Current and Emerging Protein Biomarkers for the Diagnosis and Prognosis of Head and Neck Cancer
Abstract
1. Introduction
2. Tumor Suppressors and Cell Cycle Biomarkers
2.1. p53
2.2. Cyclin D1
2.3. PTEN
3. Growth Factor Signaling Biomarkers
3.1. EGFR
3.2. RAS
3.3. JAK/STAT Pathway
4. Stress Response and Cellular Protection
4.1. DJ-1
4.2. Cornulin
5. Invasion and Angiogenesis Biomarkers
5.1. VEGF
5.2. Matrix Metalloproteinases
5.3. CD44
6. Differentiation and Stem Cell Regulation Biomarkers
NOTCH1
7. HPV and Other Relevant Molecular Biomarkers
7.1. Human Papillomavirus (HPV)
7.2. p16
7.3. Retinoblastoma Protein (pRb)
7.4. Programmed Cell Death Protein 1 (PD-1)
7.5. Human Telomerase Reverse Transcriptase (hTERT)
7.6. Long Non-Coding RNAs (lncRNAs) and microRNAs (miRNAs)
8. Conclusions
9. Future Perspectives
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Tan, Y.; Wang, Z.; Xu, M.; Li, B.; Huang, Z.; Qin, S.; Nice, E.C.; Tang, J.; Huang, C. Oral Squamous Cell Carcinomas: State of the Field and Emerging Directions. Int. J. Oral Sci. 2023, 15, 44. [Google Scholar] [CrossRef] [PubMed]
- Bray, F.; Laversanne, M.; Sung, H.; Ferlay, J.; Siegel, R.L.; Soerjomataram, I.; Jemal, A. Global Cancer Statistics 2022: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA A Cancer J. Clin. 2024, 74, 229–263. [Google Scholar] [CrossRef] [PubMed]
- Ragin, C.C.R.; Modugno, F.; Gollin, S.M. The Epidemiology and Risk Factors of Head and Neck Cancer: A Focus on Human Papillomavirus. J. Dent. Res. 2007, 86, 104–114. [Google Scholar] [CrossRef]
- Miranda-Galvis, M.; Loveless, R.; Kowalski, L.P.; Teng, Y. Impacts of Environmental Factors on Head and Neck Cancer Pathogenesis and Progression. Cells 2021, 10, 389. [Google Scholar] [CrossRef] [PubMed]
- Slaughter, D.P.; Southwick, H.W.; Smejkal, W. “Field Cancerization” in Oral Stratified Squamous Epithelium. Clinical Implications of Multicentric Origin. Cancer 1953, 6, 963–968. [Google Scholar] [CrossRef]
- WHO Classification of Tumours Editorial Board. WHO Classification of Tumours, 5th ed.; Volume 9: Head and Neck Tumours; IARC: Lyon, France, 2024; ISBN 978-92-832-4514-8. [Google Scholar]
- Dik, E.A.; Ipenburg, N.A.; Kessler, P.A.; Van Es, R.J.J.; Willems, S.M. The Value of Histological Grading of Biopsy and Resection Specimens in Early Stage Oral Squamous Cell Carcinomas. J. Cranio-Maxillofac. Surg. 2018, 46, 1001–1006. [Google Scholar] [CrossRef]
- da Silva, L.A.B.; de Lopes, M.L.D.S.; Sá, M.C.; Almeida Freitas, R.; Coletta, R.D.; Silveira, E.J.D.; Costa Miguel, M.C. Histopathologic Grading and Its Relationship with Outcome in Oral Tongue Squamous Cell Carcinoma. J. Oral Pathol. Med. 2021, 50, 183–190. [Google Scholar] [CrossRef]
- Amin, M.B.; Greene, F.L.; Edge, S.B.; Compton, C.C.; Gershenwald, J.E.; Brookland, R.K.; Meyer, L.; Gress, D.M.; Byrd, D.R.; Winchester, D.P. The Eighth Edition AJCC Cancer Staging Manual: Continuing to Build a Bridge from a Population-Based to a More “Personalized” Approach to Cancer Staging. CA A Cancer J. Clin. 2017, 67, 93–99. [Google Scholar] [CrossRef]
- Jawad, H.; Ashaari, S.S.; O’Shea, R.; Callanan, D.; Sheahan, P.; Feeley, L. Prognostic Performance of TNM8 Staging Rules in Oral Cavity Squamous Cell Carcinoma. Oral Oncol. 2020, 111, 105021. [Google Scholar] [CrossRef]
- Sawazaki-Calone, I.; Rangel, A.; Bueno, A.; Morais, C.; Nagai, H.; Kunz, R.; Souza, R.; Rutkauskis, L.; Salo, T.; Almangush, A.; et al. The Prognostic Value of Histopathological Grading Systems in Oral Squamous Cell Carcinomas. Oral Dis. 2015, 21, 755–761. [Google Scholar] [CrossRef]
- Mohamad, I.; Glaun, M.D.E.; Prabhash, K.; Busheri, A.; Lai, S.Y.; Noronha, V.; Hosni, A. Current Treatment Strategies and Risk Stratification for Oral Carcinoma. Am. Soc. Clin. Oncol. Educ. Book 2023, 43, e389810. [Google Scholar] [CrossRef] [PubMed]
- Leemans, C.R.; Parmar, S. Surgical Management of Oral Cavity Cancer. In Critical Issues in Head and Neck Oncology: Key Concepts from the Sixth THNO Meeting; Springer International Publishing: Cham, Switzerland, 2018; pp. 67–73. [Google Scholar] [CrossRef]
- Psyrri, A.; Yu, Z.; Weinberger, P.M.; Sasaki, C.; Haffty, B.; Camp, R.; Rimm, D.; Burtness, B.A. Quantitative Determination of Nuclear and Cytoplasmic Epidermal Growth Factor Receptor Expression in Oropharyngeal Squamous Cell Cancer by Using Automated Quantitative Analysis. Clin. Cancer Res. 2005, 11, 5856–5862. [Google Scholar] [CrossRef]
- Vermorken, J.B.; Mesia, R.; Rivera, F.; Remenar, E.; Kawecki, A.; Rottey, S.; Erfan, J.; Zabolotnyy, D.; Kienzer, H.-R.; Cupissol, D.; et al. Platinum-Based Chemotherapy plus Cetuximab in Head and Neck Cancer. N. Engl. J. Med. 2008, 359, 1116–1127. [Google Scholar] [CrossRef]
- Burtness, B.; Harrington, K.J.; Greil, R.; Soulieres, D.; Tahara, M.; de Castro, G., Jr.; Psyrri, A.; Baste, N.; Neupane, P.; Bratland, A.; et al. Pembrolizumab Alone or with Chemotherapy versus Cetuximab with Chemotherapy for Recurrent or Metastatic Squamous Cell Carcinoma of the Head and Neck (KEYNOTE-048): A Randomised, Open-Label, Phase-3 Study. Lancet 2019, 394, 1915–1928. [Google Scholar] [CrossRef]
- Herrero, R.; Quint, W.; Hildesheim, A.; Gonzalez, P.; Struijk, L.; Katki, H.A.; Porras, C.; Schiffman, M.; Rodriguez, A.C.; Solomon, D.; et al. Reduced Prevalence of Oral Human Papillomavirus (HPV) 4 Years after Bivalent HPV Vaccination in a Randomized Clinical Trial in Costa Rica. PLoS ONE 2013, 8, e68329. [Google Scholar] [CrossRef]
- Pietsch, E.C.; Sykes, S.M.; McMahon, S.B.; Murphy, M.E. The P53 Family and Programmed Cell Death. Oncogene 2008, 27, 6507–6521. [Google Scholar] [CrossRef]
- Lawrence, M.S.; Sougnez, C.; Lichtenstein, L.; Cibulskis, K.; Lander, E.; Gabriel, S.B.; Getz, G.; Ally, A.; Balasundaram, M.; Birol, I.; et al. Comprehensive Genomic Characterization of Head and Neck Squamous Cell Carcinomas. Nature 2015, 517, 576–582. [Google Scholar] [CrossRef]
- Marei, H.E.; Althani, A.; Afifi, N.; Hasan, A.; Caceci, T.; Pozzoli, G.; Morrione, A.; Giordano, A.; Cenciarelli, C. P53 Signaling in Cancer Progression and Therapy. Cancer Cell Int. 2021, 21, 703. [Google Scholar] [CrossRef]
- Beck, T.N.; Golemis, E.A. Genomic Insights into Head and Neck Cancer. Cancers Head Neck 2016, 1, 1. [Google Scholar] [CrossRef] [PubMed]
- Ebrahimi, M.; Boldrup, L.; Coates, P.J.; Wahlin, Y.-B.; Bourdon, J.-C.; Nylander, K. Expression of Novel P53 Isoforms in Oral Lichen Planus. Oral Oncol. 2008, 44, 156–161. [Google Scholar] [CrossRef] [PubMed]
- Skinner, H.D.; Sandulache, V.C.; Ow, T.J.; Meyn, R.E.; Yordy, J.S.; Beadle, B.M.; Fitzgerald, A.L.; Giri, U.; Ang, K.K.; Myers, J.N. TP53 Disruptive Mutations Lead to Head and Neck Cancer Treatment Failure through Inhibition of Radiation-Induced Senescence. Clin. Cancer Res. 2012, 18, 290–300. [Google Scholar] [CrossRef]
- Etemad-Moghadam, S.; Keyhani, A.; Yazdani, K.; Alaeddini, M. Status of P53 and p27KIP1 in Iranian Patients With Oral Squamous Cell Carcinoma. Iran. Red. Crescent Med. J. 2015, 17, e19359. [Google Scholar] [CrossRef]
- Lee, H.-J.; Kang, Y.-H.; Lee, J.-S.; Byun, J.-H.; Kim, U.-K.; Jang, S.-J.; Rho, G.-J.; Park, B.-W. Positive Expression of NANOG, Mutant P53, and CD44 Is Directly Associated with Clinicopathological Features and Poor Prognosis of Oral Squamous Cell Carcinoma. BMC Oral Health 2015, 15, 153. [Google Scholar] [CrossRef]
- Agha-Hosseini, F.; Mirzaii-Dizgah, I.; Miri-Zarandi, N. Unstimulated Salivary P53 in Patients with Oral Lichen Planus and Squamous Cell Carcinoma. Acta Med. Iran. 2015, 53, 439–443. [Google Scholar]
- Khan, A.S.; Ahmad, S.; Ullah, Z.; Sadiq, N.; Haq, M.; Sheikh, A.K. Predictive Value of Tissue P53 Protein Expression and Serum P53 Antibodies in Oral Potentially Malignant Disorders: Relative to Oral Squamous Cell Carcinoma. J. Taibah Univ. Med. Sci. 2022, 17, 415–423. [Google Scholar] [CrossRef]
- Dave, K.V.; Chalishazar, M.; Dave, V.R.; Panja, P.; Singh, M.; Modi, T.G. Immunohistochemical Expression of P53 and Its Clinicopathological Correlation with Modified Anneroth’s Histological Grading System. J. Oral Maxillofac. Pathol. 2016, 20, 29. [Google Scholar] [CrossRef] [PubMed]
- Yang, L.; Wang, Y.; Guo, L.; Wang, L.; Chen, W.; Shi, B. The Expression and Correlation of iNOS and P53 in Oral Squamous Cell Carcinoma. BioMed Res. Int. 2015, 2015, 637853. [Google Scholar] [CrossRef] [PubMed]
- Dar, A.M.; Gatoo, M.A.; Siddiqui, M. Correlation of P53 Expression with Different Histological Grades in Oral Squamous Cell Carcinoma Patients from Northern India. Open Access J. Cancer Oncol. 2018, 2, 1–10. [Google Scholar] [CrossRef]
- Mohanapure, N.S.; Khandeparkar, S.G.S.; Saragade, P.B.; Gogate, B.P.; Joshi, A.R.; Mehta, S.R. Immunohistochemical Study of Epidermal Growth Factor Receptor, Human Epidermal Growth Factor Receptor 2/Neu, P53, and Ki67 in Oral Squamous Cell Carcinoma. J. Oral Maxillofac. Pathol. 2022, 26, 127. [Google Scholar] [CrossRef] [PubMed]
- Koyuncu, B.O.; Akay, C.; Yaman, B.; Veral, A.; Gunbay, S.; Gunbay, T. Evaluation of P53, Ki-67 and c-Erb-B2 Expression in Normal Oral Epithelium, Dysplastic Epithelium, and Oral Squamous Cell Carcinoma. Mathews J. Dent. 2018, 3, 1–7. [Google Scholar]
- Pandya, J.A.; Boaz, K.; Natarajan, S.; Manaktala, N.; Nandita, K.P.; Lewis, A.J. A Correlation of Immunohistochemical Expression of TP53 and CDKN1A in Oral Epithelial Dysplasia and Oral Squamous Cell Carcinoma. J. Cancer Res. Ther. 2018, 14, 666. [Google Scholar] [CrossRef]
- Cuevas Gonzalez, J.C.; Gaitan Cepeda, L.A.; Borges Yanez, S.A.; Cornejo, A.D.; Mori Estevez, A.D.; Huerta, E.R.L. P53 and P16 in Oral Epithelial Dysplasia and Oral Squamous Cell Carcinoma: A Study of 208 Cases. Indian J. Pathol. Microbiol. 2016, 59, 153–158. [Google Scholar] [CrossRef]
- Kaur, H.; Hazarey, V.; Sharma, G.; Gosavi, S.; Pal, R.A.; Gupta, V. P53, Cytokeratin 19 Expression in Oral Squamous Cell Carcinoma and Correlation with Histopathologic Grading: An Immunohistochemical Study. Indian J. Otolaryngol. Head Neck Surg. 2024, 76, 103–111. [Google Scholar] [CrossRef]
- Yadav, P.; Malik, R.; Balani, S.; Nigam, R.K.; Jain, P.; Tandon, P. Expression of P-16, Ki-67 and p-53 Markers in Dysplastic and Malignant Lesions of the Oral Cavity and Oropharynx. J. Oral Maxillofac. Pathol. 2019, 23, 224. [Google Scholar] [CrossRef] [PubMed]
- Yang, X.-H.; Ding, L.; Fu, Y.; Chen, S.; Zhang, L.; Zhang, X.-X.; Huang, X.-F.; Lu, Z.-Y.; Ni, Y.-H.; Hu, Q.-G. P53-Positive Expression in Dysplastic Surgical Margins Is a Predictor of Tumor Recurrence in Patients with Early Oral Squamous Cell Carcinoma. Cancer Manag. Res. 2019, 11, 1465–1472. [Google Scholar] [CrossRef]
- Solomon, M.C.; Vidyasagar, M.S.; Fernandes, D.; Guddattu, V.; Mathew, M.; Shergill, A.K.; Carnelio, S.; Chandrashekar, C. The Prognostic Implication of the Expression of EGFR, P53, Cyclin D1, Bcl-2 and P16 in Primary Locally Advanced Oral Squamous Cell Carcinoma Cases: A Tissue Microarray Study. Med. Oncol. 2016, 33, 138. [Google Scholar] [CrossRef]
- Montalto, F.I.; de Amicis, F. Cyclin D1 in Cancer: A Molecular Connection for Cell Cycle Control, Adhesion and Invasion in Tumor and Stroma. Cells 2020, 9, 2648. [Google Scholar] [CrossRef]
- Chen, K.; Jiao, X.; Ashton, A.; Di Rocco, A.; Pestell, T.G.; Sun, Y.; Zhao, J.; Casimiro, M.C.; Li, Z.; Lisanti, M.P.; et al. The Membrane-Associated Form of Cyclin D1 Enhances Cellular Invasion. Oncogenesis 2020, 9, 83. [Google Scholar] [CrossRef]
- Kato, J.; Matsushime, H.; Hiebert, S.W.; Ewen, M.E.; Sherr, C.J. Direct Binding of Cyclin D to the Retinoblastoma Gene Product (pRb) and pRb Phosphorylation by the Cyclin D-Dependent Kinase CDK4. Genes Dev. 1993, 7, 331–342. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.; Li, Z.; Lu, Y.; Du, R.; Katiyar, S.; Yang, J.; Fu, M.; Leader, J.E.; Quong, A.; Novikoff, P.M.; et al. Cyclin D1 Repression of Nuclear Respiratory Factor 1 Integrates Nuclear DNA Synthesis and Mitochondrial Function. Proc. Natl. Acad. Sci. USA 2006, 103, 11567–11572. [Google Scholar] [CrossRef] [PubMed]
- Pestell, R.G. New Roles of Cyclin D1. Am. J. Pathol. 2013, 183, 3–9. [Google Scholar] [CrossRef]
- Soni, S.; Kaur, J.; Kumar, A.; Chakravarti, N.; Mathur, M.; Bahadur, S.; Shukla, N.K.; Deo, S.V.S.; Ralhan, R. Alterations of Rb Pathway Components Are Frequent Events in Patients with Oral Epithelial Dysplasia and Predict Clinical Outcome in Patients with Squamous Cell Carcinoma. Oncology 2005, 68, 314–325. [Google Scholar] [CrossRef]
- Ansari, S.S.; Sharma, A.K.; Zepp, M.; Ivanova, E.; Bergmann, F.; König, R.; Berger, M.R. Upregulation of Cell Cycle Genes in Head and Neck Cancer Patients May Be Antagonized by Erufosine’s down Regulation of Cell Cycle Processes in OSCC Cells. Oncotarget 2017, 9, 5797–5810. [Google Scholar] [CrossRef] [PubMed]
- Bascones-Martinez, A.; Lopez-Duran, M.; Cano-Sanchez, J.; Sanchez-Verde, L.; Diez-Rodriguez, A.; Aguirre-Echebarria, P.; Álvarez-Fernandez, E.; Gonzalez-Moles, M.A.; Bascones-Ilundain, J.; Lo Muzio, L.; et al. Differences in the Expression of Five Senescence Markers in Oral Cancer, Oral Leukoplakia and Control Samples in Humans. Oncol. Lett. 2012, 3, 1319–1325. [Google Scholar] [CrossRef] [PubMed]
- Ramos-García, P.; González-Moles, M.Á.; Ayén, Á.; González-Ruiz, L.; Ruiz-Ávila, I.; Lenouvel, D.; Gil-Montoya, J.A.; Bravo, M. Asymmetrical Proliferative Pattern Loss Linked to Cyclin D1 Overexpression in Adjacent Non-Tumour Epithelium in Oral Squamous Cell Carcinoma. Arch. Oral Biol. 2019, 97, 12–17. [Google Scholar] [CrossRef]
- Guan, G.; Bakr, M.M.; Firth, N.; Love, R.M. Expression of Cyclin D1 Correlates with p27KIP1 and Regulates the Degree of Oral Dysplasia and Squamous Cell Carcinoma Differentiation. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. 2018, 126, 174–183. [Google Scholar] [CrossRef] [PubMed]
- Ramos-García, P.; González-Moles, M.Á.; González-Ruiz, L.; Ayén, Á.; Ruiz-Ávila, I.; Bravo, M.; Gil-Montoya, J.A. Clinicopathological Significance of Tumor Cyclin D1 Expression in Oral Cancer. Arch. Oral Biol. 2019, 99, 177–182. [Google Scholar] [CrossRef]
- Huang, S.-F.; Cheng, S.-D.; Chuang, W.-Y.; Chen, I.-H.; Liao, C.-T.; Wang, H.-M.; Hsieh, L.-L. Cyclin D1 Overexpression and Poor Clinical Outcomes in Taiwanese Oral Cavity Squamous Cell Carcinoma. World J. Surg. Oncol. 2012, 10, 40. [Google Scholar] [CrossRef]
- Guimarães, E.-P.; de Carli, M.-L.; Sperandio, F.-F.; Hanemann, J.-A.-C.; Pereira, A.-A.-C. Cyclin D1 and Ki-67 Expression Correlates to Tumor Staging in Tongue Squamous Cell Carcinoma. Med. Oral Patol. Oral Cir. Bucal. 2015, 20, e657–e663. [Google Scholar] [CrossRef]
- Mineta, H.; Miura, K.; Takebayashi, S.; Ueda, Y.; Misawa, K.; Harada, H.; Wennerberg, J.; Dictor, M. Cyclin D1 Overexpression Correlates with Poor Prognosis in Patients with Tongue Squamous Cell Carcinoma. Oral Oncol. 2000, 36, 194–198. [Google Scholar] [CrossRef]
- Yun, X.; Wang, L.; Cao, L.; Okada, N.; Miki, Y. Immunohistochemical Study of β-Catenin and Functionally Related Molecular Markers in Tongue Squamous Cell Carcinoma and Its Correlation with Cellular Proliferation. Oncol. Lett. 2010, 1, 437–443. [Google Scholar] [CrossRef]
- Hanken, H.; Gröbe, A.; Cachovan, G.; Smeets, R.; Simon, R.; Sauter, G.; Heiland, M.; Blessmann, M. CCND1 Amplification and Cyclin D1 Immunohistochemical Expression in Head and Neck Squamous Cell Carcinomas. Clin. Oral Investig. 2014, 18, 269–276. [Google Scholar] [CrossRef] [PubMed]
- Jayasurya, R.; Sathyan, K.M.; Lakshminarayanan, K.; Abraham, T.; Nalinakumari, K.R.; Abraham, E.K.; Nair, M.K.; Kannan, S. Phenotypic Alterations in Rb Pathway Have More Prognostic Influence than P53 Pathway Proteins in Oral Carcinoma. Mod. Pathol. 2005, 18, 1056–1066. [Google Scholar] [CrossRef]
- Kalish, L.H.; Kwong, R.A.; Cole, I.E.; Gallagher, R.M.; Sutherland, R.L.; Musgrove, E.A. Deregulated Cyclin D1 Expression Is Associated with Decreased Efficacy of the Selective Epidermal Growth Factor Receptor Tyrosine Kinase Inhibitor Gefitinib in Head and Neck Squamous Cell Carcinoma Cell Lines. Clin. Cancer Res. 2004, 10, 7764–7774. [Google Scholar] [CrossRef]
- Akervall, J.; Kurnit, D.M.; Adams, M.; Zhu, S.; Fisher, S.G.; Bradford, C.R.; Carey, T.E. Overexpression of Cyclin D1 Correlates with Sensitivity to Cisplatin in Squamous Cell Carcinoma Cell Lines of the Head and Neck. Acta Otolaryngol. 2004, 124, 851–857. [Google Scholar] [CrossRef]
- O’Sullivan, C.C.; Clarke, R.; Goetz, M.P.; Robertson, J. Cyclin-Dependent Kinase 4/6 Inhibitors for Treatment of Hormone Receptor-Positive, ERBB2-Negative Breast Cancer: A Review. JAMA Oncol. 2023, 9, 1273–1282. [Google Scholar] [CrossRef]
- Adkins, D.; Ley, J.; Cohen, J.; Oppelt, P. The Potential for Selective Cyclin-Dependent Kinase 4/6 Inhibition in the Therapy for Head and Neck Squamous Cell Carcinoma. Cancer J. 2022, 28, 377–380. [Google Scholar] [CrossRef] [PubMed]
- Zeverijn, L.J.; Looze, E.; Thavaneswaran, S.; Van Berge Henegouwen, J.M.; Simes, J.; Hoes, L.R.; Geurts, B.; Sebastian, L.; Roepman, P.; Lin, F.P.-Y.; et al. Clinical Activity of Palbociclib and Ribociclib Monotherapy in Advanced Cancers with Cyclin D-CDK4/6 Pathway Alterations in the Dutch DRUP and Australian MoST Trials. J. Clin. Oncol. 2023, 41, 3101. [Google Scholar] [CrossRef]
- Sansal, I.; Sellers, W.R. The Biology and Clinical Relevance of the PTEN Tumor Suppressor Pathway. J. Clin. Oncol. 2004, 22, 2954–2963. [Google Scholar] [CrossRef] [PubMed]
- Yokoyama, D.; Hisamori, S.; Deguchi, Y.; Nishigori, T.; Okabe, H.; Kanaya, S.; Manaka, D.; Kadokawa, Y.; Hata, H.; Minamiguchi, S.; et al. PTEN Is a Predictive Biomarker of Trastuzumab Resistance and Prognostic Factor in HER2-Overexpressing Gastroesophageal Adenocarcinoma. Sci. Rep. 2021, 11, 9013. [Google Scholar] [CrossRef]
- Sun, Z.; Arnouk, H. Phosphatase and Tensin Homolog (PTEN) Expression as a Surrogate Biomarker Correlated With the Depth of Invasion in Cutaneous Malignant Melanoma. Cureus 2023, 15, e45295. [Google Scholar] [CrossRef]
- Stransky, N.; Egloff, A.M.; Tward, A.D.; Kostic, A.D.; Cibulskis, K.; Sivachenko, A.; Kryukov, G.V.; Lawrence, M.S.; Sougnez, C.; McKenna, A.; et al. The Mutational Landscape of Head and Neck Squamous Cell Carcinoma. Science 2011, 333, 1157–1160. [Google Scholar] [CrossRef]
- Cohen, Y.; Goldenberg-Cohen, N.; Shalmon, B.; Shani, T.; Oren, S.; Amariglio, N.; Dratviman-Storobinsky, O.; Shnaiderman-Shapiro, A.; Yahalom, R.; Kaplan, I.; et al. Mutational Analysis of PTEN/PIK3CA/AKT Pathway in Oral Squamous Cell Carcinoma. Oral Oncol. 2011, 47, 946–950. [Google Scholar] [CrossRef] [PubMed]
- Squarize, C.H.; Castilho, R.M.; Abrahao, A.C.; Molinolo, A.; Lingen, M.W.; Gutkind, J.S. PTEN Deficiency Contributes to the Development and Progression of Head and Neck Cancer. Neoplasia 2013, 15, 461–471. [Google Scholar] [CrossRef] [PubMed]
- Kerdjoudj, M.; de La Torre, R.A.; Arnouk, H. Characterization of DJ-1, PTEN, and p-Akt as Prognostic Biomarkers in the Progression of Oral Squamous Cell Carcinoma. Cureus 2023, 15, e34436. [Google Scholar] [CrossRef] [PubMed]
- da Costa, A.A.B.A.; D’Almeida Costa, F.; Ribeiro, A.R.; Guimarães, A.P.; Chinen, L.T.; Lopes, C.A.P.; de Lima, V.C.C. Low PTEN Expression Is Associated with Worse Overall Survival in Head and Neck Squamous Cell Carcinoma Patients Treated with Chemotherapy and Cetuximab. Int. J. Clin. Oncol. 2015, 20, 282–289. [Google Scholar] [CrossRef]
- Liu, M.; Song, H.; Xing, Z.; Lu, G.; Li, J.; Chen, D. Correlation between PTEN Gene Polymorphism and Oral Squamous Cell Carcinoma. Oncol. Lett. 2019, 18, 1755–1760. [Google Scholar] [CrossRef]
- Snietura, M.; Jaworska, M.; Mlynarczyk-Liszka, J.; Goraj-Zajac, A.; Piglowski, W.; Lange, D.; Wozniak, G.; Nowara, E.; Suwinski, R. PTEN as a Prognostic and Predictive Marker in Postoperative Radiotherapy for Squamous Cell Cancer of the Head and Neck. PLoS ONE 2012, 7, e33396. [Google Scholar] [CrossRef]
- Izumi, H.; Wang, Z.; Goto, Y.; Ando, T.; Wu, X.; Zhang, X.; Li, H.; Johnson, D.E.; Grandis, J.R.; Gutkind, J.S. Pathway-Specific Genome Editing of PI3K/mTOR Tumor Suppressor Genes Reveals That PTEN Loss Contributes to Cetuximab Resistance in Head and Neck Cancer. Mol. Cancer Ther. 2020, 19, 1562–1571. [Google Scholar] [CrossRef]
- Voldborg, R.; Damstrup, L.; Spang-Thomsen, M.; Skovgaard Poulsen, H. Epidermal Growth Factor Receptor (EGFR) and EGFR Mutations, Function and Possible Role in Clinical Trials. Ann. Oncol. 1997, 8, 1197–1206. [Google Scholar] [CrossRef]
- Sigismund, S.; Avanzato, D.; Lanzetti, L. Emerging Functions of the EGFR in Cancer. Mol. Oncol. 2018, 12, 3–20. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Zeng, F.; Forrester, S.J.; Eguchi, S.; Zhang, M.-Z.; Harris, R.C. Expression and Function of the Epidermal Growth Factor Receptor in Physiology and Disease. Physiol. Rev. 2016, 96, 1025–1069. [Google Scholar] [CrossRef]
- Wee, P.; Wang, Z. Epidermal Growth Factor Receptor Cell Proliferation Signaling Pathways. Cancers 2017, 9, 52. [Google Scholar] [CrossRef]
- Wongpattaraworakul, W.; Gibson-Corley, K.N.; Choi, A.; Buchakjian, M.R.; Lanzel, E.A.; Rajan KD, A.; Simons, A.L. Prognostic Role of Combined EGFR and Tumor-Infiltrating Lymphocytes in Oral Squamous Cell Carcinoma. Front. Oncol. 2022, 12, 885236. [Google Scholar] [CrossRef]
- Huang, S.-F.; Cheng, S.-D.; Chien, H.-T.; Liao, C.-T.; Chen, I.-H.; Wang, H.-M.; Chuang, W.-Y.; Wang, C.-Y.; Hsieh, L.-L. Relationship between Epidermal Growth Factor Receptor Gene Copy Number and Protein Expression in Oral Cavity Squamous Cell Carcinoma. Oral Oncol. 2012, 48, 67–72. [Google Scholar] [CrossRef] [PubMed]
- Laimer, K.; Spizzo, G.; Gastl, G.; Obrist, P.; Brunhuber, T.; Fong, D.; Barbieri, V.; Jank, S.; Doppler, W.; Rasse, M.; et al. High EGFR Expression Predicts Poor Prognosis in Patients with Squamous Cell Carcinoma of the Oral Cavity and Oropharynx: A TMA-Based Immunohistochemical Analysis. Oral Oncol. 2007, 43, 193–198. [Google Scholar] [CrossRef] [PubMed]
- Ryott, M.; Wangsa, D.; Heselmeyer-Haddad, K.; Lindholm, J.; Elmberger, G.; Auer, G.; Åvall Lundqvist, E.; Ried, T.; Munck-Wikland, E. EGFR Protein Overexpression and Gene Copy Number Increases in Oral Tongue Squamous Cell Carcinoma. Eur. J. Cancer 2009, 45, 1700–1708. [Google Scholar] [CrossRef]
- Bonner, J.A.; Harari, P.M.; Giralt, J.; Cohen, R.B.; Jones, C.U.; Sur, R.K.; Raben, D.; Baselga, J.; Spencer, S.A.; Zhu, J.; et al. Radiotherapy plus Cetuximab for locoregionally advanced head and neck cancer: 5-year survival data from a phase 3 randomised trial, and relation between Cetuximab-induced rash and survival. Lancet Oncol. 2010, 11, 21–28. [Google Scholar] [CrossRef]
- Bonner, J.A.; Harari, P.M.; Giralt, J.; Azarnia, N.; Shin, D.M.; Cohen, R.B.; Jones, C.U.; Sur, R.; Raben, D.; Jassem, J.; et al. Radiotherapy plus Cetuximab for Squamous-Cell Carcinoma of the Head and Neck. N. Engl. J. Med. 2006, 354, 567–578. [Google Scholar] [CrossRef]
- Sacco, A.G.; Chen, R.; Worden, F.P.; Wong, D.J.L.; Adkins, D.; Swiecicki, P.; Chai-Ho, W.; Oppelt, P.; Ghosh, D.; Bykowski, J.; et al. Pembrolizumab plus Cetuximab in Patients with Recurrent or Metastatic Head and Neck Squamous Cell Carcinoma: An Open-Label, Multi-Arm, Non-Randomised, Multicentre, Phase 2 Trial. Lancet Oncol. 2021, 22, 883–892. [Google Scholar] [CrossRef] [PubMed]
- Ley, J.; Cohen, J.; Liu, J.; Thomeczek, B.; Oppelt, P.J.; Adkins, D. Palbociclib + Cetuximab versus Cetuximab in patients with CDKN2A-altered, anti-PD-1 resistant, HPV-negative head and neck squamous cell carcinoma (HNSCC): A phase 3 trial. J. Clin. Oncol. 2023, 41, TPS6103. [Google Scholar] [CrossRef]
- Fayette, J.; Licitra, L.; Harrington, K.; Siu, L.L.; Liu, Y.-C.; Tahara, M.; Machiels, J.-P.; Rischin, D.; Seiwert, T.Y.; Ferris, R.L.; et al. INTERLINK-1: A Phase III, Randomized, Placebo-Controlled Study of Monalizumab plus Cetuximab in Recurrent/Metastatic Head and Neck Squamous Cell Carcinoma. Clin. Cancer Res. 2025, 31, 2617–2627. [Google Scholar] [CrossRef]
- Chung, C.H.; Zhang, Q.; Hammond, E.M.; M.Trotti, A.; Wang, H.; Spencer, S.; Zhang, H.-Z.; Cooper, J.; Jordan, R.; Rotman, M.H.; et al. Integrating EGFR Assay with Clinical Parameters Improves Risk Classification for Relapse and Survival in Head and Neck Squamous Cell Carcinoma. Int. J. Radiat. Oncol. Biol. Phys. 2011, 81, 331–338. [Google Scholar] [CrossRef]
- Hashmi, A.A.; Hussain, Z.F.; Aijaz, S.; Irfan, M.; Khan, E.Y.; Naz, S.; Faridi, N.; Khan, A.; Edhi, M.M. Immunohistochemical Expression of Epidermal Growth Factor Receptor (EGFR) in South Asian Head and Neck Squamous Cell Carcinoma: Association with Various Risk Factors and Clinico-Pathologic and Prognostic Parameters. World J. Surg. Oncol. 2018, 16, 118. [Google Scholar] [CrossRef]
- Pectasides, E.; Rampias, T.; Kountourakis, P.; Sasaki, C.; Kowalski, D.; Fountzilas, G.; Zaramboukas, T.; Rimm, D.; Burtness, B.; Psyrri, A. Comparative Prognostic Value of Epidermal Growth Factor Quantitative Protein Expression Compared with FISH for Head and Neck Squamous Cell Carcinoma. Clin. Cancer Res. 2011, 17, 2947–2954. [Google Scholar] [CrossRef]
- Wheeler, S.; Siwak, D.R.; Chai, R.; LaValle, C.; Seethala, R.R.; Wang, L.; Cieply, K.; Sherer, C.; Joy, C.; Mills, G.B.; et al. Tumor Epidermal Growth Factor Receptor and EGFR PY1068 Are Independent Prognostic Indicators for Head and Neck Squamous Cell Carcinoma. Clin. Cancer Res. 2012, 18, 2278–2289. [Google Scholar] [CrossRef]
- Korpela, S.P.; Hinz, T.K.; Oweida, A.; Kim, J.; Calhoun, J.; Ferris, R.; Nemenoff, R.A.; Karam, S.D.; Clambey, E.T.; Heasley, L.E. Role of Epidermal Growth Factor Receptor Inhibitor-Induced Interferon Pathway Signaling in the Head and Neck Squamous Cell Carcinoma Therapeutic Response. J. Transl. Med. 2021, 19, 43. [Google Scholar] [CrossRef]
- Licitra, L.; Störkel, S.; Kerr, K.M.; Cutsem, E.V.; Pirker, R.; Hirsch, F.R.; Vermorken, J.B.; von Heydebreck, A.; Esser, R.; Celik, I.; et al. Predictive Value of Epidermal Growth Factor Receptor Expression for First-Line Chemotherapy plus Cetuximab in Patients with Head and Neck and Colorectal Cancer: Analysis of Data from the EXTREME and CRYSTAL Studies. Eur. J. Cancer 2013, 49, 1161–1168. [Google Scholar] [CrossRef] [PubMed]
- Selvan, S.R.; Brichetti, J.A.; Thurber, D.B.; Botting, G.M.; Bertenshaw, G.P. Functional Profiling of Head and Neck/Esophageal Squamous Cell Carcinoma to Predict Cetuximab Response. Cancer Biother. Radiopharm. 2021. [Google Scholar] [CrossRef] [PubMed]
- Szabó, B.; Nelhűbel, G.A.; Kárpáti, A.; Kenessey, I.; Jóri, B.; Székely, C.; Peták, I.; Lotz, G.; Hegedűs, Z.; Hegedűs, B.; et al. Clinical Significance of Genetic Alterations and Expression of Epidermal Growth Factor Receptor (EGFR) in Head and Neck Squamous Cell Carcinomas. Oral Oncol. 2011, 47, 487–496. [Google Scholar] [CrossRef]
- Tinhofer, I.; Klinghammer, K.; Weichert, W.; Knödler, M.; Stenzinger, A.; Gauler, T.; Budach, V.; Keilholz, U. Expression of Amphiregulin and EGFRvIII Affect Outcome of Patients with Squamous Cell Carcinoma of the Head and Neck Receiving Cetuximab–Docetaxel Treatment. Clin. Cancer Res. 2011, 17, 5197–5204. [Google Scholar] [CrossRef] [PubMed]
- Hernández-Alcoceba, R.; del Peso, L.; Lacal, J.C. The Ras Family of GTPases in Cancer Cell Invasion. Cell. Mol. Life Sci. 2000, 57, 65–76. [Google Scholar] [CrossRef]
- Kiel, C.; Filchtinski, D.; Spoerner, M.; Schreiber, G.; Kalbitzer, H.R.; Herrmann, C. Improved Binding of Raf to Ras·GDP Is Correlated with Biological Activity. J. Biol. Chem. 2009, 284, 31893–31902. [Google Scholar] [CrossRef]
- Prior, I.A.; Hood, F.E.; Hartley, J.L. The Frequency of Ras Mutations in Cancer. Cancer Res. 2020, 80, 2969–2974. [Google Scholar] [CrossRef] [PubMed]
- Agrawal, N.; Frederick, M.J.; Pickering, C.R.; Bettegowda, C.; Chang, K.; Li, R.J.; Fakhry, C.; Xie, T.-X.; Zhang, J.; Wang, J.; et al. Exome Sequencing of Head and Neck Squamous Cell Carcinoma Reveals Inactivating Mutations in NOTCH1. Science 2011, 333, 1154–1157. [Google Scholar] [CrossRef] [PubMed]
- Coleman, N.; Marcelo, K.L.; Hopkins, J.F.; Khan, N.I.; Du, R.; Hong, L.; Park, E.; Balsara, B.; Leoni, M.; Pickering, C.; et al. HRAS Mutations Define a Distinct Subgroup in Head and Neck Squamous Cell Carcinoma. JCO Precis. Oncol. 2023, 7, e2200211. [Google Scholar] [CrossRef] [PubMed]
- Cox, A.D.; Fesik, S.W.; Kimmelman, A.C.; Luo, J.; Der, C.J. Drugging the Undruggable RAS: Mission Possible? Nat. Rev. Drug Discov. 2014, 13, 828–851. [Google Scholar] [CrossRef]
- Mustansar, T.; Mirza, T.; Hussain, M. RAS Gene Mutations and Histomorphometric Measurements in Oral Squamous Cell Carcinoma. Biotech. Histochem. 2023, 98, 382–390. [Google Scholar] [CrossRef]
- Tashiro, K.; Oikawa, M.; Miki, Y.; Takahashi, T.; Kumamoto, H. Immunohistochemical Assessment of Growth Factor Signaling Molecules: MAPK, Akt, and STAT3 Pathways in Oral Epithelial Precursor Lesions and Squamous Cell Carcinoma. Odontology 2020, 108, 91–101. [Google Scholar] [CrossRef]
- Warnakulasuriya, K.A.A.S.; Chang, S.E.; Johnson, N.W.; Warnakulasuriya, K.A. Point Mutations in the Ha-Ras Oncogene Are Detectable in Formalin-Fixed Tissues of Oral Squamous Cell Carcinomas, but Are Infrequent in British Cases. J. Oral Pathol. Med. 1992, 21, 225–229. [Google Scholar] [CrossRef]
- Krishna, A.; Singh, S.; Singh, V.; Kumar, V.; Singh, U.S.; Sankhwar, S.N. Does Harvey-Ras Gene Expression Lead to Oral Squamous Cell Carcinoma? A Clinicopathological Aspect. J. Oral Maxillofac. Pathol. 2018, 22, 65–72. [Google Scholar] [CrossRef]
- Leblanc, O.; Vacher, S.; Lecerf, C.; Jeannot, E.; Klijanienko, J.; Berger, F.; Hoffmann, C.; Calugaru, V.; Badois, N.; Chilles, A.; et al. Biomarkers of Cetuximab Resistance in Patients with Head and Neck Squamous Cell Carcinoma. Cancer Biol. Med. 2020, 17, 208–217. [Google Scholar] [CrossRef]
- Rampias, T.; Giagini, A.; Siolos, S.; Matsuzaki, H.; Sasaki, C.; Scorilas, A.; Psyrri, A. RAS/PI3K Crosstalk and Cetuximab Resistance in Head and Neck Squamous Cell Carcinoma. Clin. Cancer Res. 2014, 20, 2933–2946. [Google Scholar] [CrossRef]
- Asl, A.H.; Shirkhoda, M.; Saffar, H.; Allameh, A. Analysis of H-Ras Mutations and Immunohistochemistry in Recurrence Cases of High-Grade Oral Squamous Cell Carcinoma. Head Neck Pathol. 2022, 17, 347–354. [Google Scholar] [CrossRef]
- Untch, B.R.; Dos Anjos, V.; Garcia-Rendueles, M.E.R.; Knauf, J.A.; Krishnamoorthy, G.P.; Saqcena, M.; Bhanot, U.K.; Socci, N.D.; Ho, A.L.; Ghossein, R.; et al. Tipifarnib Inhibits HRAS-Driven Dedifferentiated Thyroid Cancers. Cancer Res. 2018, 78, 4642–4657. [Google Scholar] [CrossRef] [PubMed]
- Ho, A.L.; Brana, I.; Haddad, R.; Bauman, J.; Bible, K.; Oosting, S.; Wong, D.J.; Ahn, M.-J.; Boni, V.; Even, C.; et al. Tipifarnib in Head and Neck Squamous Cell Carcinoma with HRAS Mutations. J. Clin. Oncol. 2021, 39, 1856–1864. [Google Scholar] [CrossRef] [PubMed]
- Smith, A.E.; Chan, S.; Wang, Z.; McCloskey, A.; Reilly, Q.; Wang, J.Z.; Patel, H.V.; Koshizuka, K.; Soifer, H.S.; Kessler, L.; et al. Tipifarnib Potentiates the Antitumor Effects of PI3Kα Inhibition in PIK3CA- and HRAS-Dysregulated HNSCC via Convergent Inhibition of mTOR Activity. Cancer Res. 2023, 83, 3252–3263. [Google Scholar] [CrossRef]
- Sen, M.; Pollock, N.I.; Black, J.; DeGrave, K.A.; Wheeler, S.; Freilino, M.L.; Joyce, S.; Lui, V.W.Y.; Zeng, Y.; Chiosea, S.I.; et al. JAK Kinase Inhibition Abrogates STAT3 Activation and Head and Neck Squamous Cell Carcinoma Tumor Growth. Neoplasia 2015, 17, 256–264. [Google Scholar] [CrossRef]
- Yu, H.; Kortylewski, M.; Pardoll, D. Crosstalk between Cancer and Immune Cells: Role of STAT3 in the Tumour Microenvironment. Nat. Rev. Immunol. 2007, 7, 41–51. [Google Scholar] [CrossRef]
- Geiger, J.L.; Grandis, J.R.; Bauman, J.E. The STAT3 Pathway as a Therapeutic Target in Head and Neck Cancer: Barriers and Innovations. Oral Oncol. 2016, 56, 84–92. [Google Scholar] [CrossRef]
- Grandis, J.R.; Drenning, S.D.; Zeng, Q.; Watkins, S.C.; Melhem, M.F.; Endo, S.; Johnson, D.E.; Huang, L.; He, Y.; Kim, J.D. Constitutive Activation of Stat3 Signaling Abrogates Apoptosis in Squamous Cell Carcinogenesis in Vivo. Proc. Natl. Acad. Sci. USA 2000, 97, 4227–4232. [Google Scholar] [CrossRef]
- Kijima, T.; Niwa, H.; Steinman, R.A.; Drenning, S.D.; Gooding, W.E.; Wentzel, A.L.; Xi, S.; Grandis, J.R. STAT3 Activation Abrogates Growth Factor Dependence and Contributes to Head and Neck Squamous Cell Carcinoma Tumor Growth in Vivo. Cell Growth Differ. 2002, 13, 355–362. [Google Scholar]
- Peyser, N.D.; Freilino, M.; Wang, L.; Zeng, Y.; Li, H.; Johnson, D.E.; Grandis, J.R. Frequent Promoter Hypermethylation of PTPRT Increases STAT3 Activation and Sensitivity to STAT3 Inhibition in Head and Neck Cancer. Oncogene 2016, 35, 1163–1169. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Wu, C.; Zhang, C.; Li, Z.; Zhu, T.; Chen, J.; Ren, Y.; Wang, X.; Zhang, L.; Zhou, X. TGF-β-Induced STAT3 Overexpression Promotes Human Head and Neck Squamous Cell Carcinoma Invasion and Metastasis through Malat1/miR-30a Interactions. Cancer Lett. 2018, 436, 52–62. [Google Scholar] [CrossRef] [PubMed]
- Masuda, M.; Suzui, M.; Yasumatu, R.; Nakashima, T.; Kuratomi, Y.; Azuma, K.; Tomita, K.; Komiyama, S.; Weinstein, I.B. Constitutive Activation of Signal Transducers and Activators of Transcription 3 Correlates with Cyclin D1 Overexpression and May Provide a Novel Prognostic Marker in Head and Neck Squamous Cell Carcinoma. Cancer Res. 2002, 62, 3351–3355. [Google Scholar] [PubMed]
- Wei, L.-Y.; Lin, H.-C.; Tsai, F.-C.; Ko, J.-Y.; Kok, S.-H.; Cheng, S.-J.; Lee, J.-J.; Chia, J.-S. Effects of Interleukin-6 on STAT3-Regulated Signaling in Oral Cancer and as a Prognosticator of Patient Survival. Oral Oncol. 2022, 124, 105665. [Google Scholar] [CrossRef]
- Wang, Y.; Zhou, Q.; Liu, C.; Zhang, R.; Xing, B.; Du, J.; Dong, L.; Zheng, J.; Chen, Z.; Sun, M.; et al. Targeting IL-6/STAT3 Signaling Abrogates EGFR-TKI Resistance through Inhibiting Beclin-1 Dependent Autophagy in HNSCC. Cancer Lett. 2024, 586, 216612. [Google Scholar] [CrossRef]
- Sen, M.; Joyce, S.; Panahandeh, M.; Li, C.; Thomas, S.M.; Maxwell, J.; Wang, L.; Gooding, W.E.; Johnson, D.E.; Grandis, J.R. Targeting Stat3 Abrogates EGFR Inhibitor Resistance in Cancer. Clin. Cancer Res. 2012, 18, 4986–4996. [Google Scholar] [CrossRef]
- Hato, S.V.; Figdor, C.G.; Takahashi, S.; Pen, A.E.; Halilovic, A.; Bol, K.F.; Vasaturo, A.; Inoue, Y.; de Haas, N.; Verweij, D.; et al. Direct Inhibition of STAT Signaling by Platinum Drugs Contributes to Their Anti-Cancer Activity. Oncotarget 2017, 8, 54434–54443. [Google Scholar] [CrossRef]
- Knitz, M.W.; Darragh, L.B.; Bickett, T.E.; Bhatia, S.; Bukkapatnam, S.; Gadwa, J.; Piper, M.; Corbo, S.; Nguyen, D.; Van Court, B.; et al. Loss of Cancer Cell STAT1 Improves Response to Radiation Therapy and Promotes T Cell Activation in Head and Neck Squamous Cell Carcinoma. Cancer Immunol. Immunother. CII 2022, 71, 1049–1061. [Google Scholar] [CrossRef]
- He, Y.; Li, Y.; Xiang, J.; Huang, X.; Zhao, M.; Wang, Y.; Chen, R. TYK2 Correlates with Immune Infiltration: A Prognostic Marker for Head and Neck Squamous Cell Carcinoma. Front. Genet. 2022, 13, 1081519. [Google Scholar] [CrossRef]
- Cao, J.; Lou, S.; Ying, M.; Yang, B. DJ-1 as a Human Oncogene and Potential Therapeutic Target. Biochem. Pharmacol. 2015, 93, 241–250. [Google Scholar] [CrossRef]
- He, X.; Zheng, Z.; Li, J.; Ben, Q.; Liu, J.; Zhang, J.; Ji, J.; Yu, B.; Chen, X.; Su, L.; et al. DJ-1 Promotes Invasion and Metastasis of Pancreatic Cancer Cells by Activating SRC/ERK/uPA. Carcinogenesis 2012, 33, 555–562. [Google Scholar] [CrossRef]
- Ismail, I.A.; Kang, H.S.; Lee, H.-J.; Kim, J.-K.; Hong, S.-H. DJ-1 Upregulates Breast Cancer Cell Invasion by Repressing KLF17 Expression. Br. J. Cancer 2014, 110, 1298–1306. [Google Scholar] [CrossRef] [PubMed]
- Kim, R.H.; Peters, M.; Jang, Y.; Shi, W.; Pintilie, M.; Fletcher, G.C.; DeLuca, C.; Liepa, J.; Zhou, L.; Snow, B.; et al. DJ-1, a Novel Regulator of the Tumor Suppressor PTEN. Cancer Cell 2005, 7, 263–273. [Google Scholar] [CrossRef]
- Zhu, X.-L.; Wang, Z.-F.; Lei, W.-B.; Zhuang, H.-W.; Hou, W.-J.; Wen, Y.-H.; Wen, W.-P. Tumorigenesis Role and Clinical Significance of DJ-1, a Negative Regulator of PTEN, in Supraglottic Squamous Cell Carcinoma. J. Exp. Clin. Cancer Res. 2012, 31, 94. [Google Scholar] [CrossRef] [PubMed]
- Xu, S.; Ma, D.; Zhuang, R.; Sun, W.; Liu, Y.; Wen, J.; Cui, L. DJ-1 Is Upregulated in Oral Squamous Cell Carcinoma and Promotes Oral Cancer Cell Proliferation and Invasion. J. Cancer 2016, 7, 1020–1028. [Google Scholar] [CrossRef] [PubMed]
- De la Torre, R.A.; Kerdjoudj, M.; Arnouk, H. DJ-1 Oncogene as a Potential Diagnostic and Prognostic Biomarker for Head and Neck Cancer. Cureus 2023, 15, e36229. [Google Scholar] [CrossRef]
- Shankavaram, V.; Shah, D.; Alashqar, A.; Sweeney, J.; Arnouk, H. Cornulin as a Key Diagnostic and Prognostic Biomarker in Cancers of the Squamous Epithelium. Genes 2024, 15, 1122. [Google Scholar] [CrossRef]
- Chen, K.; Li, Y.; Dai, Y.; Li, J.; Qin, Y.; Zhu, Y.; Zeng, T.; Ban, X.; Fu, L.; Guan, X.-Y. Characterization of Tumor Suppressive Function of Cornulin in Esophageal Squamous Cell Carcinoma. PLoS ONE 2013, 8, e68838. [Google Scholar] [CrossRef]
- Imai, F.L.; Uzawa, K.; Nimura, Y.; Moriya, T.; Imai, M.A.; Shiiba, M.; Bukawa, H.; Yokoe, H.; Tanzawa, H. Chromosome 1 Open Reading Frame 10 (C1orf10) Gene Is Frequently down-Regulated and Inhibits Cell Proliferation in Oral Squamous Cell Carcinoma. Int. J. Biochem. Cell Biol. 2005, 37, 1641–1655. [Google Scholar] [CrossRef]
- Arnouk, H.; Merkley, M.A.; Podolsky, R.H.; Stöppler, H.; Santos, C.; Álvarez, M.; Mariategui, J.; Ferris, D.; Lee, J.R.; Dynan, W.S. Characterization of Molecular Markers Indicative of Cervical Cancer Progression. Proteom. Clin. Appl. 2009, 3, 516–527. [Google Scholar] [CrossRef] [PubMed]
- Merkley, M.A.; Weinberger, P.M.; Jackson, L.L.; Podolsky, R.H.; Lee, J.R.; Dynan, W.S. 2D-DIGE Proteomic Characterization of Head and Neck Squamous Cell Carcinoma. Otolaryngol. Head Neck Surg. 2009, 141, 626–632. [Google Scholar] [CrossRef]
- Kerdjoudj, M.; Arnouk, H. Characterization of Cornulin as a Molecular Biomarker for the Progression of Oral Squamous Cell Carcinoma. Cureus 2022, 14, e32210. [Google Scholar] [CrossRef]
- Xiao, H.; Langerman, A.; Zhang, Y.; Khalid, O.; Hu, S.; Cao, C.-X.; Lingen, M.W.; Wong, D.T.W. Quantitative Proteomic Analysis of Microdissected Oral Epithelium for Cancer Biomarker Discovery. Oral Oncol. 2015, 51, 1011–1019. [Google Scholar] [CrossRef] [PubMed]
- Salahshourifar, I.; Vincent-Chong, V.K.; Chang, H.-Y.; Ser, H.L.; Ramanathan, A.; Kallarakkal, T.G.; Rahman, Z.A.A.; Ismail, S.M.; Prepageran, N.; Mustafa, W.M.W.; et al. Downregulation of CRNN Gene and Genomic Instability at 1q21.3 in Oral Squamous Cell Carcinoma. Clin. Oral Investig. 2015, 19, 2273–2283. [Google Scholar] [CrossRef] [PubMed]
- Santosh, N.; McNamara, K.K.; Beck, F.M.; Kalmar, J.R. Expression of Cornulin in Oral Premalignant Lesions. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. 2019, 127, 526–534. [Google Scholar] [CrossRef]
- van Houten, V.M.M.; Leemans, C.R.; Kummer, J.A.; Dijkstra, J.; Kuik, D.J.; van den Brekel, M.W.M.; Snow, G.B.; Brakenhoff, R.H. Molecular Diagnosis of Surgical Margins and Local Recurrence in Head and Neck Cancer Patients: A Prospective Study. Clin. Cancer Res. 2004, 10, 3614–3620. [Google Scholar] [CrossRef]
- Govindaraj, P.K.; Kallarakkal, T.G.; Zain, R.M.; Tilakaratne, W.M.; Lew, H.L. Expression of Ki-67, Cornulin and ISG15 in Non-Involved Mucosal Surgical Margins as Predictive Markers for Relapse in Oral Squamous Cell Carcinoma (OSCC). PLoS ONE 2021, 16, e0261575. [Google Scholar] [CrossRef]
- Ferrara, N.; Gerber, H.-P.; LeCouter, J. The Biology of VEGF and Its Receptors. Nat. Med. 2003, 9, 669. [Google Scholar] [CrossRef] [PubMed]
- Macluskey, M.; Chandrachud, L.M.; Pazouki, S.; Green, M.; Chisholm, D.M.; Ogden, G.R.; Schor, S.L.; Schor, A.M. Apoptosis, proliferation, and angiogenesis in oral tissues. Possible relevance to tumour progression. J. Pathol. 2000, 191, 368–375. [Google Scholar] [CrossRef]
- Goel, H.L.; Mercurio, A.M. VEGF Targets the Tumour Cell. Nat. Rev. Cancer 2013, 13, 871–882. [Google Scholar] [CrossRef]
- Mineta, H.; Miura, K.; Ogino, T.; Takebayashi, S.; Misawa, K.; Ueda, Y.; Suzuki, I.; Dictor, M.; Borg, Å.; Wennerberg, J. Prognostic Value of Vascular Endothelial Growth Factor (VEGF) in Head and Neck Squamous Cell Carcinomas. Br. J. Cancer 2000, 83, 775–781. [Google Scholar] [CrossRef]
- Kyzas, P.A.; Cunha, I.W.; Ioannidis, J.P.A. Prognostic Significance of Vascular Endothelial Growth Factor Immunohistochemical Expression in Head and Neck Squamous Cell Carcinoma: A Meta-Analysis. Clin. Cancer Res. 2005, 11, 1434–1440. [Google Scholar] [CrossRef]
- Kapoor, P.; Deshmukh, R.S. VEGF: A Critical Driver for Angiogenesis and Subsequent Tumor Growth: An IHC Study. J. Oral Maxillofac. Pathol. 2012, 16, 330. [Google Scholar] [CrossRef]
- Ilango, J.; Mani, D.; Ravikumar, S.; Vijayalakshmi, D.; Sivakumar, K.; Baskaran, A. Immunohistochemical Expression of VEGF and Microvessel Density (CD 34) in Oral Epithelial Dysplasia and Oral Squamous Cell Carcinoma: Original Research. Asian Pac. J. Cancer Prev. 2025, 26, 147–151. [Google Scholar] [CrossRef] [PubMed]
- Siemert, J.; Wald, T.; Kolb, M.; Pettinella, I.; Böhm, U.; Pirlich, M.; Wiegand, S.; Dietz, A.; Wichmann, G. Pre-Therapeutic VEGF Level in Plasma Is a Prognostic Bio-Marker in Head and Neck Squamous Cell Carcinoma (HNSCC). Cancers 2021, 13, 3781. [Google Scholar] [CrossRef] [PubMed]
- Senevirathna, K.; Mahakapuge, T.A.N.; Jayawardana, N.U.; Rajapakse, J.; Gamage, C.U.; Seneviratne, B.; Perera, U.; Kanmodi, K.K.; Jayasinghe, R. Serum mRNA Levels of Cytokeratin-19 and Vascular Endothelial Growth Factor in Oral Squamous Cell Carcinoma and Oral Potentially Malignant Disorders Using RT-PCR. BMC Oral Health 2024, 24, 1062. [Google Scholar] [CrossRef]
- Xu, K.; Lou, C. Effects of Serum HIF-1α, VEGF, and uPA Levels on Clinicopathologic Findings and Prognosis in Oral Squamous Cell Carcinoma. Int. J. Clin. Exp. Pathol. 2025, 18, 12–22. [Google Scholar] [CrossRef] [PubMed]
- Argiris, A.; Li, S.; Savvides, P.; Ohr, J.P.; Gilbert, J.; Levine, M.A.; Chakravarti, A.; Haigentz, M., Jr.; Saba, N.F.; Ikpeazu, C.V.; et al. Phase III Randomized Trial of Chemotherapy with or Without Bevacizumab in Patients with Recurrent or Metastatic Head and Neck Cancer. J. Clin. Oncol. 2019, 37, 3266–3274. [Google Scholar] [CrossRef]
- Adkins, D.; Ley, J.C.; Liu, J.; Oppelt, P. Ramucirumab in Combination with Pembrolizumab for Recurrent or Metastatic Head and Neck Squamous Cell Carcinoma: A Single-Centre, Phase 1/2 Trial. Lancet Oncol. 2024, 25, 888–900. [Google Scholar] [CrossRef]
- Klein, T.; Bischoff, R. Physiology and Pathophysiology of Matrix Metalloproteases. Amino Acids 2011, 41, 271–290. [Google Scholar] [CrossRef] [PubMed]
- Atla, B.; Prabhakula, S.; Kumar, S.S.; Boni, L.S. Matrix Metalloproteinase-9 (MMP-9) as Prospective Histopathological and Molecular Biomarker for Oral Squamous Cell Carcinoma. Int. J. Res. Med. Sci. 2018, 6, 2801–2807. [Google Scholar] [CrossRef]
- Patil, R.; Mahajan, A.; Pradeep, G.L.; Prakash, N.; Patil, S.; Khan, S.M. Expression of Matrix Metalloproteinase-9 in Histological Grades of Oral Squamous Cell Carcinoma: An Immunohistochemical Study. J. Oral Maxillofac. Pathol. 2021, 25, 239–246. [Google Scholar] [CrossRef] [PubMed]
- Lawal, A.-O.; Adisa, A.-O.; Kolude, B.; Adeyemi, B.-F. Immunohistochemical Expression of MMP-2 and MMP-8 in Oral Squamous Cell Carcinoma. J. Clin. Exp. Dent. 2015, 7, e203–e207. [Google Scholar] [CrossRef]
- Hoffmann, C.; Vacher, S.; Sirven, P.; Lecerf, C.; Massenet, L.; Moreira, A.; Surun, A.; Schnitzler, A.; Klijanienko, J.; Mariani, O.; et al. MMP2 as an Independent Prognostic Stratifier in Oral Cavity Cancers. Oncoimmunology 2020, 9, 1754094. [Google Scholar] [CrossRef]
- Bramhall, S.R.; Schulz, J.; Nemunaitis, J.; Brown, P.D.; Baillet, M.; Buckels, J.A.C. A Double-Blind Placebo-Controlled, Randomised Study Comparing Gemcitabine and Marimastat with Gemcitabine and Placebo as First Line Therapy in Patients with Advanced Pancreatic Cancer. Br. J. Cancer 2002, 87, 161–167. [Google Scholar] [CrossRef]
- Maekawa, K.; Sato, H.; Furukawa, M.; Yoshizaki, T. Inhibition of Cervical Lymph Node Metastasis by Marimastat (BB-2516) in an Orthotopic Oral Squamous Cell Carcinoma Implantation Model. Clin. Exp. Metastasis 2002, 19, 513–518. [Google Scholar] [CrossRef] [PubMed]
- Sparano, J.A.; Bernardo, P.; Stephenson, P.; Gradishar, W.J.; Ingle, J.N.; Zucker, S.; Davidson, N.E. Randomized Phase III Trial of Marimastat versus Placebo in Patients with Metastatic Breast Cancer Who Have Responding or Stable Disease after First-Line Chemotherapy: Eastern Cooperative Oncology Group Trial E2196. J. Clin. Oncol. 2004, 22, 4683–4690. [Google Scholar] [CrossRef]
- Thapa, R.; Wilson, G.D. The Importance of CD44 as a Stem Cell Biomarker and Therapeutic Target in Cancer. Stem Cells Int. 2016, 2016, 2087204. [Google Scholar] [CrossRef]
- Mirhashemi, M.; Sadeghi, M.; Ghazi, N.; Saghravanian, N.; Dehghani, M.; Aminian, A. Prognostic Value of CD44 Expression in Oral Squamous Cell Carcinoma: A Meta-Analysis. Ann. Diagn. Pathol. 2023, 67, 152213. [Google Scholar] [CrossRef]
- Screaton, G.R.; Bell, M.V.; Jackson, D.G.; Cornelis, F.B.; Gerth, U.; Bell, J.I. Genomic Structure of DNA Encoding the Lymphocyte Homing Receptor CD44 Reveals at Least 12 Alternatively Spliced Exons. Proc. Natl. Acad. Sci. USA 1992, 89, 12160–12164. [Google Scholar] [CrossRef]
- Ludwig, N.; Szczepanski, M.J.; Gluszko, A.; Szafarowski, T.; Azambuja, J.H.; Dolg, L.; Gellrich, N.-C.; Kampmann, A.; Whiteside, T.L.; Zimmerer, R.M. CD44(+) Tumor Cells Promote Early Angiogenesis in Head and Neck Squamous Cell Carcinoma. Cancer Lett. 2019, 467, 85–95. [Google Scholar] [CrossRef]
- Boxberg, M.; Götz, C.; Haidari, S.; Dorfner, C.; Jesinghaus, M.; Drecoll, E.; Boskov, M.; Wolff, K.D.; Weichert, W.; Haller, B.; et al. Immunohistochemical Expression of CD44 in Oral Squamous Cell Carcinoma in Relation to Histomorphological Parameters and Clinicopathological Factors. Histopathology 2018, 73, 559–572. [Google Scholar] [CrossRef] [PubMed]
- De Abreu, P.M.; Sol, M.; Bianchi Molini, P.R.; Daniel, C.B.; Camisasca, D.R.; Von Zeidler, S.V. Immunoexpression of CD44, P16 and VEGF in Oral Cancer. J. Oral Maxillofac. Pathol. 2024, 28, 253–260. [Google Scholar] [CrossRef]
- Mirhashemi, M.; Ghazi, N.; Saghravanian, N.; Taghipour, A.; Mohajertehran, F. Evaluation of CD24 and CD44 as Cancer Stem Cell Markers in Squamous Cell Carcinoma and Epithelial Dysplasia of the Oral Cavity by Q-RT-PCR. Dent. Res. J. 2020, 17, 208–212. [Google Scholar]
- Ortiz, R.C.; Lopes, N.M.; Amôr, N.G.; Ponce, J.B.; Schmerling, C.K.; Lara, V.S.; Moyses, R.A.; Rodini, C.O. CD44 and ALDH1 Immunoexpression as Prognostic Indicators of Invasion and Metastasis in Oral Squamous Cell Carcinoma. J. Oral Pathol. Med. 2018, 47, 740–747. [Google Scholar] [CrossRef]
- Saghravanian, N.; Anvari, K.; Ghazi, N.; Memar, B.; Shahsavari, M.; Aghaee, M.A. Expression of P63 and CD44 in Oral Squamous Cell Carcinoma and Correlation with Clinicopathological Parameters. Arch. Oral Biol. 2017, 82, 160–165. [Google Scholar] [CrossRef]
- Chakraborty, S.; Suresh, T.N.; Azeem Mohiyuddin, S.M. Expression of Stem Cell Biomarker CD44 in Oral Squamous Cell Carcinoma and Its Association with Lymph Node Metastasis and TNM Staging. J. Cancer Res. Ther. 2024, 20, 1430–1434. [Google Scholar] [CrossRef] [PubMed]
- Ma, C.; Zhao, J.; Lin, R.; Zhou, L.; Chen, Y.; Yu, L.; Shi, T.; Wang, M.; Liu, M.; Liu, Y.; et al. Combined Overexpression of Cadherin 6, Cadherin 11 and Cluster of Differentiation 44 Is Associated with Lymph Node Metastasis and Poor Prognosis in Oral Squamous Cell Carcinoma. Oncol. Lett. 2018, 15, 9498–9506. [Google Scholar] [CrossRef] [PubMed]
- Marques, C.E.; De Morais, E.F.; Da Costa, B.C.; Téo, F.H.; Rangel, A.L.C.A.; Coletta, R.D.; Dias, L.M.R.P. CD44 and Snail1 Expression Predicts Poor Prognosis of Oral Squamous Cell Carcinoma. J. Oral Pathol. Med. 2025, 54, 835–845. [Google Scholar] [CrossRef]
- Dubey, P.; Gupta, R.; Mishra, A.; Kumar, V.; Bhadauria, S.; Bhatt, M.L.B. Evaluation of Correlation between CD44, Radiotherapy Response, and Survival Rate in Patients with Advanced Stage of Head and Neck Squamous Cell Carcinoma (HNSCC). Cancer Med. 2022, 11, 1937–1947. [Google Scholar] [CrossRef]
- Hassn Mesrati, M.; Syafruddin, S.E.; Mohtar, M.A.; Syahir, A. CD44: A Multifunctional Mediator of Cancer Progression. Biomolecules 2021, 11, 1850. [Google Scholar] [CrossRef]
- Gomez, K.E.; Wu, F.; Keysar, S.B.; Morton, J.J.; Miller, B.; Chimed, T.-S.; Le, P.N.; Nieto, C.; Chowdhury, F.N.; Tyagi, A.; et al. Cancer Cell CD44 Mediates Macrophage/Monocyte-Driven Regulation of Head and Neck Cancer Stem Cells. Cancer Res. 2020, 80, 4185–4198. [Google Scholar] [CrossRef]
- Ciulean, I.S.; Fischer, J.; Quaiser, A.; Bach, C.; Abken, H.; Tretbar, U.S.; Fricke, S.; Koehl, U.; Schmiedel, D.; Grunwald, T. CD44v6 Specific CAR-NK Cells for Targeted Immunotherapy of Head and Neck Squamous Cell Carcinoma. Front. Immunol. 2023, 14, 1290488. [Google Scholar] [CrossRef] [PubMed]
- Jaksic Karisik, M.; Lazarevic, M.; Mitic, D.; Ajtic, O.M.; Damante, G.; Milasin, J. JQ1 Treatment and miR-21 Silencing Activate Apoptosis of CD44+ Oral Cancer Cells. Int. J. Mol. Sci. 2025, 26, 1241. [Google Scholar] [CrossRef] [PubMed]
- Kashyap, T.; Pramanik, K.K.; Nath, N.; Mishra, P.; Singh, A.K.; Nagini, S.; Rana, A.; Mishra, R. Crosstalk between Raf-MEK-ERK and PI3K-Akt-GSK3β Signaling Networks Promotes Chemoresistance, Invasion/Migration and Stemness via Expression of CD44 Variants (v4 and v6) in Oral Cancer. Oral Oncol. 2018, 86, 234–243. [Google Scholar] [CrossRef] [PubMed]
- Tijink, B.M.; Buter, J.; De Bree, R.; Giaccone, G.; Lang, M.S.; Staab, A.; Leemans, C.R.; Van Dongen, G.A.M.S. A Phase I Dose Escalation Study with Anti-CD44v6 Bivatuzumab Mertansine in Patients with Incurable Squamous Cell Carcinoma of the Head and Neck or Esophagus. Clin. Cancer Res. 2006, 12, 6064–6072. [Google Scholar] [CrossRef]
- Qiao, X.; Zhu, L.; Song, R.; Shang, C.; Guo, Y. CD44 Occurring Alternative Splicing Promotes Cisplatin Resistance and Evokes Tumor Immune Response in Oral Squamous Cell Carcinoma Cells. Transl. Oncol. 2023, 31, 101644. [Google Scholar] [CrossRef]
- Duan, X.; Wu, R.; Zhang, M.; Li, K.; Yu, L.; Sun, H.; Hao, X.; Wang, C. The Heterogeneity of NOTCH1 to Tumor Immune Infiltration in Pan-Cancer. Sci. Rep. 2024, 14, 28071. [Google Scholar] [CrossRef]
- Lefort, K.; Mandinova, A.; Ostano, P.; Kolev, V.; Calpini, V.; Kolfschoten, I.; Devgan, V.; Lieb, J.; Raffoul, W.; Hohl, D.; et al. Notch1 Is a P53 Target Gene Involved in Human Keratinocyte Tumor Suppression through Negative Regulation of ROCK1/2 and MRCKα Kinases. Genes Dev. 2007, 21, 562–577. [Google Scholar] [CrossRef] [PubMed]
- Sadeghi, E.S.; Nematpour, F.S.; Mohtasham, N.; Mohajertehran, F. The Oncogenic Role of NOTCH1 as Biomarker in Oral Squamous Cell Carcinoma and Oral Lichen Planus. Dent. Res. J. 2023, 20, 102. [Google Scholar] [CrossRef]
- Gan, R.-H.; Wei, H.; Xie, J.; Zheng, D.-P.; Luo, E.-L.; Huang, X.-Y.; Xie, J.; Zhao, Y.; Ding, L.-C.; Su, B.-H.; et al. Notch1 Regulates Tongue Cancer Cells Proliferation, Apoptosis and Invasion. Cell Cycle 2018, 17, 216–224. [Google Scholar] [CrossRef]
- Sun, W.; Gaykalova, D.A.; Ochs, M.F.; Mambo, E.; Arnaoutakis, D.; Liu, Y.; Loyo, M.; Agrawal, N.; Howard, J.; Li, R.; et al. Activation of the NOTCH Pathway in Head and Neck Cancer. Cancer Res. 2014, 74, 1091–1104. [Google Scholar] [CrossRef]
- Ding, X.; Zheng, Y.; Wang, Z.; Zhang, W.; Dong, Y.; Chen, W.; Li, J.; Chu, W.; Zhang, W.; Zhong, Y.; et al. Expression and Oncogenic Properties of Membranous Notch1 in Oral Leukoplakia and Oral Squamous Cell Carcinoma. Oncol. Rep. 2018, 39, 2584–2594. [Google Scholar] [CrossRef] [PubMed]
- Mohammedsaleh, Z.M.; Moawadh, M.S.; Saleh, F.M.; Jalal, M.M.; Al-Otaibi, A.S.; Saeedi, N.H.; Baskaran, R.; Huang, C.-Y.; Kumar, V.B. Increased NOTCH1 Expression Is Associated with Low Survival in Moderate/ Poor Differentiated Human Oral Squamous Cell Carcinoma Patients. J. Cancer 2023, 14, 3023–3027. [Google Scholar] [CrossRef]
- Upadhyay, P.; Nair, S.; Kaur, E.; Aich, J.; Dani, P.; Sethunath, V.; Gardi, N.; Chandrani, P.; Godbole, M.; Sonawane, K.; et al. Notch Pathway Activation Is Essential for Maintenance of Stem-like Cells in Early Tongue Cancer. Oncotarget 2016, 7, 50437–50449. [Google Scholar] [CrossRef]
- Lin, J.-T.; Chen, M.-K.; Yeh, K.-T.; Chang, C.-S.; Chang, T.-H.; Lin, C.-Y.; Wu, Y.-C.; Su, B.-W.; Lee, K.-D.; Chang, P.-J. Association of High Levels of Jagged-1 and Notch-1 Expression with Poor Prognosis in Head and Neck Cancer. Ann. Surg. Oncol. 2010, 17, 2976–2983. [Google Scholar] [CrossRef]
- Weaver, A.N.; Burch, M.B.; Cooper, T.S.; Della Manna, D.L.; Wei, S.; Ojesina, A.I.; Rosenthal, E.L.; Yang, E.S. Notch Signaling Activation Is Associated with Patient Mortality and Increased FGF1-Mediated Invasion in Squamous Cell Carcinoma of the Oral Cavity. Mol. Cancer Res. 2016, 14, 883–891. [Google Scholar] [CrossRef]
- Kaka, A.S.; Nowacki, N.B.; Kumar, B.; Zhao, S.; Old, M.O.; Agrawal, A.; Ozer, E.; Carrau, R.L.; Schuller, D.E.; Kumar, P.; et al. Notch1 Overexpression Correlates to Improved Survival in Cancer of the Oropharynx. Otolaryngol.-Head Neck Surg. 2017, 156, 652–659. [Google Scholar] [CrossRef]
- Gillison, M.L.; Chaturvedi, A.K.; Anderson, W.F.; Fakhry, C. Epidemiology of Human Papillomavirus–Positive Head and Neck Squamous Cell Carcinoma. J. Clin. Oncol. 2015, 33, 3235–3242. [Google Scholar] [CrossRef]
- Katirachi, S.K.; Grønlund, M.P.; Jakobsen, K.K.; Grønhøj, C.; Von Buchwald, C. The Prevalence of HPV in Oral Cavity Squamous Cell Carcinoma. Viruses 2023, 15, 451. [Google Scholar] [CrossRef]
- Lewis, J.S.; Smith, M.H.; Wang, X.; Tong, F.; Mehrad, M.; Lang-Kuhs, K.A. Human Papillomavirus-Associated Oral Cavity Squamous Cell Carcinoma: An Entity with Distinct Morphologic and Clinical Features. Head Neck Pathol. 2022, 16, 1073–1081. [Google Scholar] [CrossRef]
- Smeets, S.J.; Hesselink, A.T.; Speel, E.M.; Haesevoets, A.; Snijders, P.J.F.; Pawlita, M.; Meijer, C.J.L.M.; Braakhuis, B.J.M.; Leemans, C.R.; Brakenhoff, R.H. A Novel Algorithm for Reliable Detection of Human Papillomavirus in Paraffin Embedded Head and Neck Cancer Specimen. Int. J. Cancer 2007, 121, 2465–2472. [Google Scholar] [CrossRef] [PubMed]
- Saxena, P.; Prasad, S. Evaluation of P16 Expression in Oral and Oropharyngeal Squamous Cell Carcinoma. J. Oral Maxillofac. Pathol. 2022, 26, 376–381. [Google Scholar] [CrossRef] [PubMed]
- Lechner, M.; Liu, J.; Masterson, L.; Fenton, T.R. HPV-Associated Oropharyngeal Cancer: Epidemiology, Molecular Biology and Clinical Management. Nat. Rev. Clin. Oncol. 2022, 19, 306–327. [Google Scholar] [CrossRef]
- Mirghani, H.; Amen, F.; Blanchard, P.; Moreau, F.; Guigay, J.; Hartl, D.M.; Lacau St Guily, J. Treatment De-escalation in HPV-positive Oropharyngeal Carcinoma: Ongoing Trials, Critical Issues and Perspectives. Int. J. Cancer 2015, 136, 1494–1503. [Google Scholar] [CrossRef]
- Nickson, C.M.; Moori, P.; Carter, R.J.; Rubbi, C.P.; Parsons, J.L. Misregulation of DNA Damage Repair Pathways in HPV-Positive Head and Neck Squamous Cell Carcinoma Contributes to Cellular Radiosensitivity. Oncotarget 2017, 8, 29963–29975. [Google Scholar] [CrossRef]
- Chen, W.S.; Alshalalfa, M.; Zhao, S.G.; Liu, Y.; Mahal, B.A.; Quigley, D.A.; Wei, T.; Davicioni, E.; Rebbeck, T.R.; Kantoff, P.W.; et al. Novel RB1-Loss Transcriptomic Signature Is Associated with Poor Clinical Outcomes across Cancer Types. Clin. Cancer Res. 2019, 25, 4290–4299. [Google Scholar] [CrossRef] [PubMed]
- Dannenberg, J.-H.; Te Riele, H.P.J. The Retinoblastoma Gene Family in Cell Cycle Regulation and Suppression of Tumorigenesis. In Cell Cycle Regulation; Kaldis, P., Ed.; Springer: Berlin/Heidelberg, Germany, 2006; Volume 42, pp. 183–225. ISBN 978-3-540-34552-7. [Google Scholar]
- Engel, B.E.; Cress, W.D.; Santiago-Cardona, P.G. The Retinoblastoma Protein: A Master Tumor Suppressor Acts as a Link between Cel Cycle and Cell Adhesion. Cell Health Cytoskelet. 2015, 7, 1–10. [Google Scholar] [CrossRef]
- Holzinger, D.; Flechtenmacher, C.; Henfling, N.; Kaden, I.; Grabe, N.; Lahrmann, B.; Schmitt, M.; Hess, J.; Pawlita, M.; Bosch, F.X. Identification of Oropharyngeal Squamous Cell Carcinomas with Active HPV16 Involvement by Immunohistochemical Analysis of the Retinoblastoma Protein Pathway: Immunohistochemical Identification of OPSCC with Active HPV. Int. J. Cancer 2013, 133, 1389–1399. [Google Scholar] [CrossRef]
- Pande, P.; Mathur, M.; Shukla, N.K.; Ralhan, R. pRb and P16 Protein Alterations in Human Oral Tumorigenesis. Oral Oncol. 1998, 34, 396–403. [Google Scholar] [CrossRef]
- Muirhead, D.M.; Hoffman, H.T.; Robinson, R.A. Correlation of Clinicopathological Features with Immunohistochemical Expression of Cell Cycle Regulatory Proteins P16 and Retinoblastoma: Distinct Association with Keratinisation and Differentiation in Oral Cavity Squamous Cell Carcinoma. J. Clin. Pathol. 2006, 59, 711–715. [Google Scholar] [CrossRef]
- Kühn, J.P.; Schmid, W.; Körner, S.; Bochen, F.; Wemmert, S.; Rimbach, H.; Smola, S.; Radosa, J.C.; Wagner, M.; Morris, L.G.T.; et al. HPV Status as Prognostic Biomarker in Head and Neck Cancer—Which Method Fits the Best for Outcome Prediction? Cancers 2021, 13, 4730. [Google Scholar] [CrossRef] [PubMed]
- Mena, M.; Taberna, M.; Tous, S.; Marquez, S.; Clavero, O.; Quiros, B.; Lloveras, B.; Alejo, M.; Leon, X.; Quer, M.; et al. Double Positivity for HPV-DNA/P16ink4a Is the Biomarker with Strongest Diagnostic Accuracy and Prognostic Value for Human Papillomavirus Related Oropharyngeal Cancer Patients. Oral Oncol. 2018, 78, 137–144. [Google Scholar] [CrossRef] [PubMed]
- Shah, N.G.; Trivedi, T.I.; Tankshali, R.A.; Goswami, J.V.; Jetly, D.H.; Shukla, S.N.; Shah, P.M.; Verma, R.J. Prognostic Significance of Molecular Markers in Oral Squamous Cell Carcinoma: A Multivariate Analysis. Head Neck 2009, 31, 1544–1556. [Google Scholar] [CrossRef] [PubMed]
- de Oliveira, M.G.; Ramalho, L.; Gaiao, L.; Pozza, D.; de Mello, R. Retinoblastoma and P53 Protein Expression in Pre-Malignant Oral Lesions and Oral Squamous Cell Carcinoma. Mol. Med. Rep. 2012, 6, 163–166. [Google Scholar] [CrossRef]
- Thomas, S.; Balan, A.; Balaram, P. The Expression of Retinoblastoma Tumor Suppressor Protein in Oral Cancers and Precancers: A Clinicopathological Study. Dent. Res. J. 2015, 12, 307. [Google Scholar] [CrossRef]
- Becker, A.; Merkel, J.; Bozkurt, I.; Strüder, D.F.; Maletzki, C.; Hühns, M.; Zimpfer, A.H. P16 Overexpression Identifies Oncogenic High-Risk HPV Infection in Non-Oropharyngeal Squamous Cell Carcinoma of the Head and Neck. Head Neck 2024, 46, 2569–2581. [Google Scholar] [CrossRef]
- Benzerdjeb, N.; Tantot, J.; Blanchet, C.; Philouze, P.; Mekki, Y.; Lopez, J.; Devouassoux-Shisheboran, M. Oropharyngeal Squamous Cell Carcinoma: P16/P53 Immunohistochemistry as a Strong Predictor of HPV Tumour Status. Histopathology 2021, 79, 381–390. [Google Scholar] [CrossRef]
- Lim, K.P.; Hamid, S.; Lau, S.-H.; Teo, S.-H.; Cheong, S.C. HPV Infection and the Alterations of the pRB Pathway in Oral Carcinogenesis. Oncol. Rep. 2007, 17, 1321–1326. [Google Scholar] [CrossRef] [PubMed]
- Tsuchida, K.; Sugai, T.; Uesugi, N.; Ishida, K.; Matsuura, K.; Sato, I.; Shiga, K.; Sato, H. Expression of Cell Cycle-Related Proteins in Oropharyngeal Squamous Cell Carcinoma Based on Human Papilloma Virus Status. Oncol. Rep. 2017, 38, 908–916. [Google Scholar] [CrossRef]
- Dong, H.; Strome, S.E.; Salomao, D.R.; Tamura, H.; Hirano, F.; Flies, D.B.; Roche, P.C.; Lu, J.; Zhu, G.; Tamada, K.; et al. Tumor-Associated B7-H1 Promotes T-Cell Apoptosis: A Potential Mechanism of Immune Evasion. Nat. Med. 2002, 8, 793–800. [Google Scholar] [CrossRef]
- Mattox, A.K.; Lee, J.; Westra, W.H.; Pierce, R.H.; Ghossein, R.; Faquin, W.C.; Diefenbach, T.J.; Morris, L.G.; Lin, D.T.; Wirth, L.J.; et al. PD-1 Expression in Head and Neck Squamous Cell Carcinomas Derives Primarily from Functionally Anergic CD4+ TILs in the Presence of PD-L1+ TAMs. Cancer Res. 2017, 77, 6365–6374. [Google Scholar] [CrossRef]
- Weber, M.; Wehrhan, F.; Baran, C.; Agaimy, A.; Büttner-Herold, M.; Preidl, R.; Neukam, F.W.; Ries, J. PD-L1 Expression in Tumor Tissue and Peripheral Blood of Patients with Oral Squamous Cell Carcinoma. Oncotarget 2017, 8, 112584–112597. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.-J.; Tan, Y.-Q.; Zhang, N.; He, M.-J.; Zhou, G. Expression of Programmed Cell Death-Ligand 1 in Oral Squamous Cell Carcinoma and Oral Leukoplakia Is Associated with Disease Progress and CD8+ Tumor-Infiltrating Lymphocytes. Pathol.-Res. Pract. 2019, 215, 152418. [Google Scholar] [CrossRef]
- Zheng, A.; Li, F.; Chen, F.; Zuo, J.; Wang, L.; Wang, Y.; Chen, S.; Xiao, B.; Tao, Z. PD-L1 Promotes Head and Neck Squamous Cell Carcinoma Cell Growth through mTOR Signaling. Oncol. Rep. 2019, 41, 2833–2843. [Google Scholar] [CrossRef]
- Ferris, R.L.; Blumenschein, G.; Fayette, J.; Guigay, J.; Colevas, A.D.; Licitra, L.; Harrington, K.; Kasper, S.; Vokes, E.E.; Even, C.; et al. Nivolumab for Recurrent Squamous-Cell Carcinoma of the Head and Neck. N. Engl. J. Med. 2016, 375, 1856–1867. [Google Scholar] [CrossRef]
- Wang, M.; Qin, L.; Thia, K.; Nguyen, T.; MacDonald, S.; Belobrov, S.; Kranz, S.; Goode, D.; Trapani, J.A.; Wiesenfeld, D.; et al. Cancer Cell-Specific PD-L1 Expression Is a Predictor of Poor Outcome in Patients with Locally Advanced Oral Cavity Squamous Cell Carcinoma. J. Immunother. Cancer 2024, 12, e009617. [Google Scholar] [CrossRef]
- Dave, K.; Ali, A.; Magalhaes, M. Increased Expression of PD-1 and PD-L1 in Oral Lesions Progressing to Oral Squamous Cell Carcinoma: A Pilot Study. Sci. Rep. 2020, 10, 9705. [Google Scholar] [CrossRef] [PubMed]
- Shigeishi, H. Increased Telomerase Activity and hTERT Expression in Human Salivary Gland Carcinomas. Oncol. Lett. 2011, 2, 845–850. [Google Scholar] [CrossRef]
- González-Moles, M.Á.; Moya-González, E.; García-Ferrera, A.; Nieto-Casado, P.; Ramos-García, P. Prognostic and Clinicopathological Significance of Telomerase Reverse Transcriptase Upregulation in Oral Cancer: A Systematic Review and Meta-Analysis. Cancers 2022, 14, 3673. [Google Scholar] [CrossRef]
- Gholizadeh, N.; Yousefian, M.; Mohammadpour, H.; Razavi, A.E.; Talaei, S.; Sheykhbahaei, N. Long Non-Coding RNAs PVT1, CCAT2, and TCF7L2, and miR-33 and c-Myc Expression in Oral Squamous Cell Carcinoma and Oral Lichen Planus Patients. J. Cranio-Maxillofac. Surg. 2025, 53, 1197–1204. [Google Scholar] [CrossRef]
- Lan, T.; Yan, Y.; Zheng, D.; Ding, L. Investigating Diagnostic Potential of Long Non-Coding RNAs in Head and Neck Squamous Cell Carcinoma Using TCGA Database and Clinical Specimens. Sci. Rep. 2024, 14, 7500. [Google Scholar] [CrossRef] [PubMed]
- Fadhil, R.S.; Wei, M.Q.; Nikolarakos, D.; Good, D.; Nair, R.G. Salivary microRNA miR-Let-7a-5p and miR-3928 Could Be Used as Potential Diagnostic Bio-Markers for Head and Neck Squamous Cell Carcinoma. PLoS ONE 2020, 15, e0221779. [Google Scholar] [CrossRef] [PubMed]
- Piao, Y.; Jung, S.-N.; Lim, M.A.; Oh, C.; Jin, Y.L.; Kim, H.J.; Nguyen, Q.K.; Chang, J.W.; Won, H.-R.; Koo, B.S. A Circulating microRNA Panel as a Novel Dynamic Monitor for Oral Squamous Cell Carcinoma. Sci. Rep. 2023, 13, 2000. [Google Scholar] [CrossRef] [PubMed]
- Romani, C.; Salviato, E.; Paderno, A.; Zanotti, L.; Ravaggi, A.; Deganello, A.; Berretti, G.; Gualtieri, T.; Marchini, S.; D’Incalci, M.; et al. Genome-Wide Study of Salivary miRNAs Identifies miR-423-5p as Promising Diagnostic and Prognostic Biomarker in Oral Squamous Cell Carcinoma. Theranostics 2021, 11, 2987–2999. [Google Scholar] [CrossRef]
- Vermorken, J.B.; Trigo, J.; Hitt, R.; Koralewski, P.; Diaz-Rubio, E.; Rolland, F.; Knecht, R.; Amellal, N.; Schueler, A.; Baselga, J. Open-Label, Uncontrolled, Multicenter Phase II Study to Evaluate the Efficacy and Toxicity of Cetuximab As a Single Agent in Patients With Recurrent and/or Metastatic Squamous Cell Carcinoma of the Head and Neck Who Failed to Respond to Platinum-Based Therapy. J. Clin. Oncol. 2007, 25, 2171–2177. [Google Scholar] [CrossRef]
- Ortiz-Cuaran, S.; Bouaoud, J.; Karabajakian, A.; Fayette, J.; Saintigny, P. Precision Medicine Approaches to Overcome Resistance to Therapy in Head and Neck Cancers. Front. Oncol. 2021, 11, 614332. [Google Scholar] [CrossRef]
- Willey, C.D.; Anderson, J.C.; Trummell, H.Q.; Naji, F.; De Wijn, R.; Yang, E.S.; Bredel, M.; Thudi, N.K.; Bonner, J.A. Differential Escape Mechanisms in Cetuximab-Resistant Head and Neck Cancer Cells. Biochem. Biophys. Res. Commun. 2019, 517, 36–42. [Google Scholar] [CrossRef]



Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zou, E.; Venkatraman, C.; Sweeney, J.; Flannery, K.; Lailer, S.; Mehdiyar, D.; Parikh, K.; Salik, M.; Baughman, B.; Arnouk, H. Current and Emerging Protein Biomarkers for the Diagnosis and Prognosis of Head and Neck Cancer. Genes 2025, 16, 1493. https://doi.org/10.3390/genes16121493
Zou E, Venkatraman C, Sweeney J, Flannery K, Lailer S, Mehdiyar D, Parikh K, Salik M, Baughman B, Arnouk H. Current and Emerging Protein Biomarkers for the Diagnosis and Prognosis of Head and Neck Cancer. Genes. 2025; 16(12):1493. https://doi.org/10.3390/genes16121493
Chicago/Turabian StyleZou, Erin, Chethana Venkatraman, Jackson Sweeney, Katy Flannery, Samuel Lailer, Donna Mehdiyar, Komal Parikh, Maryam Salik, Brianna Baughman, and Hilal Arnouk. 2025. "Current and Emerging Protein Biomarkers for the Diagnosis and Prognosis of Head and Neck Cancer" Genes 16, no. 12: 1493. https://doi.org/10.3390/genes16121493
APA StyleZou, E., Venkatraman, C., Sweeney, J., Flannery, K., Lailer, S., Mehdiyar, D., Parikh, K., Salik, M., Baughman, B., & Arnouk, H. (2025). Current and Emerging Protein Biomarkers for the Diagnosis and Prognosis of Head and Neck Cancer. Genes, 16(12), 1493. https://doi.org/10.3390/genes16121493

