn, L.; et al. Parkinson’s disease age at onset genome-wide association study: Defining heritability, genetic loci, and α-synuclein mechanisms. Mov. Disord. Off. J. Mov. Disord. Soc. 2019, 34, 866–875. [Google Scholar] [CrossRef] [PubMed]
- Frequin, H.L.; Ferwerda, B.; Verschuur, C.V.; Suwijn, S.R.; Dijk, J.M.; de Bie, R.M. Faster disease progression in Parkinson’s disease with glucocerebrosidase genotype: But not apparent immediate from diagnosis. J. Park. Dis. 2025, 15, 1208–1217. [Google Scholar] [CrossRef]
- Vieira, S.R.L.; Mezabrovschi, R.; Toffoli, M.; Del Pozo, S.L.; Menozzi, E.; Mullin, S.; Yalkic, S.; Limbachiya, N.; Koletsi, S.; Loefflad, N.; et al. Consensus Guidance for Genetic Counseling in GBA1 Variants: A Focus on Parkinson’s Disease. Mov. Disord. 2024, 39, 2144–2154. [Google Scholar] [CrossRef]
- Avenali, M.; Caminiti, S.P.; Gegg, M.; Cerri, S.; Mitrotti, P.; Bandirali, L.; Toffoli, M.; Hughes, D.; Cerami, C.; Tassorelli, C.; et al. Combined assessment of blood glucocerebrosidase activity and α-synuclein levels in GBA1 mutation carriers: A novel potential biomarker. Park. Relat. Disord. 2025, 135, 107854. [Google Scholar] [CrossRef]
- Do, J.; McKinney, C.; Sharma, P.; Sidransky, E. Glucocerebrosidase and its relevance to Parkinson disease. Mol. Neurodegener. 2019, 14, 36. [Google Scholar] [CrossRef]
- Rocha, E.M.; Smith, G.A.; Park, E.; Cao, H.; Graham, A.R.; Brown, E.; McLean, J.R.; Hayes, M.A.; Beagan, J.; Izen, S.C.; et al. Sustained Systemic Glucocerebrosidase Inhibition Induces Brain α-Synuclein Aggregation, Microglia and Complement C1q Activation in Mice. Antioxid. Redox Signal. 2015, 23, 550–564. [Google Scholar] [CrossRef]
- Rockenstein, E.; Clarke, J.; Viel, C.; Panarello, N.; Treleaven, C.M.; Kim, C.; Spencer, B.; Adame, A.; Park, H.; Dodge, J.C.; et al. Glucocerebrosidase modulates cognitive and motor activities in murine models of Parkinson’s disease. Hum. Mol. Genet. 2016, 25, 2645–2660. [Google Scholar] [CrossRef]
- Polissidis, A.; Koronaiou, E.; Nikolopoulou, G.; Viel, C.; Nikatou, M.; Bogiongko, M.; Sardi, S.P.; Xilouri, M.; Vekrellis, K.; Stefanis, L. A double-hit in vivo model of GBA viral microRNA-mediated downregulation and human alpha-synuclein overexpression demonstrates nigrostriatal degeneration. Neurobiol. Dis. 2022, 163, 105612. [Google Scholar] [CrossRef] [PubMed]
- Sucunza, D.; Rico, A.J.; Roda, E.; Collantes, M.; González-Aseguinolaza, G.; Rodríguez-Pérez, A.I.; Peñuelas, I.; Vázquez, A.; Labandeira-García, J.L.; Broccoli, V.; et al. Glucocerebrosidase Gene Therapy Induces Alpha-Synuclein Clearance and Neuroprotection of Midbrain Dopaminergic Neurons in Mice and Macaques. Int. J. Mol. Sci. 2021, 22, 4825. [Google Scholar] [CrossRef]
- Magalhaes, J.; Gegg, M.E.; Migdalska-Richards, A.; Doherty, M.K.; Whitfield, P.D.; Schapira, A.H. Autophagic lysosome reformation dysfunction in glucocerebrosidase deficient cells: Relevance to Parkinson disease. Hum. Mol. Genet. 2016, 25, 3432–3445. [Google Scholar] [CrossRef]
- Wang, H.; Zhu, Y.; Liu, H.; Liang, T.; Wei, Y. Advances in Drug Discovery Targeting Lysosomal Membrane Proteins. Pharmaceuticals 2023, 16, 601. [Google Scholar] [CrossRef]
- Smith, J.K.; Mellick, G.D.; Sykes, A.M. The role of the endolysosomal pathway in α-synuclein pathogenesis in Parkinson’s disease. Front. Cell. Neurosci. 2022, 16, 1081426. [Google Scholar] [CrossRef] [PubMed]
- Gregorio, I.; Russo, L.; Torretta, E.; Barbacini, P.; Contarini, G.; Pacinelli, G.; Bizzotto, D.; Moriggi, M.; Braghetta, P.; Papaleo, F.; et al. GBA1 inactivation in oligodendrocytes affects myelination and induces neurodegenerative hallmarks and lipid dyshomeostasis in mice. Mol. Neurodegener. 2024, 19, 22. [Google Scholar] [CrossRef] [PubMed]
- Kiechle, M.; Grozdanov, V.; Danzer, K.M. The Role of Lipids in the Initiation of α-Synuclein Misfolding. Front. Cell Dev. Biol. 2020, 8, 562241. [Google Scholar] [CrossRef] [PubMed]
- Galvagnion, C.; Marlet, F.R.; Cerri, S.; Schapira, A.H.V.; Blandini, F.; Di Monte, D.A. Sphingolipid changes in Parkinson L444P GBA mutation fibroblasts promote α-synuclein aggregation. Brain A J. Neurol. 2022, 145, 1038–1051. [Google Scholar] [CrossRef]
- Pang, S.Y.; Lo, R.C.N.; Ho, P.W.; Liu, H.F.; Chang, E.E.S.; Leung, C.T.; Malki, Y.; Choi, Z.Y.; Wong, W.Y.; Kung, M.H.; et al. LRRK2, GBA and their interaction in the regulation of autophagy: Implications on therapeutics in Parkinson’s disease. Transl. Neurodegener. 2022, 11, 5. [Google Scholar] [CrossRef]
- Chatterjee, D.; Krainc, D. Mechanisms of Glucocerebrosidase Dysfunction in Parkinson’s Disease. J. Mol. Biol. 2023, 435, 168023. [Google Scholar] [CrossRef]
- Serebryany-Piavsky, V.; Egulsky, L.; Manoim-Wolkovitz, J.E.; Anis, S.; Hassin-Baer, S.; Parnas, M.; Horowitz, M. The modifying effect of mutant LRRK2 on mutant GBA1-associated Parkinson disease. Hum. Mol. Genet. 2025, 34, 1184–1203. [Google Scholar] [CrossRef]
- Siwecka, N.; Saramowicz, K.; Galita, G.; Rozpędek-Kamińska, W.; Majsterek, I. Inhibition of Protein Aggregation and Endoplasmic Reticulum Stress as a Targeted Therapy for α-Synucleinopathy. Pharmaceutics 2023, 15, 2051. [Google Scholar] [CrossRef]
- Klein, A.D.; Outeiro, T.F. Glucocerebrosidase mutations disrupt the lysosome and now the mitochondria. Nat. Commun. 2023, 14, 6383. [Google Scholar] [CrossRef] [PubMed]
- Fernandes, H.J.; Hartfield, E.M.; Christian, H.C.; Emmanoulidou, E.; Zheng, Y.; Booth, H.; Bogetofte, H.; Lang, C.; Ryan, B.J.; Sardi, S.P.; et al. ER Stress and Autophagic Perturbations Lead to Elevated Extracellular α-Synuclein in GBA-N370S Parkinson’s iPSC-Derived Dopamine Neurons. Stem Cell Rep. 2016, 6, 342–356. [Google Scholar] [CrossRef] [PubMed]
- Mazzulli, J.R.; Xu, Y.H.; Sun, Y.; Knight, A.L.; McLean, P.J.; Caldwell, G.A.; Sidransky, E.; Grabowski, G.A.; Krainc, D. Gaucher disease glucocerebrosidase and α-synuclein form a bidirectional pathogenic loop in synucleinopathies. Cell 2011, 146, 37–52. [Google Scholar] [CrossRef] [PubMed]
- Mu, C.; Shao, K.; Su, M.; Guo, Y.; Qiu, Y.; Sun, R.; Sun, S.; Sun, Y.; Liu, C.; Wang, W.; et al. Lysophosphatidylcholine promoting α-Synuclein aggregation in Parkinson’s disease: Disrupting GCase glycosylation and lysosomal α-Synuclein degradation. npj Park. Dis. 2025, 11, 47. [Google Scholar] [CrossRef]
- Taguchi, Y.V.; Liu, J.; Ruan, J.; Pacheco, J.; Zhang, X.; Abbasi, J.; Keutzer, J.; Mistry, P.K.; Chandra, S.S. Glucosylsphingosine Promotes α-Synuclein Pathology in Mutant GBA-Associated Parkinson’s Disease. J. Neurosci. Off. J. Soc. Neurosci. 2017, 37, 9617–9631. [Google Scholar] [CrossRef]
- Frattini, E.; Faustini, G.; Lopez, G.; Carsana, E.V.; Tosi, M.; Trezzi, I.; Magni, M.; Soldà, G.; Straniero, L.; Facchi, D.; et al. Lewy pathology formation in patient-derived GBA1 Parkinson’s disease midbrain organoids. Brain A J. Neurol. 2025, 148, 1242–1257. [Google Scholar] [CrossRef]
- Yap, T.L.; Velayati, A.; Sidransky, E.; Lee, J.C. Membrane-bound α-synuclein interacts with glucocerebrosidase and inhibits enzyme activity. Mol. Genet. Metab. 2013, 108, 56–64. [Google Scholar] [CrossRef]
- Abe, T.; Kuwahara, T.; Suenaga, S.; Sakurai, M.; Takatori, S.; Iwatsubo, T. Lysosomal stress drives the release of pathogenic α-synuclein from macrophage lineage cells via the LRRK2-Rab10 pathway. iScience 2024, 27, 108893. [Google Scholar] [CrossRef]
- Yun, S.P.; Kim, D.; Kim, S.; Kim, S.; Karuppagounder, S.S.; Kwon, S.H.; Lee, S.; Kam, T.I.; Lee, S.; Ham, S.; et al. α-Synuclein accumulation and GBA deficiency due to L444P GBA mutation contributes to MPTP-induced parkinsonism. Mol. Neurodegener. 2018, 13, 1. [Google Scholar] [CrossRef]
- Lang, M.; Pramstaller, P.P.; Pichler, I. Crosstalk of organelles in Parkinson’s disease—MiT family transcription factors as central players in signaling pathways connecting mitochondria and lysosomes. Mol. Neurodegener. 2022, 17, 50. [Google Scholar] [CrossRef] [PubMed]
- Castro-Sepulveda, M.; Fernández-Verdejo, R.; Zbinden-Foncea, H.; Rieusset, J. Mitochondria-SR interaction and mitochondrial fusion/fission in the regulation of skeletal muscle metabolism. Metab. Clin. Exp. 2023, 144, 155578. [Google Scholar] [CrossRef] [PubMed]
- Malhotra, J.D.; Kaufman, R.J. ER stress and its functional link to mitochondria: Role in cell survival and death. Cold Spring Harb. Perspect. Biol. 2011, 3, a004424. [Google Scholar] [CrossRef]
- Al-Azzawi, Z.A.M.; Arfaie, S.; Gan-Or, Z. GBA1 and The Immune System: A Potential Role in Parkinson’s Disease? J. Park. Dis. 2022, 12, S53–S64. [Google Scholar] [CrossRef]
- Gragnaniello, V.; Gueraldi, D.; Saracini, A.; Velasquez Rivas, D.; Cazzorla, C.; Salviati, L.; Burlina, A.B. Natural history of inflammation and impaired autophagy in children with Gaucher disease identified by newborn screening. Mol. Genet. Metab. Rep. 2025, 42, 101187. [Google Scholar] [CrossRef]
- Migdalska-Richards, A.; Wegrzynowicz, M.; Harrison, I.F.; Verona, G.; Bellotti, V.; Spillantini, M.G.; Schapira, A.H.V. L444P Gba1 mutation increases formation and spread of α-synuclein deposits in mice injected with mouse α-synuclein pre-formed fibrils. PLoS ONE 2020, 15, e0238075. [Google Scholar] [CrossRef] [PubMed]
- Migdalska-Richards, A.; Wegrzynowicz, M.; Rusconi, R.; Deangeli, G.; Di Monte, D.A.; Spillantini, M.G.; Schapira, A.H.V. The L444P Gba1 mutation enhances alpha-synuclein induced loss of nigral dopaminergic neurons in mice. Brain A J. Neurol. 2017, 140, 2706–2721. [Google Scholar] [CrossRef]
- Viel, C.; Clarke, J.; Kayatekin, C.; Richards, A.M.; Chiang, M.S.R.; Park, H.; Wang, B.; Shihabuddin, L.S.; Sardi, S.P. Preclinical pharmacology of glucosylceramide synthase inhibitor venglustat in a GBA-related synucleinopathy model. Sci. Rep. 2021, 11, 20945. [Google Scholar] [CrossRef]
- Okai, T.; Sato, S.; Deshpande, M.; Matsumoto, S.I.; Nakayama, M.; Yamamoto, S.; Strack-Logue, B.; Hioki, T.; Tanaka, M.; Proetzel, G. AAV delivery of GBA1 suppresses α-synuclein accumulation in Parkinson’s disease models and restores functions in Gaucher’s disease models. PLoS ONE 2025, 20, e0321145. [Google Scholar] [CrossRef]
- Keatinge, M.; Bui, H.; Menke, A.; Chen, Y.C.; Sokol, A.M.; Bai, Q.; Ellett, F.; Da Costa, M.; Burke, D.; Gegg, M.; et al. Glucocerebrosidase 1 deficient Danio rerio mirror key pathological aspects of human Gaucher disease and provide evidence of early microglial activation preceding alpha-synuclein-independent neuronal cell death. Hum. Mol. Genet. 2015, 24, 6640–6652. [Google Scholar] [CrossRef]
- Henderson, M.X.; Sedor, S.; McGeary, I.; Cornblath, E.J.; Peng, C.; Riddle, D.M.; Li, H.L.; Zhang, B.; Brown, H.J.; Olufemi, M.F.; et al. Glucocerebrosidase Activity Modulates Neuronal Susceptibility to Pathological α-Synuclein Insult. Neuron 2020, 105, 822–836.e7. [Google Scholar] [CrossRef] [PubMed]
- Grigor’eva, E.V.; Kopytova, A.E.; Yarkova, E.S.; Pavlova, S.V.; Sorogina, D.A.; Malakhova, A.A.; Malankhanova, T.B.; Baydakova, G.V.; Zakharova, E.Y.; Medvedev, S.P.; et al. Biochemical Characteristics of iPSC-Derived Dopaminergic Neurons from N370S GBA Variant Carriers with and without Parkinson’s Disease. Int. J. Mol. Sci. 2023, 24, 4437. [Google Scholar] [CrossRef] [PubMed]
- Silveira, C.R.A.; MacKinley, J.; Coleman, K.; Li, Z.; Finger, E.; Bartha, R.; Morrow, S.A.; Wells, J.; Borrie, M.; Tirona, R.G.; et al. Ambroxol as a novel disease-modifying treatment for Parkinson’s disease dementia: Protocol for a single-centre, randomized, double-blind, placebo-controlled trial. BMC Neurol. 2019, 19, 20. [Google Scholar] [CrossRef]
- Kopytova, A.E.; Rychkov, G.N.; Nikolaev, M.A.; Baydakova, G.V.; Cheblokov, A.A.; Senkevich, K.A.; Bogdanova, D.A.; Bolshakova, O.I.; Miliukhina, I.V.; Bezrukikh, V.A.; et al. Ambroxol increases glucocerebrosidase (GCase) activity and restores GCase translocation in primary patient-derived macrophages in Gaucher disease and Parkinsonism. Park. Relat. Disord. 2021, 84, 112–121. [Google Scholar] [CrossRef] [PubMed]
- Peterschmitt, M.J.; Crawford, N.P.S.; Gaemers, S.J.M.; Ji, A.J.; Sharma, J.; Pham, T.T. Pharmacokinetics, Pharmacodynamics, Safety, and Tolerability of Oral Venglustat in Healthy Volunteers. Clin. Pharmacol. Drug Dev. 2021, 10, 86–98. [Google Scholar] [CrossRef]
- Peterschmitt, M.J.; Saiki, H.; Hatano, T.; Gasser, T.; Isaacson, S.H.; Gaemers, S.J.M.; Minini, P.; Saubadu, S.; Sharma, J.; Walbillic, S.; et al. Safety, Pharmacokinetics, and Pharmacodynamics of Oral Venglustat in Patients with Parkinson’s Disease and a GBA Mutation: Results from Part 1 of the Randomized, Double-Blinded, Placebo-Controlled MOVES-PD Trial. J. Park. Dis. 2022, 12, 557–570. [Google Scholar] [CrossRef]
- Ambrosi, G.; Ghezzi, C.; Zangaglia, R.; Levandis, G.; Pacchetti, C.; Blandini, F. Ambroxol-induced rescue of defective glucocerebrosidase is associated with increased LIMP-2 and saposin C levels in GBA1 mutant Parkinson’s disease cells. Neurobiol. Dis. 2015, 82, 235–242. [Google Scholar] [CrossRef]
- Weykopf, B.; Haupt, S.; Jungverdorben, J.; Flitsch, L.J.; Hebisch, M.; Liu, G.H.; Suzuki, K.; Belmonte, J.C.I.; Peitz, M.; Blaess, S.; et al. Induced pluripotent stem cell-based modeling of mutant LRRK2-associated Parkinson’s disease. Eur. J. Neurosci. 2019, 49, 561–589. [Google Scholar] [CrossRef]
- Dai, L.; Liu, M.; Ke, W.; Chen, L.; Fang, X.; Zhang, Z. Lysosomal dysfunction in α-synuclein pathology: Molecular mechanisms and therapeutic strategies. Cell. Mol. Life Sci. 2024, 81, 382. [Google Scholar] [CrossRef]
- Bougea, A. Seeding Aggregation Assays in Lewy Bodies Disorders: A Narrative State-of-the-Art Review. Int. J. Mol. Sci. 2024, 25, 10783. [Google Scholar] [CrossRef] [PubMed]
- Johnson, P.H.; Weinreb, N.J.; Cloyd, J.C.; Tuite, P.J.; Kartha, R.V. GBA1 mutations: Prospects for exosomal biomarkers in α-synuclein pathologies. Mol. Genet. Metab. 2020, 129, 35–46. [Google Scholar] [CrossRef]
- Esfandiary, A.; Finkelstein, D.I.; Voelcker, N.H.; Rudd, D. Clinical Sphingolipids Pathway in Parkinson’s Disease: From GCase to Integrated-Biomarker Discovery. Cells 2022, 11, 1353. [Google Scholar] [CrossRef]
- Zarkali, A.; Thomas, G.E.C.; Zetterberg, H.; Weil, R.S. Neuroimaging and fluid biomarkers in Parkinson’s disease in an era of targeted interventions. Nat. Commun. 2024, 15, 5661. [Google Scholar] [CrossRef] [PubMed]
- Ren, J.; Zhang, R.; Pan, C.; Xu, J.; Sun, H.; Hua, P.; Zhang, L.; Zhang, W.; Xu, P.; Ma, C.; et al. Prevalence and genotype-phenotype correlations of GBA-related Parkinson disease in a large Chinese cohort. Eur. J. Neurol. 2022, 29, 1017–1024. [Google Scholar] [CrossRef] [PubMed]
- Lanore, A.; Tesson, C.; Basset, A.; Lejeune, F.X.; Cogan, G.; Mangone, G.; Sambin, S.; Bertille, N.; Anheim, M.; Arnulf, I.; et al. Classification of GBA1 variants and their impact on Parkinson’s disease: An in silico score analysis. NPJ Park. Dis. 2025, 11, 226. [Google Scholar] [CrossRef]
- Nalls, M.A.; Duran, R.; Lopez, G.; Kurzawa-Akanbi, M.; McKeith, I.G.; Chinnery, P.F.; Morris, C.M.; Theuns, J.; Crosiers, D.; Cras, P.; et al. A multicenter study of glucocerebrosidase mutations in dementia with Lewy bodies. JAMA Neurol. 2013, 70, 727–735. [Google Scholar] [CrossRef]
- Gaubert, S.; Hourregue, C.; Mouton-Liger, F.; Millot, P.; Franco, M.; Amar-Bouaziz, E.; Aarsland, D.; Hugon, J.; Paquet, C. Exploring the link between GBA1 mutations and Dementia with Lewy bodies, A mini-review. Neurosci. Biobehav. Rev. 2022, 141, 104856. [Google Scholar] [CrossRef]
- Sipilä, J.O.T.; Kytövuori, L.; Rauramaa, T.; Rauhamaa, H.; Kaasinen, V.; Majamaa, K. A severe neurodegenerative disease with Lewy bodies and a mutation in the glucocerebrosidase gene. npj Park. Dis. 2023, 9, 53. [Google Scholar] [CrossRef]
- Shiner, T.; Kavé, G.; Mirelman, A.; Regev, K.; Piura, Y.; Goldstein, O.; Gana Weisz, M.; Bar-Shira, A.; Gurevich, T.; Orr-Urtreger, A.; et al. Effect of GBA1 Mutations and APOE Polymorphisms on Survival and Progression Among Ashkenazi Jews with Dementia with Lewy Bodies. Mov. Disord. Off. J. Mov. Disord. Soc. 2024, 39, 2280–2285. [Google Scholar] [CrossRef] [PubMed]
| Clinical/Pathological Features | PD | DLB |
|---|---|---|
| Motor symptoms | Bradykinesia, rigidity, tremor | Similar, but often milder tremor |
| Cognitive decline | Late- stage feature | Early and prominent |
| Hallucinations | Less frequent early | Common and early |
| Lewy bodies | Brainstem predominant | Cortical and limbic predominant |
| GBA1 association | strong | strong |
| Database | Search Syntax | Number of Hits | Notes |
|---|---|---|---|
| PubMed | ((“GBA1” [All Fields] OR “glucocerebrosidase” [MeSH Terms] OR “glucocerebrosidase” [All Fields] OR “GBA mutation*” [All Fields]) AND (“Parkinson Disease” [MeSHTerms] OR “Parkinson’s disease” [All Fields] OR “Dementia with Lewy Bodies” [MeSH Terms] OR “Lewy body dementia” [All Fields]) AND (“pathophysiology” [Subheading] OR “mechanism*” [All Fields] OR “lysosomal dysfunction” [All Fields] OR “alpha-synuclein” [All Fields] OR “neurodegeneration” [All Fields] OR “autophagy” [All Fields] OR “mitochondrial dysfunction” [All Fields])) | ~450 | Combines MeSH + free text; covers both PD & DLB. |
| Web of Science (Core Collection) | TS = ((“GBA1” OR “glucocerebrosidase” OR “GBA mutation*” OR “GBA variant*”) AND (“Parkinson’s disease” OR “Parkinson disease” OR “Dementia with Lewy bodies” OR “Lewy body dementia” OR “Lewy body disorder*”) AND (“mechanism*” OR “pathophysiology” OR “lysosomal dysfunction” OR “alpha-synuclein” OR “synuclein aggregation” OR “autophagy” OR “mitochondrial dysfunction” OR “lipid metabolism” OR “neuroinflammation”)) | ~380 | Topic search (title/abstract/keywords) in WoS; good for citation tracking. |
| Scopus | TITLE-ABS-KEY ((“GBA1” OR “glucocerebrosidase” OR “GBA mutation*” OR “GBA gene” OR “GBA variant*”) AND (“Parkinson’s disease” OR “Parkinson disease” OR “Dementia with Lewy bodies” OR “Lewy body dementia” OR “Lewy body disorder*”) AND (“mechanism*” OR “pathophysiology” OR “alpha-synuclein” OR “synuclein aggregation” OR “lysosomal dysfunction” OR “autophagy” OR “mitochondrial dysfunction” OR “neuroinflammation” OR “lipid metabolism” OR “protein misfolding”)) | ~520 | Broad coverage; includes conference papers; may retrieve extra non-mechanistic studies. |
| Embase | (‘gba1’/exp OR ‘glucocerebrosidase’/exp OR ‘gba mutation’:ab,ti OR ‘gba variant’:ab,ti) AND (‘parkinson disease’/exp OR ‘parkinson’s disease’:ab,ti OR ‘dementia with lewy bodies’/exp OR ‘lewy body dementia’:ab,ti) AND (‘pathophysiology’/exp OR ‘mechanism*’:ab,ti OR ‘alpha synuclein’/exp OR ‘synuclein aggregation’:ab,ti OR ‘lysosomal dysfunction’:ab,ti OR ‘autophagy’/exp OR ‘mitochondrial dysfunction’:ab,ti OR ‘lipid metabolism’:ab,ti OR ‘neuroinflammation’/exp) | ~300 | Using Emtree terms plus abstracts/titles; useful for pharmacology/therapeutic mechanism side as well. |
| Variant (Protein) | Classification | Reported Residual GCase Activity (%) | Role of the Protein Variant |
|---|---|---|---|
| N370S (N409S) | Mild GD/PD risk | ~7–38% (reports vary by model/assay; cell lines: ~7.7% in Navarro-Romero [14]; clinical/biochemical ranges reported 32–38%). | A common GBA1 variant often associated with a milder form of GD or increased risk for PD. Leads to reduced, but often still substantial, GCase activity. |
| L444P (L483P) | Severe GD/higher PD risk | ~13–24% (classic GD severe range)—cell lines: ~15.9% reported; ranges vary by assay. | A severe GBA1 variant commonly associated with the neuronopathic forms of GD and a higher risk for PD. Significantly impairs GCase folding and/or trafficking. |
| E326K (E365K) | Risk/modifier variant (non-GD in many cases) | Mild reduction or near-wildtype in some assays; considered a risk/modifier allele rather than classic GD-causing. | Generally considered a risk factor for PD or a modifier of GD severity, rather than a primary GD-causing mutation. Has a minimal effect on GCase activity. |
| T369M (T408M) | Risk/modifier variant | Variable; often reported as mild effect on activity or stability. | Similar to E326K, often acts as a risk factor for PD or a modifier allele. Causes a mild, variable reduction in GCase function or stability. |
| D409H (D448H) | Severe/GD-associated | Reported to markedly reduce activity (large reductions; often in severe GD category). | A severe GBA1 variant often associated with a severe phenotype of GD. Causes a marked reduction in GCase activity, likely through destabilization or impaired function. |
| R120W | Reported in PD/GD cohorts | Variable; often results in reduced activity but wide ranges reported. | Identified in both GD and PD patients. Leads to reduced GCase activity, likely due to impaired enzyme stability or function, with variable clinical severity. |
| V394L | Reported in PD/GD cohorts | Reported reductions; magnitude varies by study. | Identified in both GD and PD cohorts. Causes a reduction in GCase activity, the extent of which can vary, influencing phenotype. |
| RecNciI/Recombinant alleles (e.g., RecTL, RecNciI) | Complex recombinant alleles (often severe) | Often associated with severely reduced activity and severe GD phenotype; associated with increased PD risk. | Complex allele resulting from gene conversion or recombination events between GBA1 and its pseudogene GBAP. Often contains multiple pathogenic changes, leading to severe loss of GCase function and a severe GD phenotype. |
| 84insGG (frameshift) | Severe (loss-of-function) | Essentially null or very low activity (frameshift/early truncation). | A severe loss-of-function variant that causes a frameshift mutation, leading to a premature stop codon and the production of a non-functional or severely truncated GCase enzyme, resulting in minimal to no activity. |
| IVS2+1 G>A (splice) | Loss-of-function/severe | Markedly reduced activity or aberrant splicing resulting in low/absent enzyme. | A splice-site mutation that disrupts the normal splicing of the GBA1 mRNA. This leads to the production of abnormal mRNA transcripts and ultimately low or absent functional GCase enzyme, causing a severe loss-of-function phenotype. |
| Study/ Model | Species/ Model | Manipulation/ Intervention | Outcome Measures | Main Outcomes | |
|---|---|---|---|---|---|
| Migdalska-Richards [48,49]/L444P Gba1 knock-in mice | Mouse (L444P knock-in; aged 24 months; and PFF injection studies) | GBA1 L444P mutation; sometimes combined with α-synuclein PFF | Increased total and insoluble α-synuclein, accelerated formation/spread of inclusions, motor impairments; reduced GCase activity. | Cortex p-α-synulein deposits: AT 45,000 ± 7000 vs. L444P/+ 96,000 ± 19,000 LB-like inclusions/mm3; ~30% decrease in GCase activity reported in brains of L444P/+ mice. | |
| Rocha et al. [20] CBE (conduritol B epoxide) systemic GCase inhibition | Mouse (systemic CBE administration) | Pharmacological inhibition of GCase using CBE | Reduced GCase activity; accumulation of GlcCer/GlcSph; increased α-synuclein, neuronal disturbances in vulnerable regions, motor deficits. | CBE 100 mg/kg x28 days: inhibited brain GCase activity (near-complete block in forebrain at 24 h post-final dose); GlcCer/GlcSph accumulated (measured by mass spectrometry); induced insoluble α-synuclein aggregates in SN; neuroinflammation and upregulation of complement C1q. | |
| Viel et al. [50]/Venglustat preclinical | Mouse models of GBA-related synucleinopathy (heterozygous GBA models) | Oral GCS inhibition with Venglustat (brain-penetrant) | Reduced GlcCer/GlcSph in brain and CSF; slowed α-synuclein accumulation in hippocampus; improved cognitive deficits in some models. | GZ667161 (tool compound) in GBA D409V/WT: after 9 months plasma GlcCer reduced to 8 ± 6% of control; brain GlcCer to 58 ± 2% of control (p < 0.0001). Venglustat in GBA D409V/D409V: brain GlcCer 73 ± 2% remaining and plasma GlcCer 13 ± 1% remaining; brain GlcSph 63 ± 2% remaining; reduction in hippocampal aggregates (ubiquitin aggregates p = 0.03) and corrected novel object recognition performance. | |
| Okai et al. [51]/AAV-mediated GBA1 gene therapy | Mouse synucleinopathy models (AAV-PHP.B and other vectors) | AAV delivery of human GBA1 to CNS | Restored GCase activity, reduced GlcSph/GlcCer, robust reduction in α-synuclein aggregates, rescue of motor/neurological phenotypes in preclinical studies. | AAV-GBA1 overexpression: in vitro dissolution of p-α-synuclein aggregates; in vivo A53T M83 model: CBE increased HMW α-synuclein ~4-fold in striatum, AAV5-GBA1 prior to CBE greatly reduced HMW α-synuclein accumulation; in GD mouse models, GBA1 overexpression reduced GlcSph and rescued motor dysfunction (specific percent reductions vary by assay and region). | |
| Keatinge et al. [52]/GBA1 knockout/mutant zebrafish | Zebrafish GBA1 c.1276_1298del (GBA1-/-) | Genetic knockout of GBA1 | Accumulation of sphingolipids, neurodegeneration, motor deficits, reduced survival; recapitulates key GD and lysosomal phenotypes. | GBA1 zebrafish: >30% reduction in dopaminergic neuronal counts at 12 weeks; accumulation of ubiquitin-positive inclusions; reduced survival (specific survival curves in main text). | |
| Henderson et al. [53] GCase activity modulation and neuronal susceptibility | Cellular models and in vivo mouse studies | Genetic or pharmacologic manipulation of GCase activity | Dose-dependent relationship between reduced GCase activity and increased pathogenic α-synuclein forms; altered neuronal susceptibility. | Dose-dependent relationship: studies show graded increases in pathogenic α-synuclein forms with decreasing GCase activity in cellular and mouse models (exact fold-changes vary by model; see Navarro-Romero et al. [14] and Grigor’eva et al. [54] for quantitative values including N370S 7.66% and L444P 15.85% residual activity in iPSC-derived neurons). | |
| Silveira et al. [55]; Kopytova et al. [56]/Ambroxol in iPSC-derived neurons and animal models | Human iPSC-derived dopaminergic neurons; rodent models | Ambroxol treatment (pharmacological chaperone) | Increased GCase activity, reduced GlcCer and α-synuclein levels, improved lysosomal markers and cell viability; some behavioural benefits in vivo. | Ambroxol treatment in patient-derived PBMC macrophages: increased GCase activity by 3.3-fold (GD) and 3.5-fold (GBA-PD) after 4 days (p < 0.0001); reduced HexSph by 2.1-fold (GD) and 1.6-fold (GBA-PD). | |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bougea, A. Underlying Mechanisms of GBA1 in Parkinson’s Disease and Dementia with Lewy Bodies: Narrative Review. Genes 2025, 16, 1496. https://doi.org/10.3390/genes16121496
Bougea A. Underlying Mechanisms of GBA1 in Parkinson’s Disease and Dementia with Lewy Bodies: Narrative Review. Genes. 2025; 16(12):1496. https://doi.org/10.3390/genes16121496
Chicago/Turabian StyleBougea, Anastasia. 2025. "Underlying Mechanisms of GBA1 in Parkinson’s Disease and Dementia with Lewy Bodies: Narrative Review" Genes 16, no. 12: 1496. https://doi.org/10.3390/genes16121496
APA StyleBougea, A. (2025). Underlying Mechanisms of GBA1 in Parkinson’s Disease and Dementia with Lewy Bodies: Narrative Review. Genes, 16(12), 1496. https://doi.org/10.3390/genes16121496
