A Single-Cell Omics Technical Guide for Advancing Neuropsychiatric Research
Abstract
1. Introduction
2. Technological Advancements That Led to Single-Cell Omics
3. Foundations of Single-Cell Omics: Single-Cell Transcriptomics and Core Concepts
3.1. Single-Cell or Single-Nucleus?
3.2. Methods of Single-Cell Transcriptomics and Their Application in Postmortem Human Brain
3.2.1. Sample Preparation
3.2.2. Single-Cell Capture
3.2.3. Library Construction
3.2.4. Single-Cell Transcriptomic Technologies Applied to Postmortem Human Brain
| Modality | ||||||||||
|---|---|---|---|---|---|---|---|---|---|---|
| Epigenomics | ||||||||||
| Method | Transcriptomics | DNA Methylation | Histone Modifications | 3D Genomic Structure | Chromatin Accessibility | Single-Cell Capture Strategy | Tissue Type Used in Cited Studies | Technique Publication | Applied in Postmortem Human Brain | Applied in Neuropsychiatric Disorders |
| snDrop-seq | ✓ | Droplet-based(MF) | FF-nuclei | [77] | [77] | |||||
| DroNc-seq | ✓ | Droplet-based(MF) | FF-nuclei | [103] | [103] | AD | ||||
| Chromium 3′ Gene Expression | ✓ | Droplet-based (MF) | FF-nuclei | [117] | [45,72,73,78,79,80,81,87,88,132,133,134,135,137,138,139,140,141,145] | MDD, PTSD, OCD, SCZ, SCA, AD, ASD, AN, BN, PD, BD, PTSD, FTD, ADHD, AUD | ||||
| SnISOr-seq/seq2 | ✓ | Droplet-based (MF) | FF-nuclei | [146,147] | [146,147,148] | FTD | ||||
| Smart-seq/seq2 | ✓ | Plate-based (SW) | FF-nuclei | [127,128] | [75,86] | |||||
| sciMETv2/v3 | ✓ | Plate-based (CI) | FF-nuclei | [149,150] | [149,150] | |||||
| Drop-BS | ✓ | Droplet-based (MF) | FF-nuclei | [151] | [151] | |||||
| sciEM | ✓ | Plate-based (CI) | FF-nuclei | [152] | [152] | |||||
| snmC-seq/-seq2/-seq3 | ✓ | Plate-based (SW) | FF- nuclei | [153,154,155] | [153,154,156] | |||||
| sciMET-CAP | ✓ | Plate-based (CI) | FF-nuclei | [157] | [157] | |||||
| nano-CUT&Tag * | ✓ | Droplet-based (MF) | FF-nuclei | [158] | [159] | |||||
| Chromium Epi ATAC | ✓ | Droplet-based (MF) | FF-nuclei | [160] | [132,134,137,141,161,162,163,164,165] | MDD, AD, SCZ, SCA, PD, BD | ||||
| txci-ATAC-seq | ✓ | Plate-based (CI) & Droplet-based (MF) | FF-nuclei | [166] | [166] | |||||
| scTHS-seq | ✓ | Plate-based (CI) | FF-nuclei | [77] | [77] | |||||
| Chromium Epi Multiome ATAC + Gene Expression | ✓ | ✓ | Droplet-based (MF) | FF-nuclei | [132,137,161,167,168] | MDD, PTSD, PD, AD, AUD | ||||
| SnISOr-ATAC | ✓ | ✓ | Droplet-based (MF) | FF-nuclei | [169] | [169] | AD | |||
| MUSIC | ✓ | ✓ | Plate-based (CI) & Droplet-based (MF) | FF-nuclei | [170] | [170] | AD | |||
| snm3C-seq/-seq3 | ✓ | ✓ | Plate-based (SW) | FF-nuclei | [171,172] | [156,171,172] | ||||
| snmCAT-seq/snmCT-seq | ✓ | ✓ | ✓ | Plate-based (SW) | FF-nuclei | [173] | [173,174] | |||
4. Spatial Transcriptomics
4.1. Methods of Spatial Transcriptomics and Their Application in Postmortem Human Brain
4.1.1. Imaging-Based Spatial Transcriptomics
4.1.2. Sequencing-Based Spatial Transcriptomics
4.1.3. Spatial Transcriptomic Technologies Applied to Postmortem Human Brain
| Modality | ||||||||||
|---|---|---|---|---|---|---|---|---|---|---|
| Epigenomics | ||||||||||
| Method | Transcriptomics | Chromatin Accessibility | Proteomics | Metabolomics | Tissue Requirements | Resolution | Imaging-Based or Sequencing-Based | Technique Publication | Applied in Postmortem Human Brain | Applied in Neuropsychiatric Disorders |
| MERFISH/MERSCOPE | ✓ | Type: FF; FxF; FFPE Size: 2 × 1.5 cm Thickness: 10 µm | Subcellular | Imaging | [192] | [142,185] | AD | |||
| EEL FISH | ✓ | Type: FF Size: 24 × 60 mm Thickness: 10 µm | Single-cell | Imaging | [197] | [197] | ||||
| HybISS | ✓ | Type: FF Size: 25 × 75mm Thickness: 5–20 µm | Subcellular | Imaging | [198] | [198] | ||||
| Xenium | ✓ | Type: FF; FFPE Size: 10.45 × 22.45 mm Thickness: 10 µm-FF; 5 µm-FFPE | Subcellular | Imaging | [199] | [132] | PTSD, MDD | |||
| Visium | ✓ | Type: FF; FxF; FFPE Size: 6.5 × 6.5 mm Thickness: 5–35 µm | 55 µm | Sequencing | [175] | [49,72,139,140,180,183] | SCZ, AD | |||
| Stereo-seq | ✓ | Type: FF, FxF, FFPE Size: 13.2 × 13.2 cm Thickness: 5–10 µm | 0.22 µm | Sequencing | [210] | [218] | AD | |||
| Spatial-ATAC-seq | ✓ | Type: FF; FFPE Size: 5.5 × 5.5 mm Thickness: 7–10 µm | 20 µm | Sequencing | [220] | [220] | ||||
| GeoMx DSP | ✓ | ✓ | Type: FF; FFPE Size: 35.3 × 14.1 mm Thickness: 5 µm | 10 µm | Sequencing | [212] | [141,216,217] | ASD, PD, AD | ||
| SMA | ✓ | ✓ | ✓ | Type: FF Size: 5.5 × 5.5 mm Thickness: 10–12 µm | 55 µm | Sequencing | [221] | [221] | PD | |
5. Single-Cell Epigenomics
5.1. Methods of Single-Cell Epigenomics and Their Application in Postmortem Human Brain
5.1.1. DNA Methylation
5.1.2. Single-Cell DNA Methylation Technologies Applied to Postmortem Human Brain
5.1.3. Histone Modifications
5.1.4. Single-Cell Histone Modification Technologies Applied to Postmortem Human Brain
5.1.5. 3D Genomic Structure
5.1.6. Single-Cell 3D Genomic Structure Technologies Applied to Postmortem Human Brain
5.1.7. Chromatin Accessibility
5.1.8. Single-Cell Chromatin Accessibility Technologies Applied to Postmortem Human Brain
5.2. Spatial Epigenomics
6. New Horizons in Single-Cell Omics: Multi-Omics and Beyond
6.1. Methods of New Single-Cell Omics and Their Application in Postmortem Human Brain
6.1.1. Single-Cell Multi-Omics
6.1.2. Spatial Multi-Omics
6.1.3. Single-Cell Multi-Omic Technologies Applied to Postmortem Human Brain
6.1.4. Emerging Single-Cell Omics
6.1.5. Emerging Single-Cell Omics Combined with Other Techniques Applied to Postmortem Human Brain
6.1.6. Single-Cell Omics Combined with Other Techniques
6.1.7. Expansion Microscopy
6.1.8. Long-Read/Third-Generation Sequencing
6.1.9. Single-Cell Omics Combined with Other Techniques Applied to Postmortem Human Brain
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Piwecka, M.; Rajewsky, N.; Rybak-Wolf, A. Single-Cell and Spatial Transcriptomics: Deciphering Brain Complexity in Health and Disease. Nat. Rev. Neurol. 2023, 19, 346–362. [Google Scholar] [CrossRef]
- Skinnider, M.A.; Courtine, G.; Bloch, J.; Squair, J.W. A Clinical Road Map for Single-Cell Omics. Cell 2025, 188, 3633–3647. [Google Scholar] [CrossRef] [PubMed]
- Zhang, A.; Zou, J.; Xi, Y.; Gao, L.; Deng, F.; Liu, Y.; Gao, P.; Tong, H.H.Y.; Tan, L.; Zou, X.; et al. Single-Cell Technology for Drug Discovery and Development. Front. Drug Discov. 2024, 4, 1459962. [Google Scholar] [CrossRef]
- Loscalzo, J. Multi-Omics and Single-Cell Omics: New Tools in Drug Target Discovery. Arterioscler. Thromb. Vasc. Biol. 2024, 44, 759–762. [Google Scholar] [CrossRef] [PubMed]
- Armand, E.J.; Li, J.; Xie, F.; Luo, C.; Mukamel, E.A. Single-Cell Sequencing of Brain Cell Transcriptomes and Epigenomes. Neuron 2021, 109, 11–26. [Google Scholar] [CrossRef]
- Bonev, B.; Castelo-Branco, G.; Chen, F.; Codeluppi, S.; Corces, M.R.; Fan, J.; Heiman, M.; Harris, K.; Inoue, F.; Kellis, M.; et al. Opportunities and Challenges of Single-Cell and Spatially Resolved Genomics Methods for Neuroscience Discovery. Nat. Neurosci. 2024, 27, 2292–2309. [Google Scholar] [CrossRef]
- Adil, A.; Kumar, V.; Jan, A.T.; Asger, M. Single-Cell Transcriptomics: Current Methods and Challenges in Data Acquisition and Analysis. Front. Neurosci. 2021, 15, 591122. [Google Scholar] [CrossRef]
- Baysoy, A.; Bai, Z.; Satija, R.; Fan, R. The Technological Landscape and Applications of Single-Cell Multi-Omics. Nat. Rev. Mol. Cell Biol. 2023, 24, 695–713. [Google Scholar] [CrossRef]
- Butto, T.; Mungikar, K.; Baumann, P.; Winter, J.; Lutz, B.; Gerber, S. Nuclei on the Rise: When Nuclei-Based Methods Meet Next-Generation Sequencing. Cells 2023, 12, 1051. [Google Scholar] [CrossRef]
- Cheng, M.; Jiang, Y.; Xu, J.; Mentis, A.-F.A.; Wang, S.; Zheng, H.; Sahu, S.K.; Liu, L.; Xu, X. Spatially Resolved Transcriptomics: A Comprehensive Review of Their Technological Advances, Applications, and Challenges. J. Genet. Genom. 2023, 50, 625–640. [Google Scholar] [CrossRef]
- Duhan, L.; Kumari, D.; Naime, M.; Parmar, V.S.; Chhillar, A.K.; Dangi, M.; Pasrija, R. Single-Cell Transcriptomics: Background, Technologies, Applications, and Challenges. Mol. Biol. Rep. 2024, 51, 600. [Google Scholar] [CrossRef]
- Flynn, E.; Almonte-Loya, A.; Fragiadakis, G.K. Single-Cell Multiomics. Annu. Rev. Biomed. Data Sci. 2023, 6, 313–337. [Google Scholar] [CrossRef]
- Gulati, G.S.; D’Silva, J.P.; Liu, Y.; Wang, L.; Newman, A.M. Profiling Cell Identity and Tissue Architecture with Single-Cell and Spatial Transcriptomics. Nat. Rev. Mol. Cell. Biol. 2025, 26, 11–31. [Google Scholar] [CrossRef]
- Jain, S.; Eadon, M.T. Spatial Transcriptomics in Health and Disease. Nat. Rev. Nephrol. 2024, 20, 659–671. [Google Scholar] [CrossRef]
- Jovic, D.; Liang, X.; Zeng, H.; Lin, L.; Xu, F.; Luo, Y. Single-cell RNA Sequencing Technologies and Applications: A Brief Overview. Clin. Transl. Med. 2022, 12, e694. [Google Scholar] [CrossRef] [PubMed]
- Kulkarni, A.; Anderson, A.G.; Merullo, D.P.; Konopka, G. Beyond Bulk: A Review of Single Cell Transcriptomics Methodologies and Applications. Curr. Opin. Biotechnol. 2019, 58, 129–136. [Google Scholar] [CrossRef] [PubMed]
- Lim, J.; Park, C.; Kim, M.; Kim, H.; Kim, J.; Lee, D.-S. Advances in Single-Cell Omics and Multiomics for High-Resolution Molecular Profiling. Exp. Mol. Med. 2024, 56, 515–526. [Google Scholar] [CrossRef]
- Moffitt, J.R.; Lundberg, E.; Heyn, H. The Emerging Landscape of Spatial Profiling Technologies. Nat. Rev. Genet. 2022, 23, 741–759. [Google Scholar] [CrossRef]
- Moses, L.; Pachter, L. Museum of Spatial Transcriptomics. Nat. Methods 2022, 19, 534–546. [Google Scholar] [CrossRef]
- Park, H.-E.; Jo, S.H.; Lee, R.H.; Macks, C.P.; Ku, T.; Park, J.; Lee, C.W.; Hur, J.K.; Sohn, C.H. Spatial Transcriptomics: Technical Aspects of Recent Developments and Their Applications in Neuroscience and Cancer Research. Adv. Sci. 2023, 10, e2206939. [Google Scholar] [CrossRef]
- Sant, P.; Rippe, K.; Mallm, J.-P. Approaches for Single-Cell RNA Sequencing across Tissues and Cell Types. Transcription 2023, 14, 127–145. [Google Scholar] [CrossRef]
- Shang, Y.; Wang, Z.; Xi, L.; Wang, Y.; Liu, M.; Feng, Y.; Wang, J.; Wu, Q.; Xiang, X.; Chen, M.; et al. Droplet-Based Single-Cell Sequencing: Strategies and Applications. Biotechnol. Adv. 2024, 77, 108454. [Google Scholar] [CrossRef] [PubMed]
- Regan, C.; Preall, J. Practical Considerations for Single-Cell Genomics. Curr. Protoc. 2022, 2, e498. [Google Scholar] [CrossRef]
- Tian, L.; Chen, F.; Macosko, E.Z. The Expanding Vistas of Spatial Transcriptomics. Nat. Biotechnol. 2023, 41, 773–782. [Google Scholar] [CrossRef]
- Valihrach, L.; Zucha, D.; Abaffy, P.; Kubista, M. A Practical Guide to Spatial Transcriptomics. Mol. Asp. Med. 2024, 97, 101276. [Google Scholar] [CrossRef] [PubMed]
- Vandereyken, K.; Sifrim, A.; Thienpont, B.; Voet, T. Methods and Applications for Single-Cell and Spatial Multi-Omics. Nat. Rev. Genet. 2023, 24, 494–515. [Google Scholar] [CrossRef]
- Ziegenhain, C.; Vieth, B.; Parekh, S.; Reinius, B.; Guillaumet-Adkins, A.; Smets, M.; Leonhardt, H.; Heyn, H.; Hellmann, I.; Enard, W. Comparative Analysis of Single-Cell RNA Sequencing Methods. Mol. Cell 2017, 65, 631–643.e4. [Google Scholar] [CrossRef]
- Jonghe, J.D.; Opzoomer, J.W.; Vilas-Zornoza, A.; Nilges, B.S.; Crane, P.; Vicari, M.; Lee, H.; Lara-Astiaso, D.; Gross, T.; Morf, J.; et al. scTrends: A Living Review of Commercial Single-Cell and Spatial ’omic Technologies. Cell Genom. 2024, 4, 100723. [Google Scholar] [CrossRef]
- Grases, D.; Porta-Pardo, E. A Practical Guide to Spatial Transcriptomics: Lessons from over 1000 Samples. Trends Biotechnol. 2025. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.; Lareau, C.; Andreani, T.; Vinyard, M.E.; Garcia, S.P.; Clement, K.; Andrade-Navarro, M.A.; Buenrostro, J.D.; Pinello, L. Assessment of Computational Methods for the Analysis of Single-Cell ATAC-Seq Data. Genome Biol. 2019, 20, 241. [Google Scholar] [CrossRef]
- Heumos, L.; Schaar, A.C.; Lance, C.; Litinetskaya, A.; Drost, F.; Zappia, L.; Lücken, M.D.; Strobl, D.C.; Henao, J.; Curion, F.; et al. Best Practices for Single-Cell Analysis across Modalities. Nat. Rev. Genet. 2023, 24, 550–572. [Google Scholar] [CrossRef]
- Iqbal, W.; Zhou, W. Computational Methods for Single-Cell DNA Methylome Analysis. Genom. Proteom. Bioinform. 2023, 21, 48–66. [Google Scholar] [CrossRef]
- Li, X.; An, Z.; Zhang, Z. Comparison of Computational Methods for 3D Genome Analysis at Single-Cell Hi-C Level. Methods 2020, 181–182, 52–61. [Google Scholar] [CrossRef]
- Luo, S.; Germain, P.-L.; Robinson, M.D.; von Meyenn, F. Benchmarking Computational Methods for Single-Cell Chromatin Data Analysis. Genome Biol. 2024, 25, 225. [Google Scholar] [CrossRef] [PubMed]
- Raimundo, F.; Prompsy, P.; Vert, J.-P.; Vallot, C. A Benchmark of Computational Pipelines for Single-Cell Histone Modification Data. Genome Biol. 2023, 24, 143. [Google Scholar] [CrossRef]
- Yu, F.; Sankaran, V.G.; Yuan, G.-C. CUT&RUNTools 2.0: A Pipeline for Single-Cell and Bulk-Level CUT&RUN and CUT&Tag Data Analysis. Bioinformatics 2021, 38, 252–254. [Google Scholar] [CrossRef] [PubMed]
- Velten, B.; Stegle, O. Principles and Challenges of Modeling Temporal and Spatial Omics Data. Nat. Methods 2023, 20, 1462–1474. [Google Scholar] [CrossRef]
- CZI Cell Science Program; Abdulla, S.; Aevermann, B.; Assis, P.; Badajoz, S.; Bell, S.M.; Bezzi, E.; Cakir, B.; Chaffer, J.; Chambers, S.; et al. CZ CELLxGENE Discover: A Single-Cell Data Platform for Scalable Exploration, Analysis and Modeling of Aggregated Data. Nucleic Acids Res. 2025, 53, D886–D900. [Google Scholar] [CrossRef] [PubMed]
- Regev, A.; Teichmann, S.A.; Lander, E.S.; Amit, I.; Benoist, C.; Birney, E.; Bodenmiller, B.; Campbell, P.; Carninci, P.; Clatworthy, M.; et al. The Human Cell Atlas. eLife 2017, 6, e27041. [Google Scholar] [CrossRef]
- Chen, X.; Huang, Y.; Huang, L.; Huang, Z.; Hao, Z.-Z.; Xu, L.; Xu, N.; Li, Z.; Mou, Y.; Ye, M.; et al. A Brain Cell Atlas Integrating Single-Cell Transcriptomes across Human Brain Regions. Nat. Med. 2024, 30, 2679–2691. [Google Scholar] [CrossRef]
- Zhang, K.; Hocker, J.D.; Miller, M.; Hou, X.; Chiou, J.; Poirion, O.B.; Qiu, Y.; Li, Y.E.; Gaulton, K.J.; Wang, A.; et al. A Single-Cell Atlas of Chromatin Accessibility in the Human Genome. Cell 2021, 184, 5985–6001.e19. [Google Scholar] [CrossRef]
- Tarhan, L.; Bistline, J.; Chang, J.; Galloway, B.; Hanna, E.; Weitz, E. Single Cell Portal: An Interactive Home for Single-Cell Genomics Data. bioRxiv 2023. [Google Scholar] [CrossRef]
- PsychENCODE Consortium; Akbarian, S.; Liu, C.; Knowles, J.A.; Vaccarino, F.M.; Farnham, P.J.; Crawford, G.E.; Jaffe, A.E.; Pinto, D.; Dracheva, S.; et al. The PsychENCODE Project. Nat. Neurosci. 2015, 18, 1707–1712. [Google Scholar] [CrossRef]
- Dunham, I.; Kundaje, A.; Aldred, S.F.; Collins, P.J.; Davis, C.A.; Doyle, F.; Epstein, C.B.; Frietze, S.; Harrow, J.; Kaul, R.; et al. An Integrated Encyclopedia of DNA Elements in the Human Genome. Nature 2012, 489, 57–74. [Google Scholar] [CrossRef]
- Siletti, K.; Hodge, R.; Mossi Albiach, A.; Lee, K.W.; Ding, S.-L.; Hu, L.; Lönnerberg, P.; Bakken, T.; Casper, T.; Clark, M.; et al. Transcriptomic Diversity of Cell Types across the Adult Human Brain. Science 2023, 382, eadd7046. [Google Scholar] [CrossRef] [PubMed]
- Huisman, S.M.H.; van Lew, B.; Mahfouz, A.; Pezzotti, N.; Höllt, T.; Michielsen, L.; Vilanova, A.; Reinders, M.J.T.; Lelieveldt, B.P.F. BrainScope: Interactive Visual Exploration of the Spatial and Temporal Human Brain Transcriptome. Nucleic Acids Res. 2017, 45, e83. [Google Scholar] [CrossRef] [PubMed]
- BRAIN Initiative Cell Census Network (BICCN). A Multimodal Cell Census and Atlas of the Mammalian Primary Motor Cortex. Nature 2021, 598, 86–102. [Google Scholar] [CrossRef]
- Pardo, B.; Spangler, A.; Weber, L.M.; Page, S.C.; Hicks, S.C.; Jaffe, A.E.; Martinowich, K.; Maynard, K.R.; Collado-Torres, L. spatialLIBD: An R/Bioconductor Package to Visualize Spatially-Resolved Transcriptomics Data. BMC Genom. 2022, 23, 434. [Google Scholar] [CrossRef] [PubMed]
- Maynard, K.R.; Collado-Torres, L.; Weber, L.M.; Uytingco, C.; Barry, B.K.; Williams, S.R.; Catallini, J.L.; Tran, M.N.; Besich, Z.; Tippani, M.; et al. Transcriptome-Scale Spatial Gene Expression in the Human Dorsolateral Prefrontal Cortex. Nat. Neurosci. 2021, 24, 425–436. [Google Scholar] [CrossRef]
- Speir, M.L.; Bhaduri, A.; Markov, N.S.; Moreno, P.; Nowakowski, T.J.; Papatheodorou, I.; Pollen, A.A.; Raney, B.J.; Seninge, L.; Kent, W.J.; et al. UCSC Cell Browser: Visualize Your Single-Cell Data. Bioinformatics 2021, 37, 4578–4580. [Google Scholar] [CrossRef]
- Uhlén, M.; Fagerberg, L.; Hallström, B.M.; Lindskog, C.; Oksvold, P.; Mardinoglu, A.; Sivertsson, Å.; Kampf, C.; Sjöstedt, E.; Asplund, A.; et al. Tissue-Based Map of the Human Proteome. Science 2015, 347, 1260419. [Google Scholar] [CrossRef] [PubMed]
- Song, L.; Pan, S.; Zhang, Z.; Jia, L.; Chen, W.-H.; Zhao, X.-M. STAB: A Spatio-Temporal Cell Atlas of the Human Brain. Nucleic Acids Res. 2021, 49, D1029–D1037. [Google Scholar] [CrossRef]
- Ament, S.A.; Adkins, R.S.; Carter, R.; Chrysostomou, E.; Colantuoni, C.; Crabtree, J.; Creasy, H.H.; Degatano, K.; Felix, V.; Gandt, P.; et al. The Neuroscience Multi-Omic Archive: A BRAIN Initiative Resource for Single-Cell Transcriptomic and Epigenomic Data from the Mammalian Brain. Nucleic Acids Res. 2023, 51, D1075–D1085. [Google Scholar] [CrossRef]
- Xu, Z.; Wang, W.; Yang, T.; Li, L.; Ma, X.; Chen, J.; Wang, J.; Huang, Y.; Gould, J.; Lu, H.; et al. STOmicsDB: A Comprehensive Database for Spatial Transcriptomics Data Sharing, Analysis and Visualization. Nucleic Acids Res. 2024, 52, D1053–D1061. [Google Scholar] [CrossRef]
- Mullis, K.; Faloona, F.; Scharf, S.; Saiki, R.; Horn, G.; Erlich, H. Specific Enzymatic Amplification of DNA in Vitro: The Polymerase Chain Reaction. Cold Spring Harb. Symp. Quant. Biol. 1986, 51 Pt 1, 263–273. [Google Scholar] [CrossRef]
- Nirenberg, M.W.; Matthaei, J.H. The Dependence of Cell-Free Protein Synthesis in E. coli upon Naturally Occurring or Synthetic Polyribonucleotides. Proc. Natl. Acad. Sci. USA 1961, 47, 1588–1602. [Google Scholar] [CrossRef]
- Brady, G.; Barbara, M.; Iscove, N.N. Representative in Vitro cDNA Amplification From Individual Hemopoietic Cells and Colonies. Methods Mol. Cell Biol. 1990, 2, 17–25. [Google Scholar]
- Eberwine, J.; Yeh, H.; Miyashiro, K.; Cao, Y.; Nair, S.; Finnell, R.; Zettel, M.; Coleman, P. Analysis of Gene Expression in Single Live Neurons. Proc. Natl. Acad. Sci. USA 1992, 89, 3010–3014. [Google Scholar] [CrossRef] [PubMed]
- Tang, F.; Barbacioru, C.; Wang, Y.; Nordman, E.; Lee, C.; Xu, N.; Wang, X.; Bodeau, J.; Tuch, B.B.; Siddiqui, A.; et al. mRNA-Seq Whole-Transcriptome Analysis of a Single Cell. Nat. Methods 2009, 6, 377–382. [Google Scholar] [CrossRef] [PubMed]
- Hulett, H.R.; Bonner, W.A.; Barrett, J.; Herzenberg, L.A. Cell Sorting: Automated Separation of Mammalian Cells as a Function of Intracellular Fluorescence. Science 1969, 166, 747–749. [Google Scholar] [CrossRef]
- Dammer, E.B.; Duong, D.M.; Diner, I.; Gearing, M.; Feng, Y.; Lah, J.J.; Levey, A.I.; Seyfried, N.T. Neuron Enriched Nuclear Proteome Isolated from Human Brain. J. Proteome Res. 2013, 12, 3193–3206. [Google Scholar] [CrossRef]
- Mussa, Z.; Tome-Garcia, J.; Jiang, Y.; Akbarian, S.; Tsankova, N.M. Isolation of Adult Human Astrocyte Populations from Fresh-Frozen Cortex Using Fluorescence-Activated Nuclei Sorting. J. Vis. Exp. 2021, 170, e62405. [Google Scholar] [CrossRef]
- McKinnon, K.M. Flow Cytometry: An Overview. Curr. Protoc. Immunol. 2018, 120, 5.1.1–5.1.11. [Google Scholar] [CrossRef]
- Miltenyi, S.; Müller, W.; Weichel, W.; Radbruch, A. High Gradient Magnetic Cell Separation with MACS. Cytometry 1990, 11, 231–238. [Google Scholar] [CrossRef]
- Murphy, T.W.; Zhang, Q.; Naler, L.B.; Ma, S.; Lu, C. Recent Advances in the Use of Microfluidic Technologies for Single Cell Analysis. Analyst 2017, 143, 60–80. [Google Scholar] [CrossRef]
- Nature Methods Method of the Year 2013. Nat. Methods 2014, 11, 1. [CrossRef] [PubMed]
- Schepers, K.; Swart, E.; van Heijst, J.W.J.; Gerlach, C.; Castrucci, M.; Sie, D.; Heimerikx, M.; Velds, A.; Kerkhoven, R.M.; Arens, R.; et al. Dissecting T Cell Lineage Relationships by Cellular Barcoding. J. Exp. Med. 2008, 205, 2309–2318. [Google Scholar] [CrossRef] [PubMed]
- van Heijst, J.W.J.; Gerlach, C.; Swart, E.; Sie, D.; Nunes-Alves, C.; Kerkhoven, R.M.; Arens, R.; Correia-Neves, M.; Schepers, K.; Schumacher, T.N.M. Recruitment of Antigen-Specific CD8+ T Cells in Response to Infection Is Markedly Efficient. Science 2009, 325, 1265–1269. [Google Scholar] [CrossRef] [PubMed]
- Klein, A.M.; Mazutis, L.; Akartuna, I.; Tallapragada, N.; Veres, A.; Li, V.; Peshkin, L.; Weitz, D.A.; Kirschner, M.W. Droplet Barcoding for Single-Cell Transcriptomics Applied to Embryonic Stem Cells. Cell 2015, 161, 1187–1201. [Google Scholar] [CrossRef]
- Macosko, E.Z.; Basu, A.; Satija, R.; Nemesh, J.; Shekhar, K.; Goldman, M.; Tirosh, I.; Bialas, A.R.; Kamitaki, N.; Martersteck, E.M.; et al. Highly Parallel Genome-Wide Expression Profiling of Individual Cells Using Nanoliter Droplets. Cell 2015, 161, 1202–1214. [Google Scholar] [CrossRef]
- Islam, S.; Zeisel, A.; Joost, S.; La Manno, G.; Zajac, P.; Kasper, M.; Lönnerberg, P.; Linnarsson, S. Quantitative Single-Cell RNA-Seq with Unique Molecular Identifiers. Nat. Methods 2014, 11, 163–166. [Google Scholar] [CrossRef]
- Batiuk, M.Y.; Tyler, T.; Dragicevic, K.; Mei, S.; Rydbirk, R.; Petukhov, V.; Deviatiiarov, R.; Sedmak, D.; Frank, E.; Feher, V.; et al. Upper Cortical Layer–Driven Network Impairment in Schizophrenia. Sci. Adv. 2022, 8, eabn8367. [Google Scholar] [CrossRef]
- Brenner, E.; Tiwari, G.R.; Kapoor, M.; Liu, Y.; Brock, A.; Mayfield, R.D. Single Cell Transcriptome Profiling of the Human Alcohol-Dependent Brain. Hum. Mol. Genet. 2020, 29, 1144–1153. [Google Scholar] [CrossRef]
- Jaitin, D.A.; Kenigsberg, E.; Keren-Shaul, H.; Elefant, N.; Paul, F.; Zaretsky, I.; Mildner, A.; Cohen, N.; Jung, S.; Tanay, A.; et al. Massively Parallel Single-Cell RNA-Seq for Marker-Free Decomposition of Tissues into Cell Types. Science 2014, 343, 776–779. [Google Scholar] [CrossRef]
- Krishnaswami, S.R.; Grindberg, R.V.; Novotny, M.; Venepally, P.; Lacar, B.; Bhutani, K.; Linker, S.B.; Pham, S.; Erwin, J.A.; Miller, J.A.; et al. Using Single Nuclei for RNA-Seq to Capture the Transcriptome of Postmortem Neurons. Nat. Protoc. 2016, 11, 499–524. [Google Scholar] [CrossRef]
- Lake, B.B.; Ai, R.; Kaeser, G.E.; Salathia, N.S.; Yung, Y.C.; Liu, R.; Wildberg, A.; Gao, D.; Fung, H.-L.; Chen, S.; et al. Neuronal Subtypes and Diversity Revealed by Single-Nucleus RNA Sequencing of the Human Brain. Science 2016, 352, 1586–1590. [Google Scholar] [CrossRef] [PubMed]
- Lake, B.B.; Chen, S.; Sos, B.C.; Fan, J.; Kaeser, G.E.; Yung, Y.C.; Duong, T.E.; Gao, D.; Chun, J.; Kharchenko, P.V.; et al. Integrative Single-Cell Analysis of Transcriptional and Epigenetic States in the Human Adult Brain. Nat. Biotechnol. 2018, 36, 70–80. [Google Scholar] [CrossRef] [PubMed]
- Maitra, M.; Mitsuhashi, H.; Rahimian, R.; Chawla, A.; Yang, J.; Fiori, L.M.; Davoli, M.A.; Perlman, K.; Aouabed, Z.; Mash, D.C.; et al. Cell Type Specific Transcriptomic Differences in Depression Show Similar Patterns between Males and Females but Implicate Distinct Cell Types and Genes. Nat. Commun. 2023, 14, 2912. [Google Scholar] [CrossRef] [PubMed]
- Mathys, H.; Davila-Velderrain, J.; Peng, Z.; Gao, F.; Mohammadi, S.; Young, J.Z.; Menon, M.; He, L.; Abdurrob, F.; Jiang, X.; et al. Single-Cell Transcriptomic Analysis of Alzheimer’s Disease. Nature 2019, 570, 332–337. [Google Scholar] [CrossRef]
- Nagy, C.; Maitra, M.; Tanti, A.; Suderman, M.; Théroux, J.-F.; Davoli, M.A.; Perlman, K.; Yerko, V.; Wang, Y.C.; Tripathy, S.J.; et al. Single-Nucleus Transcriptomics of the Prefrontal Cortex in Major Depressive Disorder Implicates Oligodendrocyte Precursor Cells and Excitatory Neurons. Nat. Neurosci. 2020, 23, 771–781. [Google Scholar] [CrossRef]
- Sorrells, S.F.; Paredes, M.F.; Velmeshev, D.; Herranz-Pérez, V.; Sandoval, K.; Mayer, S.; Chang, E.F.; Insausti, R.; Kriegstein, A.R.; Rubenstein, J.L.; et al. Immature Excitatory Neurons Develop during Adolescence in the Human Amygdala. Nat. Commun. 2019, 10, 2748. [Google Scholar] [CrossRef] [PubMed]
- Jaffe, A.E.; Hoeppner, D.J.; Saito, T.; Blanpain, L.; Ukaigwe, J.; Burke, E.E.; Collado-Torres, L.; Tao, R.; Tajinda, K.; Maynard, K.R.; et al. Profiling Gene Expression in the Human Dentate Gyrus Granule Cell Layer Reveals Insights into Schizophrenia and Its Genetic Risk. Nat. Neurosci. 2020, 23, 510–519. [Google Scholar] [CrossRef]
- Li, Y.; Li, Z.; Wang, C.; Yang, M.; He, Z.; Wang, F.; Zhang, Y.; Li, R.; Gong, Y.; Wang, B.; et al. Spatiotemporal Transcriptome Atlas Reveals the Regional Specification of the Developing Human Brain. Cell 2023, 186, 5892–5909.e22. [Google Scholar] [CrossRef] [PubMed]
- Gandal, M.J.; Zhang, P.; Hadjimichael, E.; Walker, R.L.; Chen, C.; Liu, S.; Won, H.; van Bakel, H.; Varghese, M.; Wang, Y.; et al. Transcriptome-Wide Isoform-Level Dysregulation in ASD, Schizophrenia, and Bipolar Disorder. Science 2018, 362, eaat8127. [Google Scholar] [CrossRef]
- Herrero, M.J.; Velmeshev, D.; Hernandez-Pineda, D.; Sethi, S.; Sorrells, S.; Banerjee, P.; Sullivan, C.; Gupta, A.R.; Kriegstein, A.R.; Corbin, J.G. Identification of Amygdala-Expressed Genes Associated with Autism Spectrum Disorder. Mol. Autism 2020, 11, 39. [Google Scholar] [CrossRef]
- Hodge, R.D.; Bakken, T.E.; Miller, J.A.; Smith, K.A.; Barkan, E.R.; Graybuck, L.T.; Close, J.L.; Long, B.; Johansen, N.; Penn, O.; et al. Conserved Cell Types with Divergent Features in Human versus Mouse Cortex. Nature 2019, 573, 61–68. [Google Scholar] [CrossRef]
- Puvogel, S.; Alsema, A.; Kracht, L.; Webster, M.J.; Weickert, C.S.; Sommer, I.E.C.; Eggen, B.J.L. Single-Nucleus RNA Sequencing of Midbrain Blood-Brain Barrier Cells in Schizophrenia Reveals Subtle Transcriptional Changes with Overall Preservation of Cellular Proportions and Phenotypes. Mol. Psychiatry 2022, 27, 4731–4740. [Google Scholar] [CrossRef]
- Velmeshev, D.; Schirmer, L.; Jung, D.; Haeussler, M.; Perez, Y.; Mayer, S.; Bhaduri, A.; Goyal, N.; Rowitch, D.H.; Kriegstein, A.R. Single-Cell Genomics Identifies Cell Type-Specific Molecular Changes in Autism. Science 2019, 364, 685–689. [Google Scholar] [CrossRef] [PubMed]
- Yuan, J.; Dong, K.; Wu, H.; Zeng, X.; Liu, X.; Liu, Y.; Dai, J.; Yin, J.; Chen, Y.; Guo, Y.; et al. Single-Nucleus Multi-Omics Analyses Reveal Cellular and Molecular Innovations in the Anterior Cingulate Cortex during Primate Evolution. Cell Genom. 2024, 4, 100703. [Google Scholar] [CrossRef]
- Krienen, F.M.; Goldman, M.; Zhang, Q.; del Rosario, R.C.; Florio, M.; Machold, R.; Saunders, A.; Levandowski, K.; Zaniewski, H.; Schuman, B.; et al. Innovations Present in the Primate Interneuron Repertoire. Nature 2020, 586, 262–269. [Google Scholar] [CrossRef]
- Bakken, T.E.; Hodge, R.D.; Miller, J.A.; Yao, Z.; Nguyen, T.N.; Aevermann, B.; Barkan, E.; Bertagnolli, D.; Casper, T.; Dee, N.; et al. Single-Nucleus and Single-Cell Transcriptomes Compared in Matched Cortical Cell Types. PLoS ONE 2018, 13, e0209648. [Google Scholar] [CrossRef]
- van den Brink, S.C.; Sage, F.; Vértesy, Á.; Spanjaard, B.; Peterson-Maduro, J.; Baron, C.S.; Robin, C.; van Oudenaarden, A. Single-Cell Sequencing Reveals Dissociation-Induced Gene Expression in Tissue Subpopulations. Nat. Methods 2017, 14, 935–936. [Google Scholar] [CrossRef]
- Darmanis, S.; Sloan, S.A.; Zhang, Y.; Enge, M.; Caneda, C.; Shuer, L.M.; Hayden Gephart, M.G.; Barres, B.A.; Quake, S.R. A Survey of Human Brain Transcriptome Diversity at the Single Cell Level. Proc. Natl. Acad. Sci. USA 2015, 112, 7285–7290. [Google Scholar] [CrossRef] [PubMed]
- McGann, L.E.; Yang, H.Y.; Walterson, M. Manifestations of Cell Damage after Freezing and Thawing. Cryobiology 1988, 25, 178–185. [Google Scholar] [CrossRef] [PubMed]
- Stan, A.D.; Ghose, S.; Gao, X.-M.; Roberts, R.C.; Lewis-Amezcua, K.; Hatanpaa, K.J.; Tamminga, C.A. Human Postmortem Tissue: What Quality Markers Matter? Brain Res. 2006, 1123, 1–11. [Google Scholar] [CrossRef]
- Lake, B.B.; Codeluppi, S.; Yung, Y.C.; Gao, D.; Chun, J.; Kharchenko, P.V.; Linnarsson, S.; Zhang, K. A Comparative Strategy for Single-Nucleus and Single-Cell Transcriptomes Confirms Accuracy in Predicted Cell-Type Expression from Nuclear RNA. Sci. Rep. 2017, 7, 6031. [Google Scholar] [CrossRef]
- Thrupp, N.; Sala Frigerio, C.; Wolfs, L.; Skene, N.G.; Fattorelli, N.; Poovathingal, S.; Fourne, Y.; Matthews, P.M.; Theys, T.; Mancuso, R.; et al. Single-Nucleus RNA-Seq Is Not Suitable for Detection of Microglial Activation Genes in Humans. Cell Rep. 2020, 32, 108189. [Google Scholar] [CrossRef] [PubMed]
- Caglayan, E.; Liu, Y.; Konopka, G. Neuronal Ambient RNA Contamination Causes Misinterpreted and Masked Cell Types in Brain Single-Nuclei Datasets. Neuron 2022, 110, 4043–4056.e5. [Google Scholar] [CrossRef]
- Gross, A.; Schoendube, J.; Zimmermann, S.; Steeb, M.; Zengerle, R.; Koltay, P. Technologies for Single-Cell Isolation. Int. J. Mol. Sci. 2015, 16, 16897–16919. [Google Scholar] [CrossRef]
- Sutermaster, B.A.; Darling, E.M. Considerations for High-Yield, High-Throughput Cell Enrichment: Fluorescence versus Magnetic Sorting. Sci. Rep. 2019, 9, 227. [Google Scholar] [CrossRef]
- Maitra, M.; Nagy, C.; Chawla, A.; Wang, Y.C.; Nascimento, C.; Suderman, M.; Théroux, J.-F.; Mechawar, N.; Ragoussis, J.; Turecki, G. Extraction of Nuclei from Archived Postmortem Tissues for Single-Nucleus Sequencing Applications. Nat. Protoc. 2021, 16, 2788–2801. [Google Scholar] [CrossRef] [PubMed]
- Grubman, A.; Chew, G.; Ouyang, J.F.; Sun, G.; Choo, X.Y.; McLean, C.; Simmons, R.K.; Buckberry, S.; Vargas-Landin, D.B.; Poppe, D.; et al. A Single-Cell Atlas of Entorhinal Cortex from Individuals with Alzheimer’s Disease Reveals Cell-Type-Specific Gene Expression Regulation. Nat. Neurosci. 2019, 22, 2087–2097. [Google Scholar] [CrossRef]
- Habib, N.; Avraham-Davidi, I.; Basu, A.; Burks, T.; Shekhar, K.; Hofree, M.; Choudhury, S.R.; Aguet, F.; Gelfand, E.; Ardlie, K.; et al. Massively Parallel Single-Nucleus RNA-Seq with DroNc-Seq. Nat. Methods 2017, 14, 955–958. [Google Scholar] [CrossRef] [PubMed]
- Jäkel, S.; Agirre, E.; Mendanha Falcão, A.; van Bruggen, D.; Lee, K.W.; Knuesel, I.; Malhotra, D.; ffrench-Constant, C.; Williams, A.; Castelo-Branco, G. Altered Human Oligodendrocyte Heterogeneity in Multiple Sclerosis. Nature 2019, 566, 543–547. [Google Scholar] [CrossRef] [PubMed]
- Nikodemova, M.; Watters, J.J. Efficient Isolation of Live Microglia with Preserved Phenotypes from Adult Mouse Brain. J. Neuroinflammation 2012, 9, 147. [Google Scholar] [CrossRef]
- Finlay, D.R.; Newmeyer, D.D.; Price, T.M.; Forbes, D.J. Inhibition of in Vitro Nuclear Transport by a Lectin That Binds to Nuclear Pores. J. Cell Biol. 1987, 104, 189–200. [Google Scholar] [CrossRef]
- Tasic, B.; Menon, V.; Nguyen, T.N.; Kim, T.K.; Jarsky, T.; Yao, Z.; Levi, B.; Gray, L.T.; Sorensen, S.A.; Dolbeare, T.; et al. Adult Mouse Cortical Cell Taxonomy Revealed by Single Cell Transcriptomics. Nat. Neurosci. 2016, 19, 335–346. [Google Scholar] [CrossRef]
- Paul, A.; Crow, M.; Raudales, R.; He, M.; Gillis, J.; Huang, Z.J. Transcriptional Architecture of Synaptic Communication Delineates GABAergic Neuron Identity. Cell 2017, 171, 522–539.e20. [Google Scholar] [CrossRef]
- Robinson, J.P.; Ostafe, R.; Iyengar, S.N.; Rajwa, B.; Fischer, R. Flow Cytometry: The Next Revolution. Cells 2023, 12, 1875. [Google Scholar] [CrossRef]
- Rosenberg, A.B.; Roco, C.M.; Muscat, R.A.; Kuchina, A.; Sample, P.; Yao, Z.; Graybuck, L.T.; Peeler, D.J.; Mukherjee, S.; Chen, W.; et al. Single-Cell Profiling of the Developing Mouse Brain and Spinal Cord with Split-Pool Barcoding. Science 2018, 360, 176–182. [Google Scholar] [CrossRef]
- Cao, J.; Packer, J.S.; Ramani, V.; Cusanovich, D.A.; Huynh, C.; Daza, R.; Qiu, X.; Lee, C.; Furlan, S.N.; Steemers, F.J.; et al. Comprehensive Single-Cell Transcriptional Profiling of a Multicellular Organism. Science 2017, 357, 661–667. [Google Scholar] [CrossRef]
- Martin, B.K.; Qiu, C.; Nichols, E.; Phung, M.; Green-Gladden, R.; Srivatsan, S.; Blecher-Gonen, R.; Beliveau, B.J.; Trapnell, C.; Cao, J.; et al. Optimized Single-Nucleus Transcriptional Profiling by Combinatorial Indexing. Nat. Protoc. 2023, 18, 188–207. [Google Scholar] [CrossRef]
- Yin, Y.; Jiang, Y.; Lam, K.-W.G.; Berletch, J.B.; Disteche, C.M.; Noble, W.S.; Steemers, F.J.; Camerini-Otero, R.D.; Adey, A.C.; Shendure, J. High-Throughput Single-Cell Sequencing with Linear Amplification. Mol. Cell 2019, 76, 676–690.e10. [Google Scholar] [CrossRef] [PubMed]
- Clark, I.C.; Fontanez, K.M.; Meltzer, R.H.; Xue, Y.; Hayford, C.; May-Zhang, A.; D’Amato, C.; Osman, A.; Zhang, J.Q.; Hettige, P.; et al. Microfluidics-Free Single-Cell Genomics with Templated Emulsification. Nat. Biotechnol. 2023, 41, 1557–1566. [Google Scholar] [CrossRef] [PubMed]
- Islam, S.; Kjällquist, U.; Moliner, A.; Zajac, P.; Fan, J.-B.; Lönnerberg, P.; Linnarsson, S. Highly Multiplexed and Strand-Specific Single-Cell RNA 5′ End Sequencing. Nat. Protoc. 2012, 7, 813–828. [Google Scholar] [CrossRef] [PubMed]
- Tang, D.T.P.; Plessy, C.; Salimullah, M.; Suzuki, A.M.; Calligaris, R.; Gustincich, S.; Carninci, P. Suppression of Artifacts and Barcode Bias in High-Throughput Transcriptome Analyses Utilizing Template Switching. Nucleic Acids Res. 2013, 41, e44. [Google Scholar] [CrossRef]
- Zheng, G.X.Y.; Terry, J.M.; Belgrader, P.; Ryvkin, P.; Bent, Z.W.; Wilson, R.; Ziraldo, S.B.; Wheeler, T.D.; McDermott, G.P.; Zhu, J.; et al. Massively Parallel Digital Transcriptional Profiling of Single Cells. Nat. Commun. 2017, 8, 14049. [Google Scholar] [CrossRef]
- Zilionis, R.; Nainys, J.; Veres, A.; Savova, V.; Zemmour, D.; Klein, A.M.; Mazutis, L. Single-Cell Barcoding and Sequencing Using Droplet Microfluidics. Nat. Protoc. 2017, 12, 44–73. [Google Scholar] [CrossRef]
- Hashimshony, T.; Wagner, F.; Sher, N.; Yanai, I. CEL-Seq: Single-Cell RNA-Seq by Multiplexed Linear Amplification. Cell Rep. 2012, 2, 666–673. [Google Scholar] [CrossRef]
- Hashimshony, T.; Senderovich, N.; Avital, G.; Klochendler, A.; de Leeuw, Y.; Anavy, L.; Gennert, D.; Li, S.; Livak, K.J.; Rozenblatt-Rosen, O.; et al. CEL-Seq2: Sensitive Highly-Multiplexed Single-Cell RNA-Seq. Genome Biol. 2016, 17, 77. [Google Scholar] [CrossRef]
- Islam, S.; Kjällquist, U.; Moliner, A.; Zajac, P.; Fan, J.-B.; Lönnerberg, P.; Linnarsson, S. Characterization of the Single-Cell Transcriptional Landscape by Highly Multiplex RNA-Seq. Genome Res. 2011, 21, 1160–1167. [Google Scholar] [CrossRef]
- Keren-Shaul, H.; Kenigsberg, E.; Jaitin, D.A.; David, E.; Paul, F.; Tanay, A.; Amit, I. MARS-Seq2.0: An Experimental and Analytical Pipeline for Indexed Sorting Combined with Single-Cell RNA Sequencing. Nat. Protoc. 2019, 14, 1841–1862. [Google Scholar] [CrossRef]
- Gierahn, T.M.; Wadsworth, M.H.; Hughes, T.K.; Bryson, B.D.; Butler, A.; Satija, R.; Fortune, S.; Love, J.C.; Shalek, A.K. Seq-Well: Portable, Low-Cost RNA Sequencing of Single Cells at High Throughput. Nat. Methods 2017, 14, 395–398. [Google Scholar] [CrossRef] [PubMed]
- Hagemann-Jensen, M.; Ziegenhain, C.; Chen, P.; Ramsköld, D.; Hendriks, G.-J.; Larsson, A.J.M.; Faridani, O.R.; Sandberg, R. Single-Cell RNA Counting at Allele and Isoform Resolution Using Smart-Seq3. Nat. Biotechnol. 2020, 38, 708–714. [Google Scholar] [CrossRef]
- Isakova, A.; Neff, N.; Quake, S.R. Single-Cell Quantification of a Broad RNA Spectrum Reveals Unique Noncoding Patterns Associated with Cell Types and States. Proc. Natl. Acad. Sci. USA 2021, 118, e2113568118. [Google Scholar] [CrossRef] [PubMed]
- Hagemann-Jensen, M.; Ziegenhain, C.; Sandberg, R. Scalable Single-Cell RNA Sequencing from Full Transcripts with Smart-Seq3xpress. Nat. Biotechnol. 2022, 40, 1452–1457. [Google Scholar] [CrossRef]
- Picelli, S.; Faridani, O.R.; Björklund, A.K.; Winberg, G.; Sagasser, S.; Sandberg, R. Full-Length RNA-Seq from Single Cells Using Smart-Seq2. Nat. Protoc. 2014, 9, 171–181. [Google Scholar] [CrossRef]
- Ramsköld, D.; Luo, S.; Wang, Y.-C.; Li, R.; Deng, Q.; Faridani, O.R.; Daniels, G.A.; Khrebtukova, I.; Loring, J.F.; Laurent, L.C.; et al. Full-Length mRNA-Seq from Single-Cell Levels of RNA and Individual Circulating Tumor Cells. Nat. Biotechnol. 2012, 30, 777–782. [Google Scholar] [CrossRef]
- Sheng, K.; Cao, W.; Niu, Y.; Deng, Q.; Zong, C. Effective Detection of Variation in Single-Cell Transcriptomes Using MATQ-Seq. Nat. Methods 2017, 14, 267–270. [Google Scholar] [CrossRef]
- Hahaut, V.; Pavlinic, D.; Carbone, W.; Schuierer, S.; Balmer, P.; Quinodoz, M.; Renner, M.; Roma, G.; Cowan, C.S.; Picelli, S. Fast and Highly Sensitive Full-Length Single-Cell RNA Sequencing Using FLASH-Seq. Nat. Biotechnol. 2022, 40, 1447–1451. [Google Scholar] [CrossRef] [PubMed]
- Salmen, F.; De Jonghe, J.; Kaminski, T.S.; Alemany, A.; Parada, G.E.; Verity-Legg, J.; Yanagida, A.; Kohler, T.N.; Battich, N.; van den Brekel, F.; et al. High-Throughput Total RNA Sequencing in Single Cells Using VASA-Seq. Nat. Biotechnol. 2022, 40, 1780–1793. [Google Scholar] [CrossRef]
- Hwang, A.; Skarica, M.; Xu, S.; Coudriet, J.; Lee, C.Y.; Lin, L.; Terwilliger, R.; Sliby, A.-N.; Wang, J.; Nguyen, T.; et al. Single-Cell Transcriptomic and Chromatin Dynamics of the Human Brain in PTSD. Nature 2025, 643, 744–754. [Google Scholar] [CrossRef]
- Mathys, H.; Peng, Z.; Boix, C.A.; Victor, M.B.; Leary, N.; Babu, S.; Abdelhady, G.; Jiang, X.; Ng, A.P.; Ghafari, K.; et al. Single-Cell Atlas Reveals Correlates of High Cognitive Function, Dementia, and Resilience to Alzheimer’s Disease Pathology. Cell 2023, 186, 4365–4385.e27. [Google Scholar] [CrossRef] [PubMed]
- Gerstner, N.; Fröhlich, A.S.; Matosin, N.; Gagliardi, M.; Cruceanu, C.; Ködel, M.; Rex-Haffner, M.; Tu, X.; Mostafavi, S.; Ziller, M.J.; et al. Contrasting Genetic Predisposition and Diagnosis in Psychiatric Disorders: A Multi-Omic Single-Nucleus Analysis of the Human OFC. Sci. Adv. 2025, 11, eadq2290. [Google Scholar] [CrossRef] [PubMed]
- Mosharov, E.V.; Rosenberg, A.M.; Monzel, A.S.; Osto, C.A.; Stiles, L.; Rosoklija, G.B.; Dwork, A.J.; Bindra, S.; Junker, A.; Zhang, Y.; et al. A Human Brain Map of Mitochondrial Respiratory Capacity and Diversity. Nature 2025, 641, 749–758. [Google Scholar] [CrossRef]
- Kim, C.N.; Shin, D.; Wang, A.; Nowakowski, T.J. Spatiotemporal Molecular Dynamics of the Developing Human Thalamus. Science 2023, 382, eadf9941. [Google Scholar] [CrossRef] [PubMed]
- Xiong, X.; James, B.T.; Boix, C.A.; Park, Y.P.; Galani, K.; Victor, M.B.; Sun, N.; Hou, L.; Ho, L.-L.; Mantero, J.; et al. Epigenomic Dissection of Alzheimer’s Disease Pinpoints Causal Variants and Reveals Epigenome Erosion. Cell 2023, 186, 4422–4437.e21. [Google Scholar] [CrossRef]
- Fullard, J.F.; Nm, P.; Lee, D.; Mathur, D.; Therrien, K.; Hong, A.; Casey, C.; Shao, Z.; Alvia, M.; Argyriou, S.; et al. Population-Scale Cross-Disorder Atlas of the Human Prefrontal Cortex at Single-Cell Resolution. Sci. Data 2025, 12, 954. [Google Scholar] [CrossRef]
- Huuki-Myers, L.A.; Spangler, A.; Eagles, N.J.; Montgomery, K.D.; Kwon, S.H.; Guo, B.; Grant-Peters, M.; Divecha, H.R.; Tippani, M.; Sriworarat, C.; et al. A Data-Driven Single-Cell and Spatial Transcriptomic Map of the Human Prefrontal Cortex. Science 2024, 384, eadh1938. [Google Scholar] [CrossRef]
- Thompson, J.R.; Nelson, E.D.; Tippani, M.; Ramnauth, A.D.; Divecha, H.R.; Miller, R.A.; Eagles, N.J.; Pattie, E.A.; Kwon, S.H.; Bach, S.V.; et al. An Integrated Single-Nucleus and Spatial Transcriptomics Atlas Reveals the Molecular Landscape of the Human Hippocampus. Nat. Neurosci. 2025, 28, 1990–2004. [Google Scholar] [CrossRef]
- Wamsley, B.; Bicks, L.; Cheng, Y.; Kawaguchi, R.; Quintero, D.; Margolis, M.; Grundman, J.; Liu, J.; Xiao, S.; Hawken, N.; et al. Molecular Cascades and Cell Type–Specific Signatures in ASD Revealed by Single-Cell Genomics. Science 2024, 384, eadh2602. [Google Scholar] [CrossRef] [PubMed]
- Gabitto, M.I.; Travaglini, K.J.; Rachleff, V.M.; Kaplan, E.S.; Long, B.; Ariza, J.; Ding, Y.; Mahoney, J.T.; Dee, N.; Goldy, J.; et al. Integrated Multimodal Cell Atlas of Alzheimer’s Disease. Nat. Neurosci. 2024, 27, 2366–2383. [Google Scholar] [CrossRef] [PubMed]
- Wang, T.; Roach, M.J.; Harvey, K.; Morlanes, J.E.; Kiedik, B.; Al-Eryani, G.; Greenwald, A.; Kalavros, N.; Dezem, F.S.; Ma, Y.; et al. snPATHO-Seq, a Versatile FFPE Single-Nucleus RNA Sequencing Method to Unlock Pathology Archives. Commun. Biol. 2024, 7, 1340. [Google Scholar] [CrossRef]
- Xu, Z.; Zhang, T.; Chen, H.; Zhu, Y.; Lv, Y.; Zhang, S.; Chen, J.; Chen, H.; Yang, L.; Jiang, W.; et al. High-Throughput Single Nucleus Total RNA Sequencing of Formalin-Fixed Paraffin-Embedded Tissues by snRandom-Seq. Nat. Commun. 2023, 14, 2734. [Google Scholar] [CrossRef]
- Wang, Q.; Antone, J.; Alsop, E.; Reiman, R.; Funk, C.; Bendl, J.; Dudley, J.T.; Liang, W.S.; Karr, T.L.; Roussos, P.; et al. Single Cell Transcriptomes and Multiscale Networks from Persons with and without Alzheimer’s Disease. Nat. Commun. 2024, 15, 5815. [Google Scholar] [CrossRef]
- Hardwick, S.A.; Hu, W.; Joglekar, A.; Fan, L.; Collier, P.G.; Foord, C.; Balacco, J.; Lanjewar, S.; Sampson, M.M.; Koopmans, F.; et al. Single-Nuclei Isoform RNA Sequencing Unlocks Barcoded Exon Connectivity in Frozen Brain Tissue. Nat. Biotechnol. 2022, 40, 1082–1092. [Google Scholar] [CrossRef] [PubMed]
- Belchikov, N.; Hu, W.; Fan, L.; Joglekar, A.; He, Y.; Foord, C.; Jarroux, J.; Hsu, J.; Pollard, S.; Amin, S.; et al. A Single-Cell, Long-Read, Isoform-Resolved Case-Control Study of FTD Reveals Cell-Type-Specific and Broad Splicing Dysregulation in Human Brain. Cell Rep. 2025, 44, 116198. [Google Scholar] [CrossRef]
- Joglekar, A.; Hu, W.; Zhang, B.; Narykov, O.; Diekhans, M.; Marrocco, J.; Balacco, J.; Ndhlovu, L.C.; Milner, T.A.; Fedrigo, O.; et al. Single-Cell Long-Read Sequencing-Based Mapping Reveals Specialized Splicing Patterns in Developing and Adult Mouse and Human Brain. Nat. Neurosci. 2024, 27, 1051–1063. [Google Scholar] [CrossRef]
- Nichols, R.V.; O’Connell, B.L.; Mulqueen, R.M.; Thomas, J.; Woodfin, A.R.; Acharya, S.; Mandel, G.; Pokholok, D.; Steemers, F.J.; Adey, A.C. High-Throughput Robust Single-Cell DNA Methylation Profiling with sciMETv2. Nat. Commun. 2022, 13, 7627. [Google Scholar] [CrossRef]
- Nichols, R.V.; Rylaarsdam, L.E.; O’Connell, B.L.; Shipony, Z.; Iremadze, N.; Acharya, S.N.; Adey, A.C. Atlas-Scale Single-Cell DNA Methylation Profiling with sciMETv3. Cell Genom. 2025, 5, 100726. [Google Scholar] [CrossRef]
- Zhang, Q.; Ma, S.; Liu, Z.; Zhu, B.; Zhou, Z.; Li, G.; Meana, J.J.; González-Maeso, J.; Lu, C. Droplet-Based Bisulfite Sequencing for High-Throughput Profiling of Single-Cell DNA Methylomes. Nat. Commun. 2023, 14, 4672. [Google Scholar] [CrossRef]
- Chatterton, Z.; Lamichhane, P.; Ahmadi Rastegar, D.; Fitzpatrick, L.; Lebhar, H.; Marquis, C.; Halliday, G.; Kwok, J.B. Single-Cell DNA Methylation Sequencing by Combinatorial Indexing and Enzymatic DNA Methylation Conversion. Cell Biosci. 2023, 13, 2. [Google Scholar] [CrossRef]
- Luo, C.; Keown, C.L.; Kurihara, L.; Zhou, J.; He, Y.; Li, J.; Castanon, R.; Lucero, J.; Nery, J.R.; Sandoval, J.P.; et al. Single-Cell Methylomes Identify Neuronal Subtypes and Regulatory Elements in Mammalian Cortex. Science 2017, 357, 600–604. [Google Scholar] [CrossRef]
- Luo, C.; Rivkin, A.; Zhou, J.; Sandoval, J.P.; Kurihara, L.; Lucero, J.; Castanon, R.; Nery, J.R.; Pinto-Duarte, A.; Bui, B.; et al. Robust Single-Cell DNA Methylome Profiling with snmC-Seq2. Nat. Commun. 2018, 9, 3824. [Google Scholar] [CrossRef]
- Liu, H.; Zeng, Q.; Zhou, J.; Bartlett, A.; Wang, B.-A.; Berube, P.; Tian, W.; Kenworthy, M.; Altshul, J.; Nery, J.R.; et al. Single-Cell DNA Methylome and 3D Multi-Omic Atlas of the Adult Mouse Brain. Nature 2023, 624, 366–377. [Google Scholar] [CrossRef] [PubMed]
- Tian, W.; Zhou, J.; Bartlett, A.; Zeng, Q.; Liu, H.; Castanon, R.G.; Kenworthy, M.; Altshul, J.; Valadon, C.; Aldridge, A.; et al. Single-Cell DNA Methylation and 3D Genome Architecture in the Human Brain. Science 2023, 382, eadf5357. [Google Scholar] [CrossRef] [PubMed]
- Acharya, S.N.; Nichols, R.V.; Rylaarsdam, L.E.; O’Connell, B.L.; Braun, T.P.; Adey, A.C. sciMET-Cap: High-Throughput Single-Cell Methylation Analysis with a Reduced Sequencing Burden. Genome Biol. 2024, 25, 186. [Google Scholar] [CrossRef] [PubMed]
- Bartosovic, M.; Castelo-Branco, G. Multimodal Chromatin Profiling Using Nanobody-Based Single-Cell CUT&Tag. Nat. Biotechnol. 2023, 41, 794–805. [Google Scholar] [CrossRef]
- Kabbe, M.; Agirre, E.; Carlström, K.E.; Pohl, F.B.; Ruffin, N.; van Bruggen, D.; Meijer, M.; Seeker, L.A.; Bestard-Cuche, N.; Lederer, A.R.; et al. Single-Nuclei Histone Modification Profiling of the Adult Human Central Nervous System Unveils Epigenetic Memory of Developmental Programs. bioRxiv 2024. [Google Scholar] [CrossRef]
- Satpathy, A.T.; Granja, J.M.; Yost, K.E.; Qi, Y.; Meschi, F.; McDermott, G.P.; Olsen, B.N.; Mumbach, M.R.; Pierce, S.E.; Corces, M.R.; et al. Massively Parallel Single-Cell Chromatin Landscapes of Human Immune Cell Development and Intratumoral T Cell Exhaustion. Nat. Biotechnol. 2019, 37, 925–936. [Google Scholar] [CrossRef]
- Adams, L.; Song, M.K.; Yuen, S.; Tanaka, Y.; Kim, Y.-S. A Single-Nuclei Paired Multiomic Analysis of the Human Midbrain Reveals Age- and Parkinson’s Disease-Associated Glial Changes. Nat. Aging 2024, 4, 364–378. [Google Scholar] [CrossRef] [PubMed]
- Chawla, A.; Cakmakci, D.; Fiori, L.M.; Zang, W.; Maitra, M.; Yang, J.; Żurawek, D.; Frosi, G.; Rahimian, R.; Mitsuhashi, H.; et al. Single-Nucleus Chromatin Accessibility Profiling Identifies Cell Types and Functional Variants Contributing to Major Depression. Nat. Genet. 2025, 57, 1890–1904. [Google Scholar] [CrossRef]
- Morabito, S.; Miyoshi, E.; Michael, N.; Shahin, S.; Martini, A.C.; Head, E.; Silva, J.; Leavy, K.; Perez-Rosendahl, M.; Swarup, V. Single-Nucleus Chromatin Accessibility and Transcriptomic Characterization of Alzheimer’s Disease. Nat. Genet. 2021, 53, 1143–1155. [Google Scholar] [CrossRef]
- Rummel, C.K.; Gagliardi, M.; Ahmad, R.; Herholt, A.; Jimenez-Barron, L.; Murek, V.; Weigert, L.; Hausruckinger, A.; Maidl, S.; Hauger, B.; et al. Massively Parallel Functional Dissection of Schizophrenia-Associated Noncoding Genetic Variants. Cell 2023, 186, 5165–5182.e33. [Google Scholar] [CrossRef]
- Li, Y.E.; Preissl, S.; Miller, M.; Johnson, N.D.; Wang, Z.; Jiao, H.; Zhu, C.; Wang, Z.; Xie, Y.; Poirion, O.; et al. A Comparative Atlas of Single-Cell Chromatin Accessibility in the Human Brain. Science 2023, 382, eadf7044. [Google Scholar] [CrossRef]
- Zhang, H.; Mulqueen, R.M.; Iannuzo, N.; Farrera, D.O.; Polverino, F.; Galligan, J.J.; Ledford, J.G.; Adey, A.C.; Cusanovich, D.A. Txci-ATAC-Seq: A Massive-Scale Single-Cell Technique to Profile Chromatin Accessibility. Genome Biol. 2024, 25, 78. [Google Scholar] [CrossRef]
- Green, N.C.; Gao, H.; Chu, X.; Yuan, Q.; McGuire, P.; Lai, D.; Jiang, G.; Xuei, X.; Reiter, J.L.; Stevens, J.; et al. Integrated Single-Cell Multiomic Profiling of Caudate Nucleus Suggests Key Mechanisms in Alcohol Use Disorder. Nat. Commun. 2025, 16, 9070. [Google Scholar] [CrossRef]
- Zhu, K.; Bendl, J.; Rahman, S.; Vicari, J.M.; Coleman, C.; Clarence, T.; Latouche, O.; Tsankova, N.M.; Li, A.; Brennand, K.J.; et al. Multi-Omic Profiling of the Developing Human Cerebral Cortex at the Single-Cell Level. Sci. Adv. 2023, 9, eadg3754. [Google Scholar] [CrossRef]
- Hu, W.; Foord, C.; Hsu, J.; Fan, L.; Corley, M.J.; Lanjewar, S.N.; Xu, S.; Belchikov, N.; He, Y.; Pang, A.P.S.; et al. Combined Single-Cell Profiling of Chromatin–Transcriptome and Splicing across Brain Cell Types, Regions and Disease State. Nat. Biotechnol. 2025, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Wen, X.; Luo, Z.; Zhao, W.; Calandrelli, R.; Nguyen, T.C.; Wan, X.; Charles Richard, J.L.; Zhong, S. Single-Cell Multiplex Chromatin and RNA Interactions in Ageing Human Brain. Nature 2024, 628, 648–656. [Google Scholar] [CrossRef] [PubMed]
- Lee, D.-S.; Luo, C.; Zhou, J.; Chandran, S.; Rivkin, A.; Bartlett, A.; Nery, J.R.; Fitzpatrick, C.; O’Connor, C.; Dixon, J.R.; et al. Simultaneous Profiling of 3D Genome Structure and DNA Methylation in Single Human Cells. Nat. Methods 2019, 16, 999–1006. [Google Scholar] [CrossRef] [PubMed]
- Heffel, M.G.; Zhou, J.; Zhang, Y.; Lee, D.-S.; Hou, K.; Pastor-Alonso, O.; Abuhanna, K.D.; Galasso, J.; Kern, C.; Tai, C.-Y.; et al. Temporally Distinct 3D Multi-Omic Dynamics in the Developing Human Brain. Nature 2024, 635, 481–489. [Google Scholar] [CrossRef]
- Luo, C.; Liu, H.; Xie, F.; Armand, E.J.; Siletti, K.; Bakken, T.E.; Fang, R.; Doyle, W.I.; Stuart, T.; Hodge, R.D.; et al. Single Nucleus Multi-Omics Identifies Human Cortical Cell Regulatory Genome Diversity. Cell Genom. 2022, 2, 100107. [Google Scholar] [CrossRef]
- Chien, J.-F.; Liu, H.; Wang, B.-A.; Luo, C.; Bartlett, A.; Castanon, R.; Johnson, N.D.; Nery, J.R.; Osteen, J.; Li, J.; et al. Cell-Type-Specific Effects of Age and Sex on Human Cortical Neurons. Neuron 2024, 112, 2524–2539.e5. [Google Scholar] [CrossRef]
- Ståhl, P.L.; Salmén, F.; Vickovic, S.; Lundmark, A.; Navarro, J.F.; Magnusson, J.; Giacomello, S.; Asp, M.; Westholm, J.O.; Huss, M.; et al. Visualization and Analysis of Gene Expression in Tissue Sections by Spatial Transcriptomics. Science 2016, 353, 78–82. [Google Scholar] [CrossRef] [PubMed]
- Marx, V. Method of the Year: Spatially Resolved Transcriptomics. Nat. Methods 2021, 18, 9–14. [Google Scholar] [CrossRef] [PubMed]
- Sporns, O. The Complex Brain: Connectivity, Dynamics, Information. Trends Cogn. Sci. 2022, 26, 1066–1067. [Google Scholar] [CrossRef]
- Segal, A.; Parkes, L.; Aquino, K.; Kia, S.M.; Wolfers, T.; Franke, B.; Hoogman, M.; Beckmann, C.F.; Westlye, L.T.; Andreassen, O.A.; et al. Regional, Circuit and Network Heterogeneity of Brain Abnormalities in Psychiatric Disorders. Nat. Neurosci. 2023, 26, 1613–1629. [Google Scholar] [CrossRef]
- Moffitt, J.R.; Hao, J.; Wang, G.; Chen, K.H.; Babcock, H.P.; Zhuang, X. High-Throughput Single-Cell Gene-Expression Profiling with Multiplexed Error-Robust Fluorescence in Situ Hybridization. Proc. Natl. Acad. Sci. USA 2016, 113, 11046–11051. [Google Scholar] [CrossRef]
- Avey, D.R.; Ng, B.; Vialle, R.A.; Kearns, N.A.; de Paiva Lopes, K.; Iatrou, A.; De Tissera, S.; Vyas, H.; Saunders, D.M.; Flood, D.J.; et al. Uncovering Plaque-Glia Niches in Human Alzheimer’s Disease Brains Using Spatial Transcriptomics. Mol. Neurodegener. Adv. 2025, 1, 2. [Google Scholar] [CrossRef]
- Kopić, J.; Haldipur, P.; Millen, K.J.; Kostović, I.; Krasić, J.; Krsnik, Ž. Initial Regional Cytoarchitectonic Differences in Dorsal and Orbitobasal Human Developing Frontal Cortex Revealed by Spatial Transcriptomics. Brain Struct. Funct. 2024, 230, 13. [Google Scholar] [CrossRef]
- Qian, X.; Coleman, K.; Jiang, S.; Kriz, A.J.; Marciano, J.H.; Luo, C.; Cai, C.; Manam, M.D.; Caglayan, E.; Lai, A.; et al. Spatial Transcriptomics Reveals Human Cortical Layer and Area Specification. Nature 2025, 644, 153–163. [Google Scholar] [CrossRef]
- Simard, S.; Rahimian, R.; Davoli, M.A.; Théberge, S.; Matosin, N.; Turecki, G.; Nagy, C.; Mechawar, N. Spatial Transcriptomic Analysis of Adult Hippocampal Neurogenesis in the Human Brain. J. Psychiatry Neurosci. 2024, 49, E319–E333. [Google Scholar] [CrossRef]
- Zollinger, D.R.; Lingle, S.E.; Sorg, K.; Beechem, J.M.; Merritt, C.R. GeoMxTM RNA Assay: High Multiplex, Digital, Spatial Analysis of RNA in FFPE Tissue. Methods Mol. Biol. 2020, 2148, 331–345. [Google Scholar] [CrossRef]
- Fang, R.; Xia, C.; Close, J.L.; Zhang, M.; He, J.; Huang, Z.; Halpern, A.R.; Long, B.; Miller, J.A.; Lein, E.S.; et al. Conservation and Divergence of Cortical Cell Organization in Human and Mouse Revealed by MERFISH. Science 2022, 377, 56–62. [Google Scholar] [CrossRef] [PubMed]
- Gall, J.G.; Pardue, M.L. Formation and Detection of RNA-DNA Hybrid Molecules in Cytological Preparations. Proc. Natl. Acad. Sci. USA 1969, 63, 378–383. [Google Scholar] [CrossRef] [PubMed]
- Rudkin, G.T.; Stollar, B.D. High Resolution Detection of DNA–RNA Hybrids in Situ by Indirect Immunofluorescence. Nature 1977, 265, 472–473. [Google Scholar] [CrossRef]
- Femino, A.M.; Fay, F.S.; Fogarty, K.; Singer, R.H. Visualization of Single RNA Transcripts in Situ. Science 1998, 280, 585–590. [Google Scholar] [CrossRef]
- Ke, R.; Mignardi, M.; Pacureanu, A.; Svedlund, J.; Botling, J.; Wählby, C.; Nilsson, M. In Situ Sequencing for RNA Analysis in Preserved Tissue and Cells. Nat. Methods 2013, 10, 857–860. [Google Scholar] [CrossRef] [PubMed]
- Eng, C.-H.L.; Lawson, M.; Zhu, Q.; Dries, R.; Koulena, N.; Takei, Y.; Yun, J.; Cronin, C.; Karp, C.; Yuan, G.-C.; et al. Transcriptome-Scale Super-Resolved Imaging in Tissues by RNA seqFISH+. Nature 2019, 568, 235–239. [Google Scholar] [CrossRef]
- Lohoff, T.; Ghazanfar, S.; Missarova, A.; Koulena, N.; Pierson, N.; Griffiths, J.A.; Bardot, E.S.; Eng, C.-H.L.; Tyser, R.C.V.; Argelaguet, R.; et al. Integration of Spatial and Single-Cell Transcriptomic Data Elucidates Mouse Organogenesis. Nat. Biotechnol. 2022, 40, 74–85. [Google Scholar] [CrossRef] [PubMed]
- Chen, K.H.; Boettiger, A.N.; Moffitt, J.R.; Wang, S.; Zhuang, X. Spatially Resolved, Highly Multiplexed RNA Profiling in Single Cells. Science 2015, 348, aaa6090. [Google Scholar] [CrossRef] [PubMed]
- Eng, C.-H.L.; Shah, S.; Thomassie, J.; Cai, L. Profiling the Transcriptome with RNA SPOTs. Nat. Methods 2017, 14, 1153–1155. [Google Scholar] [CrossRef]
- Codeluppi, S.; Borm, L.E.; Zeisel, A.; La Manno, G.; van Lunteren, J.A.; Svensson, C.I.; Linnarsson, S. Spatial Organization of the Somatosensory Cortex Revealed by osmFISH. Nat. Methods 2018, 15, 932–935. [Google Scholar] [CrossRef]
- Zhou, X.; Seow, W.Y.; Ha, N.; Cheng, T.H.; Jiang, L.; Boonruangkan, J.; Goh, J.J.L.; Prabhakar, S.; Chou, N.; Chen, K.H. Highly Sensitive Spatial Transcriptomics Using FISHnCHIPs of Multiple Co-Expressed Genes. Nat. Commun. 2024, 15, 2342. [Google Scholar] [CrossRef]
- Wang, X.; Allen, W.E.; Wright, M.A.; Sylwestrak, E.L.; Samusik, N.; Vesuna, S.; Evans, K.; Liu, C.; Ramakrishnan, C.; Liu, J.; et al. Three-Dimensional Intact-Tissue Sequencing of Single-Cell Transcriptional States. Science 2018, 361, eaat5691. [Google Scholar] [CrossRef]
- Borm, L.E.; Mossi Albiach, A.; Mannens, C.C.A.; Janusauskas, J.; Özgün, C.; Fernández-García, D.; Hodge, R.; Castillo, F.; Hedin, C.R.H.; Villablanca, E.J.; et al. Scalable in Situ Single-Cell Profiling by Electrophoretic Capture of mRNA Using EEL FISH. Nat. Biotechnol. 2023, 41, 222–231. [Google Scholar] [CrossRef]
- Gyllborg, D.; Langseth, C.M.; Qian, X.; Choi, E.; Salas, S.M.; Hilscher, M.M.; Lein, E.S.; Nilsson, M. Hybridization-Based in Situ Sequencing (HybISS) for Spatially Resolved Transcriptomics in Human and Mouse Brain Tissue. Nucleic Acids Res. 2020, 48, e112. [Google Scholar] [CrossRef] [PubMed]
- Janesick, A.; Shelansky, R.; Gottscho, A.D.; Wagner, F.; Williams, S.R.; Rouault, M.; Beliakoff, G.; Morrison, C.A.; Oliveira, M.F.; Sicherman, J.T.; et al. High Resolution Mapping of the Tumor Microenvironment Using Integrated Single-Cell, Spatial and in Situ Analysis. Nat. Commun. 2023, 14, 8353. [Google Scholar] [CrossRef]
- Emmert-Buck, M.R.; Bonner, R.F.; Smith, P.D.; Chuaqui, R.F.; Zhuang, Z.; Goldstein, S.R.; Weiss, R.A.; Liotta, L.A. Laser Capture Microdissection. Science 1996, 274, 998–1001. [Google Scholar] [CrossRef]
- Wang, F.; Flanagan, J.; Su, N.; Wang, L.-C.; Bui, S.; Nielson, A.; Wu, X.; Vo, H.-T.; Ma, X.-J.; Luo, Y. RNAscope: A Novel in Situ RNA Analysis Platform for Formalin-Fixed, Paraffin-Embedded Tissues. J. Mol. Diagn. 2012, 14, 22–29. [Google Scholar] [CrossRef] [PubMed]
- Nichterwitz, S.; Chen, G.; Aguila Benitez, J.; Yilmaz, M.; Storvall, H.; Cao, M.; Sandberg, R.; Deng, Q.; Hedlund, E. Laser Capture Microscopy Coupled with Smart-Seq2 for Precise Spatial Transcriptomic Profiling. Nat. Commun. 2016, 7, 12139. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Suo, S.; Tam, P.P.; Han, J.-D.J.; Peng, G.; Jing, N. Spatial Transcriptomic Analysis of Cryosectioned Tissue Samples with Geo-Seq. Nat. Protoc. 2017, 12, 566–580. [Google Scholar] [CrossRef]
- Junker, J.P.; Noël, E.S.; Guryev, V.; Peterson, K.A.; Shah, G.; Huisken, J.; McMahon, A.P.; Berezikov, E.; Bakkers, J.; van Oudenaarden, A. Genome-Wide RNA Tomography in the Zebrafish Embryo. Cell 2014, 159, 662–675. [Google Scholar] [CrossRef]
- Oliveira, M.F.; Romero, J.P.; Chung, M.; Williams, S.R.; Gottscho, A.D.; Gupta, A.; Pilipauskas, S.E.; Mohabbat, S.; Raman, N.; Sukovich, D.J.; et al. High-Definition Spatial Transcriptomic Profiling of Immune Cell Populations in Colorectal Cancer. Nat. Genet. 2025, 57, 1512–1523. [Google Scholar] [CrossRef]
- Liu, Y.; Yang, M.; Deng, Y.; Su, G.; Enninful, A.; Guo, C.C.; Tebaldi, T.; Zhang, D.; Kim, D.; Bai, Z.; et al. High-Spatial-Resolution Multi-Omics Sequencing via Deterministic Barcoding in Tissue. Cell 2020, 183, 1665–1681.e18. [Google Scholar] [CrossRef] [PubMed]
- Wirth, J.; Huber, N.; Yin, K.; Brood, S.; Chang, S.; Martinez-Jimenez, C.P.; Meier, M. Spatial Transcriptomics Using Multiplexed Deterministic Barcoding in Tissue. Nat. Commun. 2023, 14, 1523. [Google Scholar] [CrossRef]
- Rodriques, S.G.; Stickels, R.R.; Goeva, A.; Martin, C.A.; Murray, E.; Vanderburg, C.R.; Welch, J.; Chen, L.M.; Chen, F.; Macosko, E.Z. Slide-Seq: A Scalable Technology for Measuring Genome-Wide Expression at High Spatial Resolution. Science 2019, 363, 1463–1467. [Google Scholar] [CrossRef]
- Stickels, R.R.; Murray, E.; Kumar, P.; Li, J.; Marshall, J.L.; Di Bella, D.J.; Arlotta, P.; Macosko, E.Z.; Chen, F. Highly Sensitive Spatial Transcriptomics at Near-Cellular Resolution with Slide-seqV2. Nat. Biotechnol. 2021, 39, 313–319. [Google Scholar] [CrossRef]
- Chen, A.; Liao, S.; Cheng, M.; Ma, K.; Wu, L.; Lai, Y.; Qiu, X.; Yang, J.; Xu, J.; Hao, S.; et al. Spatiotemporal Transcriptomic Atlas of Mouse Organogenesis Using DNA Nanoball-Patterned Arrays. Cell 2022, 185, 1777–1792.e21. [Google Scholar] [CrossRef]
- Zhao, Y.; Li, Y.; He, Y.; Wu, J.; Liu, Y.; Li, X.; Li, Z.; Yuan, Q.; Li, J.; Zhang, X.; et al. Stereo-Seq V2: Spatial Mapping of Total RNA on FFPE Sections with High Resolution. Cell 2025, 188, 6554–6571.e21. [Google Scholar] [CrossRef]
- Merritt, C.R.; Ong, G.T.; Church, S.E.; Barker, K.; Danaher, P.; Geiss, G.; Hoang, M.; Jung, J.; Liang, Y.; McKay-Fleisch, J.; et al. Multiplex Digital Spatial Profiling of Proteins and RNA in Fixed Tissue. Nat. Biotechnol. 2020, 38, 586–599. [Google Scholar] [CrossRef]
- Cho, C.-S.; Xi, J.; Si, Y.; Park, S.-R.; Hsu, J.-E.; Kim, M.; Jun, G.; Kang, H.M.; Lee, J.H. Microscopic Examination of Spatial Transcriptome Using Seq-Scope. Cell 2021, 184, 3559–3572.e22. [Google Scholar] [CrossRef]
- Vickovic, S.; Eraslan, G.; Salmén, F.; Klughammer, J.; Stenbeck, L.; Schapiro, D.; Äijö, T.; Bonneau, R.; Bergenstråhle, L.; Navarro, J.F.; et al. High-Definition Spatial Transcriptomics for in Situ Tissue Profiling. Nat. Methods 2019, 16, 987–990. [Google Scholar] [CrossRef]
- Fu, X.; Sun, L.; Dong, R.; Chen, J.Y.; Silakit, R.; Condon, L.F.; Lin, Y.; Lin, S.; Palmiter, R.D.; Gu, L. Polony Gels Enable Amplifiable DNA Stamping and Spatial Transcriptomics of Chronic Pain. Cell 2022, 185, 4621–4633.e17. [Google Scholar] [CrossRef]
- Goralski, T.M.; Meyerdirk, L.; Breton, L.; Brasseur, L.; Kurgat, K.; DeWeerd, D.; Turner, L.; Becker, K.; Adams, M.; Newhouse, D.J.; et al. Spatial Transcriptomics Reveals Molecular Dysfunction Associated with Cortical Lewy Pathology. Nat. Commun. 2024, 15, 2642. [Google Scholar] [CrossRef]
- Walker, J.M.; Kazempour Dehkordi, S.; Fracassi, A.; Vanschoiack, A.; Pavenko, A.; Taglialatela, G.; Woltjer, R.; Richardson, T.E.; Zare, H.; Orr, M.E. Differential Protein Expression in the Hippocampi of Resilient Individuals Identified by Digital Spatial Profiling. Acta Neuropathol. Commun. 2022, 10, 23. [Google Scholar] [CrossRef]
- Gong, Y.; Haeri, M.; Zhang, X.; Li, Y.; Liu, A.; Wu, D.; Zhang, Q.; Jazwinski, S.M.; Zhou, X.; Wang, X.; et al. Stereo-Seq of the Prefrontal Cortex in Aging and Alzheimer’s Disease. Nat. Commun. 2025, 16, 482. [Google Scholar] [CrossRef] [PubMed]
- Finucane, H.K.; Bulik-Sullivan, B.; Gusev, A.; Trynka, G.; Reshef, Y.; Loh, P.-R.; Anttila, V.; Xu, H.; Zang, C.; Farh, K.; et al. Partitioning Heritability by Functional Annotation Using Genome-Wide Association Summary Statistics. Nat. Genet. 2015, 47, 1228–1235. [Google Scholar] [CrossRef] [PubMed]
- Deng, Y.; Bartosovic, M.; Ma, S.; Zhang, D.; Kukanja, P.; Xiao, Y.; Su, G.; Liu, Y.; Qin, X.; Rosoklija, G.B.; et al. Spatial Profiling of Chromatin Accessibility in Mouse and Human Tissues. Nature 2022, 609, 375–383. [Google Scholar] [CrossRef] [PubMed]
- Vicari, M.; Mirzazadeh, R.; Nilsson, A.; Shariatgorji, R.; Bjärterot, P.; Larsson, L.; Lee, H.; Nilsson, M.; Foyer, J.; Ekvall, M.; et al. Spatial Multimodal Analysis of Transcriptomes and Metabolomes in Tissues. Nat. Biotechnol. 2024, 42, 1046–1050. [Google Scholar] [CrossRef] [PubMed]
- Cusanovich, D.A.; Daza, R.; Adey, A.; Pliner, H.A.; Christiansen, L.; Gunderson, K.L.; Steemers, F.J.; Trapnell, C.; Shendure, J. Multiplex Single Cell Profiling of Chromatin Accessibility by Combinatorial Cellular Indexing. Science 2015, 348, 910–914. [Google Scholar] [CrossRef]
- Hu, Y.; Shen, F.; Yang, X.; Han, T.; Long, Z.; Wen, J.; Huang, J.; Shen, J.; Guo, Q. Single-Cell Sequencing Technology Applied to Epigenetics for the Study of Tumor Heterogeneity. Clin. Epigenetics 2023, 15, 161. [Google Scholar] [CrossRef]
- Lo, P.-K.; Zhou, Q. Emerging Techniques in Single-Cell Epigenomics and Their Applications to Cancer Research. J. Clin. Genom. 2018, 1. [Google Scholar] [CrossRef]
- Voelkerding, K.V.; Dames, S.A.; Durtschi, J.D. Next-Generation Sequencing: From Basic Research to Diagnostics. Clin. Chem. 2009, 55, 641–658. [Google Scholar] [CrossRef] [PubMed]
- Bartosovic, M.; Kabbe, M.; Castelo-Branco, G. Single-Cell CUT&Tag Profiles Histone Modifications and Transcription Factors in Complex Tissues. Nat. Biotechnol. 2021, 39, 825–835. [Google Scholar] [CrossRef]
- Buenrostro, J.D.; Wu, B.; Litzenburger, U.M.; Ruff, D.; Gonzales, M.L.; Snyder, M.P.; Chang, H.Y.; Greenleaf, W.J. Single-Cell Chromatin Accessibility Reveals Principles of Regulatory Variation. Nature 2015, 523, 486–490. [Google Scholar] [CrossRef]
- Carter, B.; Ku, W.L.; Kang, J.Y.; Hu, G.; Perrie, J.; Tang, Q.; Zhao, K. Mapping Histone Modifications in Low Cell Number and Single Cells Using Antibody-Guided Chromatin Tagmentation (ACT-Seq). Nat. Commun. 2019, 10, 3747. [Google Scholar] [CrossRef]
- Jin, W.; Tang, Q.; Wan, M.; Cui, K.; Zhang, Y.; Ren, G.; Ni, B.; Sklar, J.; Przytycka, T.M.; Childs, R.; et al. Genome-Wide Detection of DNase I Hypersensitive Sites in Single Cells and FFPE Tissue Samples. Nature 2015, 528, 142–146. [Google Scholar] [CrossRef]
- Nagano, T.; Lubling, Y.; Stevens, T.J.; Schoenfelder, S.; Yaffe, E.; Dean, W.; Laue, E.D.; Tanay, A.; Fraser, P. Single-Cell Hi-C Reveals Cell-to-Cell Variability in Chromosome Structure. Nature 2013, 502, 59–64. [Google Scholar] [CrossRef] [PubMed]
- Rotem, A.; Ram, O.; Shoresh, N.; Sperling, R.A.; Goren, A.; Weitz, D.A.; Bernstein, B.E. Single-Cell ChIP-Seq Reveals Cell Subpopulations Defined by Chromatin State. Nat. Biotechnol. 2015, 33, 1165–1172. [Google Scholar] [CrossRef]
- Skene, P.J.; Henikoff, S. An Efficient Targeted Nuclease Strategy for High-Resolution Mapping of DNA Binding Sites. eLife 2017, 6, e21856. [Google Scholar] [CrossRef]
- Smallwood, S.A.; Lee, H.J.; Angermueller, C.; Krueger, F.; Saadeh, H.; Peat, J.; Andrews, S.R.; Stegle, O.; Reik, W.; Kelsey, G. Single-Cell Genome-Wide Bisulfite Sequencing for Assessing Epigenetic Heterogeneity. Nat. Methods 2014, 11, 817–820. [Google Scholar] [CrossRef]
- Bianchi, A.; Scherer, M.; Zaurin, R.; Quililan, K.; Velten, L.; Beekman, R. scTAM-Seq Enables Targeted High-Confidence Analysis of DNA Methylation in Single Cells. Genome Biol. 2022, 23, 229. [Google Scholar] [CrossRef]
- Ziffra, R.S.; Kim, C.N.; Ross, J.M.; Wilfert, A.; Turner, T.N.; Haeussler, M.; Casella, A.M.; Przytycki, P.F.; Keough, K.C.; Shin, D.; et al. Single-Cell Epigenomics Reveals Mechanisms of Human Cortical Development. Nature 2021, 598, 205–213. [Google Scholar] [CrossRef] [PubMed]
- Simons, R.B.; Karkala, F.; Kukk, M.M.; Adams, H.H.H.; Kayser, M.; Vidaki, A. Comparative Performance Evaluation of Bisulfite- and Enzyme-Based DNA Conversion Methods. Clin. Epigenetics 2025, 17, 56. [Google Scholar] [CrossRef]
- Dai, Q.; Ye, C.; Irkliyenko, I.; Wang, Y.; Sun, H.-L.; Gao, Y.; Liu, Y.; Beadell, A.; Perea, J.; Goel, A.; et al. Ultrafast Bisulfite Sequencing Detection of 5-Methylcytosine in DNA and RNA. Nat. Biotechnol. 2024, 42, 1559–1570. [Google Scholar] [CrossRef] [PubMed]
- Genereux, D.P.; Johnson, W.C.; Burden, A.F.; Stöger, R.; Laird, C.D. Errors in the Bisulfite Conversion of DNA: Modulating Inappropriate- and Failed-Conversion Frequencies. Nucleic Acids Res. 2008, 36, e150. [Google Scholar] [CrossRef] [PubMed]
- Liang, J.; Yang, F.; Zhao, L.; Bi, C.; Cai, B. Physiological and Pathological Implications of 5-Hydroxymethylcytosine in Diseases. Oncotarget 2016, 7, 48813–48831. [Google Scholar] [CrossRef]
- Schlosberg, C.E.; Wu, D.Y.; Gabel, H.W.; Edwards, J.R. ME-Class2 Reveals Context Dependent Regulatory Roles for 5-Hydroxymethylcytosine. Nucleic Acids Res. 2019, 47, e28. [Google Scholar] [CrossRef]
- Vaisvila, R.; Ponnaluri, V.K.C.; Sun, Z.; Langhorst, B.W.; Saleh, L.; Guan, S.; Dai, N.; Campbell, M.A.; Sexton, B.S.; Marks, K.; et al. Enzymatic Methyl Sequencing Detects DNA Methylation at Single-Base Resolution from Picograms of DNA. Genome Res. 2021, 31, 1280–1289. [Google Scholar] [CrossRef]
- Farlik, M.; Sheffield, N.C.; Nuzzo, A.; Datlinger, P.; Schönegger, A.; Klughammer, J.; Bock, C. Single-Cell DNA Methylome Sequencing and Bioinformatic Inference of Epigenomic Cell-State Dynamics. Cell Rep. 2015, 10, 1386–1397. [Google Scholar] [CrossRef]
- Lee, H.J.; Smallwood, S.A. Genome-Wide Analysis of DNA Methylation in Single Cells Using a Post-Bisulfite Adapter Tagging Approach. Methods Mol. Biol. 2018, 1712, 87–95. [Google Scholar] [CrossRef]
- Miura, F.; Enomoto, Y.; Dairiki, R.; Ito, T. Amplification-Free Whole-Genome Bisulfite Sequencing by Post-Bisulfite Adaptor Tagging. Nucleic Acids Res. 2012, 40, e136. [Google Scholar] [CrossRef] [PubMed]
- Bai, D.; Zhang, X.; Xiang, H.; Guo, Z.; Zhu, C.; Yi, C. Simultaneous Single-Cell Analysis of 5mC and 5hmC with SIMPLE-Seq. Nat. Biotechnol. 2025, 43, 85–96. [Google Scholar] [CrossRef]
- Fabyanic, E.B.; Hu, P.; Qiu, Q.; Berríos, K.N.; Connolly, D.R.; Wang, T.; Flournoy, J.; Zhou, Z.; Kohli, R.M.; Wu, H. Joint Single-Cell Profiling Resolves 5mC and 5hmC and Reveals Their Distinct Gene Regulatory Effects. Nat. Biotechnol. 2024, 42, 960–974. [Google Scholar] [CrossRef] [PubMed]
- Mulqueen, R.M.; Pokholok, D.; Norberg, S.J.; Torkenczy, K.A.; Fields, A.J.; Sun, D.; Sinnamon, J.R.; Shendure, J.; Trapnell, C.; O’Roak, B.J.; et al. Highly Scalable Generation of DNA Methylation Profiles in Single Cells. Nat. Biotechnol. 2018, 36, 428–431. [Google Scholar] [CrossRef]
- Barski, A.; Cuddapah, S.; Cui, K.; Roh, T.-Y.; Schones, D.E.; Wang, Z.; Wei, G.; Chepelev, I.; Zhao, K. High-Resolution Profiling of Histone Methylations in the Human Genome. Cell 2007, 129, 823–837. [Google Scholar] [CrossRef] [PubMed]
- Johnson, D.S.; Mortazavi, A.; Myers, R.M.; Wold, B. Genome-Wide Mapping of in Vivo Protein-DNA Interactions. Science 2007, 316, 1497–1502. [Google Scholar] [CrossRef]
- Grosselin, K.; Durand, A.; Marsolier, J.; Poitou, A.; Marangoni, E.; Nemati, F.; Dahmani, A.; Lameiras, S.; Reyal, F.; Frenoy, O.; et al. High-Throughput Single-Cell ChIP-Seq Identifies Heterogeneity of Chromatin States in Breast Cancer. Nat. Genet. 2019, 51, 1060–1066. [Google Scholar] [CrossRef]
- Swami, M. Dropping in on Single-Cell Epigenetic Profiles. Nat. Rev. Genet. 2015, 16, 684–685. [Google Scholar] [CrossRef] [PubMed]
- Schmid, M.; Durussel, T.; Laemmli, U.K. ChIC and ChEC: Genomic Mapping of Chromatin Proteins. Mol. Cell 2004, 16, 147–157. [Google Scholar] [CrossRef] [PubMed]
- Ku, W.L.; Nakamura, K.; Gao, W.; Cui, K.; Hu, G.; Tang, Q.; Ni, B.; Zhao, K. Single-Cell Chromatin Immunocleavage Sequencing (scChIC-Seq) to Profile Histone Modification. Nat. Methods 2019, 16, 323–325. [Google Scholar] [CrossRef]
- Ku, W.L.; Pan, L.; Cao, Y.; Gao, W.; Zhao, K. Profiling Single-Cell Histone Modifications Using Indexing Chromatin Immunocleavage Sequencing. Genome Res. 2021, 31, 1831–1842. [Google Scholar] [CrossRef]
- Patty, B.J.; Hainer, S.J. Transcription Factor Chromatin Profiling Genome-Wide Using uliCUT&RUN in Single Cells and Individual Blastocysts. Nat. Protoc. 2021, 16, 2633–2666. [Google Scholar] [CrossRef]
- Kaya-Okur, H.S.; Wu, S.J.; Codomo, C.A.; Pledger, E.S.; Bryson, T.D.; Henikoff, J.G.; Ahmad, K.; Henikoff, S. CUT&Tag for Efficient Epigenomic Profiling of Small Samples and Single Cells. Nat. Commun. 2019, 10, 1930. [Google Scholar] [CrossRef]
- Janssens, D.H.; Greene, J.E.; Wu, S.J.; Codomo, C.A.; Minot, S.S.; Furlan, S.N.; Ahmad, K.; Henikoff, S. Scalable Single-Cell Profiling of Chromatin Modifications with sciCUT&Tag. Nat. Protoc. 2024, 19, 83–112. [Google Scholar] [CrossRef]
- Wu, S.J.; Furlan, S.N.; Mihalas, A.B.; Kaya-Okur, H.S.; Feroze, A.H.; Emerson, S.N.; Zheng, Y.; Carson, K.; Cimino, P.J.; Keene, C.D.; et al. Single-Cell CUT&Tag Analysis of Chromatin Modifications in Differentiation and Tumor Progression. Nat. Biotechnol. 2021, 39, 819–824. [Google Scholar] [CrossRef]
- Bárcenas-Walls, J.R.; Ansaloni, F.; Hervé, B.; Strandback, E.; Nyman, T.; Castelo-Branco, G.; Bartošovič, M. Nano-CUT&Tag for Multimodal Chromatin Profiling at Single-Cell Resolution. Nat. Protoc. 2024, 19, 791–830. [Google Scholar] [CrossRef]
- Gopalan, S.; Wang, Y.; Harper, N.W.; Garber, M.; Fazzio, T.G. Simultaneous Profiling of Multiple Chromatin Proteins in the Same Cells. Mol. Cell 2021, 81, 4736–4746.e5. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Li, J.; Malcolm, A.A.; Mansfield, W.; Clark, S.J.; Argelaguet, R.; Biggins, L.; Acton, R.J.; Andrews, S.; Reik, W.; et al. Combinatorial Profiling of Multiple Histone Modifications and Transcriptome in Single Cells Using scMTR-Seq. Sci. Adv. 2025, 11, eadu3308. [Google Scholar] [CrossRef]
- Xie, Y.; Zhu, C.; Wang, Z.; Tastemel, M.; Chang, L.; Li, Y.E.; Ren, B. Droplet-Based Single-Cell Joint Profiling of Histone Modifications and Transcriptomes. Nat. Struct. Mol. Biol. 2023, 30, 1428–1433. [Google Scholar] [CrossRef]
- Harada, A.; Maehara, K.; Handa, T.; Arimura, Y.; Nogami, J.; Hayashi-Takanaka, Y.; Shirahige, K.; Kurumizaka, H.; Kimura, H.; Ohkawa, Y. A Chromatin Integration Labelling Method Enables Epigenomic Profiling with Lower Input. Nat. Cell Biol. 2019, 21, 287–296. [Google Scholar] [CrossRef]
- Ai, S.; Xiong, H.; Li, C.C.; Luo, Y.; Shi, Q.; Liu, Y.; Yu, X.; Li, C.; He, A. Profiling Chromatin States Using Single-Cell itChIP-Seq. Nat. Cell Biol. 2019, 21, 1164–1172. [Google Scholar] [CrossRef] [PubMed]
- Xiong, H.; Luo, Y.; Wang, Q.; Yu, X.; He, A. Single-Cell Joint Detection of Chromatin Occupancy and Transcriptome Enables Higher-Dimensional Epigenomic Reconstructions. Nat. Methods 2021, 18, 652–660. [Google Scholar] [CrossRef]
- Wang, Q.; Xiong, H.; Ai, S.; Yu, X.; Liu, Y.; Zhang, J.; He, A. CoBATCH for High-Throughput Single-Cell Epigenomic Profiling. Mol. Cell 2019, 76, 206–216.e7. [Google Scholar] [CrossRef]
- Xiong, H.; Wang, Q.; Li, C.C.; He, A. Single-Cell Joint Profiling of Multiple Epigenetic Proteins and Gene Transcription. Sci. Adv. 2024, 10, eadi3664. [Google Scholar] [CrossRef] [PubMed]
- Bartlett, D.A.; Dileep, V.; Handa, T.; Ohkawa, Y.; Kimura, H.; Henikoff, S.; Gilbert, D.M. High-Throughput Single-Cell Epigenomic Profiling by Targeted Insertion of Promoters (TIP-Seq). J. Cell Biol. 2021, 220, e202103078. [Google Scholar] [CrossRef]
- Belton, J.-M.; McCord, R.P.; Gibcus, J.H.; Naumova, N.; Zhan, Y.; Dekker, J. Hi-C: A Comprehensive Technique to Capture the Conformation of Genomes. Methods 2012, 58, 268–276. [Google Scholar] [CrossRef] [PubMed]
- Nagano, T.; Lubling, Y.; Várnai, C.; Dudley, C.; Leung, W.; Baran, Y.; Mendelson Cohen, N.; Wingett, S.; Fraser, P.; Tanay, A. Cell-Cycle Dynamics of Chromosomal Organization at Single-Cell Resolution. Nature 2017, 547, 61–67. [Google Scholar] [CrossRef]
- Rappoport, N.; Chomsky, E.; Nagano, T.; Seibert, C.; Lubling, Y.; Baran, Y.; Lifshitz, A.; Leung, W.; Mukamel, Z.; Shamir, R.; et al. Single Cell Hi-C Identifies Plastic Chromosome Conformations Underlying the Gastrulation Enhancer Landscape. Nat. Commun. 2023, 14, 3844. [Google Scholar] [CrossRef]
- Tan, L.; Xing, D.; Chang, C.-H.; Li, H.; Xie, X.S. Three-Dimensional Genome Structures of Single Diploid Human Cells. Science 2018, 361, 924–928. [Google Scholar] [CrossRef] [PubMed]
- Tan, L.; Ma, W.; Wu, H.; Zheng, Y.; Xing, D.; Chen, R.; Li, X.; Daley, N.; Deisseroth, K.; Xie, X.S. Changes in Genome Architecture and Transcriptional Dynamics Progress Independently of Sensory Experience during Post-Natal Brain Development. Cell 2021, 184, 741–758.e17. [Google Scholar] [CrossRef]
- Chang, L.; Xie, Y.; Taylor, B.; Wang, Z.; Sun, J.; Armand, E.J.; Mishra, S.; Xu, J.; Tastemel, M.; Lie, A.; et al. Droplet Hi-C Enables Scalable, Single-Cell Profiling of Chromatin Architecture in Heterogeneous Tissues. Nat. Biotechnol. 2025, 43, 1694–1707. [Google Scholar] [CrossRef]
- Ramani, V.; Deng, X.; Qiu, R.; Gunderson, K.L.; Steemers, F.J.; Disteche, C.M.; Noble, W.S.; Duan, Z.; Shendure, J. Massively Multiplex Single-Cell Hi-C. Nat. Methods 2017, 14, 263–266. [Google Scholar] [CrossRef]
- Ramani, V.; Deng, X.; Qiu, R.; Lee, C.; Disteche, C.M.; Noble, W.S.; Shendure, J.; Duan, Z. Sci-Hi-C: A Single-Cell Hi-C Method for Mapping 3D Genome Organization in Large Number of Single Cells. Methods 2020, 170, 61–68. [Google Scholar] [CrossRef] [PubMed]
- Gridina, M.; Mozheiko, E.; Valeev, E.; Nazarenko, L.P.; Lopatkina, M.E.; Markova, Z.G.; Yablonskaya, M.I.; Voinova, V.Y.; Shilova, N.V.; Lebedev, I.N.; et al. A Cookbook for DNase Hi-C. Epigenetics Chromatin 2021, 14, 15. [Google Scholar] [CrossRef]
- Wendt, A.S.; Brannelly, L. Reference Genome and Reproduction-Focused Transcriptome for the Threatened Alpine Tree Frog (Litoria verreauxii Alpina). F1000Res 2025, 14, 514. [Google Scholar] [CrossRef] [PubMed]
- Buenrostro, J.D.; Wu, B.; Chang, H.Y.; Greenleaf, W.J. ATAC-Seq: A Method for Assaying Chromatin Accessibility Genome-Wide. Curr. Protoc. Mol. Biol. 2015, 109, 21.29.1–21.29.9. [Google Scholar] [CrossRef]
- Lareau, C.A.; Duarte, F.M.; Chew, J.G.; Kartha, V.K.; Burkett, Z.D.; Kohlway, A.S.; Pokholok, D.; Aryee, M.J.; Steemers, F.J.; Lebofsky, R.; et al. Droplet-Based Combinatorial Indexing for Massive-Scale Single-Cell Chromatin Accessibility. Nat. Biotechnol. 2019, 37, 916–924. [Google Scholar] [CrossRef]
- Mannens, C.C.A.; Hu, L.; Lönnerberg, P.; Schipper, M.; Reagor, C.C.; Li, X.; He, X.; Barker, R.A.; Sundström, E.; Posthuma, D.; et al. Chromatin Accessibility during Human First-Trimester Neurodevelopment. Nature 2025, 647, 179–186. [Google Scholar] [CrossRef]
- Preissl, S.; Fang, R.; Huang, H.; Zhao, Y.; Raviram, R.; Gorkin, D.U.; Zhang, Y.; Sos, B.C.; Afzal, V.; Dickel, D.E.; et al. Single-Nucleus Analysis of Accessible Chromatin in Developing Mouse Forebrain Reveals Cell-Type-Specific Transcriptional Regulation. Nat. Neurosci. 2018, 21, 432–439. [Google Scholar] [CrossRef]
- Zhang, X.; Marand, A.P.; Yan, H.; Schmitz, R.J. Scifi-ATAC-Seq: Massive-Scale Single-Cell Chromatin Accessibility Sequencing Using Combinatorial Fluidic Indexing. Genome Biol. 2024, 25, 90. [Google Scholar] [CrossRef]
- Zu, S.; Li, Y.E.; Wang, K.; Armand, E.J.; Mamde, S.; Amaral, M.L.; Wang, Y.; Chu, A.; Xie, Y.; Miller, M.; et al. Single-Cell Analysis of Chromatin Accessibility in the Adult Mouse Brain. Nature 2023, 624, 378–389. [Google Scholar] [CrossRef] [PubMed]
- Gao, W.; Lai, B.; Ni, B.; Zhao, K. Genome-Wide Profiling of Nucleosome Position and Chromatin Accessibility in Single Cells Using scMNase-Seq. Nat. Protoc. 2020, 15, 68–85. [Google Scholar] [CrossRef] [PubMed]
- Lai, B.; Gao, W.; Cui, K.; Xie, W.; Tang, Q.; Jin, W.; Hu, G.; Ni, B.; Zhao, K. Principles of Nucleosome Organization Revealed by Single-Cell Micrococcal Nuclease Sequencing. Nature 2018, 562, 281–285. [Google Scholar] [CrossRef]
- Cooper, J.; Ding, Y.; Song, J.; Zhao, K. Genome-Wide Mapping of DNase I Hypersensitive Sites in Rare Cell Populations Using Single-Cell DNase Sequencing. Nat. Protoc. 2017, 12, 2342–2354. [Google Scholar] [CrossRef]
- Gao, W.; Ku, W.L.; Pan, L.; Perrie, J.; Zhao, T.; Hu, G.; Wu, Y.; Zhu, J.; Ni, B.; Zhao, K. Multiplex Indexing Approach for the Detection of DNase I Hypersensitive Sites in Single Cells. Nucleic Acids Res. 2021, 49, e56. [Google Scholar] [CrossRef]
- Lu, T.; Ang, C.E.; Zhuang, X. Spatially Resolved Epigenomic Profiling of Single Cells in Complex Tissues. Cell 2022, 185, 4448–4464.e17. [Google Scholar] [CrossRef] [PubMed]
- Deng, Y.; Bartosovic, M.; Kukanja, P.; Zhang, D.; Liu, Y.; Su, G.; Enninful, A.; Bai, Z.; Castelo-Branco, G.; Fan, R. Spatial-CUT&Tag: Spatially Resolved Chromatin Modification Profiling at the Cellular Level. Science 2022, 375, 681–686. [Google Scholar] [CrossRef]
- Stuart, T.; Butler, A.; Hoffman, P.; Hafemeister, C.; Papalexi, E.; Mauck, W.M.; Hao, Y.; Stoeckius, M.; Smibert, P.; Satija, R. Comprehensive Integration of Single-Cell Data. Cell 2019, 177, 1888–1902.e21. [Google Scholar] [CrossRef]
- Wei, W.; Cheng, B.; Yang, X.; Chu, X.; He, D.; Qin, X.; Zhang, N.; Zhao, Y.; Shi, S.; Cai, Q.; et al. Single-Cell Multiomics Analysis Reveals Cell/Tissue-Specific Associations in Bipolar Disorder. Transl. Psychiatry 2024, 14, 323. [Google Scholar] [CrossRef] [PubMed]
- Welch, J.D.; Kozareva, V.; Ferreira, A.; Vanderburg, C.; Martin, C.; Macosko, E.Z. Single-Cell Multi-Omic Integration Compares and Contrasts Features of Brain Cell Identity. Cell 2019, 177, 1873–1887.e17. [Google Scholar] [CrossRef]
- Liu, L.; Liu, C.; Quintero, A.; Wu, L.; Yuan, Y.; Wang, M.; Cheng, M.; Leng, L.; Xu, L.; Dong, G.; et al. Deconvolution of Single-Cell Multi-Omics Layers Reveals Regulatory Heterogeneity. Nat. Commun. 2019, 10, 470. [Google Scholar] [CrossRef] [PubMed]
- Zhu, C.; Yu, M.; Huang, H.; Juric, I.; Abnousi, A.; Hu, R.; Lucero, J.; Behrens, M.M.; Hu, M.; Ren, B. An Ultra High-Throughput Method for Single-Cell Joint Analysis of Open Chromatin and Transcriptome. Nat. Struct. Mol. Biol. 2019, 26, 1063–1070. [Google Scholar] [CrossRef]
- Ma, S.; Zhang, B.; LaFave, L.M.; Earl, A.S.; Chiang, Z.; Hu, Y.; Ding, J.; Brack, A.; Kartha, V.K.; Tay, T.; et al. Chromatin Potential Identified by Shared Single-Cell Profiling of RNA and Chromatin. Cell 2020, 183, 1103–1116.e20. [Google Scholar] [CrossRef]
- Cao, J.; Cusanovich, D.A.; Ramani, V.; Aghamirzaie, D.; Pliner, H.A.; Hill, A.J.; Daza, R.M.; McFaline-Figueroa, J.L.; Packer, J.S.; Christiansen, L.; et al. Joint Profiling of Chromatin Accessibility and Gene Expression in Thousands of Single Cells. Science 2018, 361, 1380–1385. [Google Scholar] [CrossRef]
- Chen, S.; Lake, B.B.; Zhang, K. High-Throughput Sequencing of the Transcriptome and Chromatin Accessibility in the Same Cell. Nat. Biotechnol. 2019, 37, 1452–1457. [Google Scholar] [CrossRef] [PubMed]
- Plongthongkum, N.; Diep, D.; Chen, S.; Lake, B.B.; Zhang, K. Scalable Dual-Omics Profiling with Single-Nucleus Chromatin Accessibility and mRNA Expression Sequencing 2 (SNARE-Seq2). Nat. Protoc. 2021, 16, 4992–5029. [Google Scholar] [CrossRef]
- Xu, W.; Yang, W.; Zhang, Y.; Chen, Y.; Hong, N.; Zhang, Q.; Wang, X.; Hu, Y.; Song, K.; Jin, W.; et al. ISSAAC-Seq Enables Sensitive and Flexible Multimodal Profiling of Chromatin Accessibility and Gene Expression in Single Cells. Nat. Methods 2022, 19, 1243–1249. [Google Scholar] [CrossRef]
- Pan, L.; Ku, W.L.; Tang, Q.; Cao, Y.; Zhao, K. scPCOR-Seq Enables Co-Profiling of Chromatin Occupancy and RNAs in Single Cells. Commun. Biol. 2022, 5, 678. [Google Scholar] [CrossRef]
- Zhu, C.; Zhang, Y.; Li, Y.E.; Lucero, J.; Behrens, M.M.; Ren, B. Joint Profiling of Histone Modifications and Transcriptome in Single Cells from Mouse Brain. Nat. Methods 2021, 18, 283–292. [Google Scholar] [CrossRef]
- Rang, F.J.; de Luca, K.L.; de Vries, S.S.; Valdes-Quezada, C.; Boele, E.; Nguyen, P.D.; Guerreiro, I.; Sato, Y.; Kimura, H.; Bakkers, J.; et al. Single-Cell Profiling of Transcriptome and Histone Modifications with EpiDamID. Mol. Cell 2022, 82, 1956–1970.e14. [Google Scholar] [CrossRef] [PubMed]
- Sun, Z.; Tang, Y.; Zhang, Y.; Fang, Y.; Jia, J.; Zeng, W.; Fang, D. Joint Single-Cell Multiomic Analysis in Wnt3a Induced Asymmetric Stem Cell Division. Nat. Commun. 2021, 12, 5941. [Google Scholar] [CrossRef] [PubMed]
- Rooijers, K.; Markodimitraki, C.M.; Rang, F.J.; de Vries, S.S.; Chialastri, A.; de Luca, K.L.; Mooijman, D.; Dey, S.S.; Kind, J. Simultaneous Quantification of Protein–DNA Contacts and Transcriptomes in Single Cells. Nat. Biotechnol. 2019, 37, 766–772. [Google Scholar] [CrossRef]
- Angermueller, C.; Clark, S.J.; Lee, H.J.; Macaulay, I.C.; Teng, M.J.; Hu, T.X.; Krueger, F.; Smallwood, S.A.; Ponting, C.P.; Voet, T.; et al. Parallel Single-Cell Sequencing Links Transcriptional and Epigenetic Heterogeneity. Nat. Methods 2016, 13, 229–232. [Google Scholar] [CrossRef]
- Hu, Y.; Huang, K.; An, Q.; Du, G.; Hu, G.; Xue, J.; Zhu, X.; Wang, C.-Y.; Xue, Z.; Fan, G. Simultaneous Profiling of Transcriptome and DNA Methylome from a Single Cell. Genome Biol. 2016, 17, 88. [Google Scholar] [CrossRef] [PubMed]
- Gu, H.; Raman, A.T.; Wang, X.; Gaiti, F.; Chaligne, R.; Mohammad, A.W.; Arczewska, A.; Smith, Z.D.; Landau, D.A.; Aryee, M.J.; et al. Smart-RRBS for Single-Cell Methylome and Transcriptome Analysis. Nat. Protoc. 2021, 16, 4004–4030. [Google Scholar] [CrossRef]
- Qu, J.; Sun, J.; Zhao, C.; Liu, X.; Zhang, X.; Jiang, S.; Wei, C.; Yu, H.; Zeng, X.; Fan, L.; et al. Simultaneous Profiling of Chromatin Architecture and Transcription in Single Cells. Nat. Struct. Mol. Biol. 2023, 30, 1393–1402. [Google Scholar] [CrossRef]
- Pott, S. Simultaneous Measurement of Chromatin Accessibility, DNA Methylation, and Nucleosome Phasing in Single Cells. eLife 2017, 6, e23203. [Google Scholar] [CrossRef]
- Li, L.; Guo, F.; Gao, Y.; Ren, Y.; Yuan, P.; Yan, L.; Li, R.; Lian, Y.; Li, J.; Hu, B.; et al. Single-Cell Multi-Omics Sequencing of Human Early Embryos. Nat. Cell Biol. 2018, 20, 847–858. [Google Scholar] [CrossRef] [PubMed]
- Gu, C.; Liu, S.; Wu, Q.; Zhang, L.; Guo, F. Integrative Single-Cell Analysis of Transcriptome, DNA Methylome and Chromatin Accessibility in Mouse Oocytes. Cell Res. 2019, 29, 110–123. [Google Scholar] [CrossRef]
- Li, G.; Liu, Y.; Zhang, Y.; Kubo, N.; Yu, M.; Fang, R.; Kellis, M.; Ren, B. Joint Profiling of DNA Methylation and Chromatin Architecture in Single Cells. Nat. Methods 2019, 16, 991–993. [Google Scholar] [CrossRef] [PubMed]
- Tedesco, M.; Giannese, F.; Lazarević, D.; Giansanti, V.; Rosano, D.; Monzani, S.; Catalano, I.; Grassi, E.; Zanella, E.R.; Botrugno, O.A.; et al. Chromatin Velocity Reveals Epigenetic Dynamics by Single-Cell Profiling of Heterochromatin and Euchromatin. Nat. Biotechnol. 2022, 40, 235–244. [Google Scholar] [CrossRef]
- Clark, S.J.; Argelaguet, R.; Kapourani, C.-A.; Stubbs, T.M.; Lee, H.J.; Alda-Catalinas, C.; Krueger, F.; Sanguinetti, G.; Kelsey, G.; Marioni, J.C.; et al. scNMT-Seq Enables Joint Profiling of Chromatin Accessibility DNA Methylation and Transcription in Single Cells. Nat. Commun. 2018, 9, 781. [Google Scholar] [CrossRef]
- Yan, R.; Gu, C.; You, D.; Huang, Z.; Qian, J.; Yang, Q.; Cheng, X.; Zhang, L.; Wang, H.; Wang, P.; et al. Decoding Dynamic Epigenetic Landscapes in Human Oocytes Using Single-Cell Multi-Omics Sequencing. Cell Stem Cell 2021, 28, 1641–1656.e7. [Google Scholar] [CrossRef]
- Wang, Y.; Yuan, P.; Yan, Z.; Yang, M.; Huo, Y.; Nie, Y.; Zhu, X.; Qiao, J.; Yan, L. Single-Cell Multiomics Sequencing Reveals the Functional Regulatory Landscape of Early Embryos. Nat. Commun. 2021, 12, 1247. [Google Scholar] [CrossRef] [PubMed]
- Swanson, E.; Lord, C.; Reading, J.; Heubeck, A.T.; Genge, P.C.; Thomson, Z.; Weiss, M.D.; Li, X.-J.; Savage, A.K.; Green, R.R.; et al. Simultaneous Trimodal Single-Cell Measurement of Transcripts, Epitopes, and Chromatin Accessibility Using TEA-Seq. eLife 2021, 10, e63632. [Google Scholar] [CrossRef]
- Mimitou, E.P.; Lareau, C.A.; Chen, K.Y.; Zorzetto-Fernandes, A.L.; Hao, Y.; Takeshima, Y.; Luo, W.; Huang, T.-S.; Yeung, B.Z.; Papalexi, E.; et al. Scalable, Multimodal Profiling of Chromatin Accessibility, Gene Expression and Protein Levels in Single Cells. Nat. Biotechnol. 2021, 39, 1246–1258. [Google Scholar] [CrossRef]
- Chen, A.F.; Parks, B.; Kathiria, A.S.; Ober-Reynolds, B.; Goronzy, J.J.; Greenleaf, W.J. NEAT-Seq: Simultaneous Profiling of Intra-Nuclear Proteins, Chromatin Accessibility and Gene Expression in Single Cells. Nat. Methods 2022, 19, 547–553. [Google Scholar] [CrossRef]
- Bian, S.; Hou, Y.; Zhou, X.; Li, X.; Yong, J.; Wang, Y.; Wang, W.; Yan, J.; Hu, B.; Guo, H.; et al. Single-Cell Multiomics Sequencing and Analyses of Human Colorectal Cancer. Science 2018, 362, 1060–1063. [Google Scholar] [CrossRef] [PubMed]
- Hou, Y.; Guo, H.; Cao, C.; Li, X.; Hu, B.; Zhu, P.; Wu, X.; Wen, L.; Tang, F.; Huang, Y.; et al. Single-Cell Triple Omics Sequencing Reveals Genetic, Epigenetic, and Transcriptomic Heterogeneity in Hepatocellular Carcinomas. Cell Res. 2016, 26, 304–319. [Google Scholar] [CrossRef] [PubMed]
- He, S.; Bhatt, R.; Brown, C.; Brown, E.A.; Buhr, D.L.; Chantranuvatana, K.; Danaher, P.; Dunaway, D.; Garrison, R.G.; Geiss, G.; et al. High-Plex Imaging of RNA and Proteins at Subcellular Resolution in Fixed Tissue by Spatial Molecular Imaging. Nat. Biotechnol. 2022, 40, 1794–1806. [Google Scholar] [CrossRef]
- Gandin, V.; Kim, J.; Yang, L.-Z.; Lian, Y.; Kawase, T.; Hu, A.; Rokicki, K.; Fleishman, G.; Tillberg, P.; Castrejon, A.A.; et al. Deep-Tissue Transcriptomics and Subcellular Imaging at High Spatial Resolution. Science 2025, 388, eadq2084. [Google Scholar] [CrossRef]
- Liu, Y.; DiStasio, M.; Su, G.; Asashima, H.; Enninful, A.; Qin, X.; Deng, Y.; Nam, J.; Gao, F.; Bordignon, P.; et al. High-Plex Protein and Whole Transcriptome Co-Mapping at Cellular Resolution with Spatial CITE-Seq. Nat. Biotechnol. 2023, 41, 1405–1409. [Google Scholar] [CrossRef]
- Li, H.; Bao, S.; Farzad, N.; Qin, X.; Fung, A.A.; Zhang, D.; Bai, Z.; Tao, B.; Fan, R. Spatially Resolved Genome-Wide Joint Profiling of Epigenome and Transcriptome with Spatial-ATAC-RNA-Seq and Spatial-CUT&Tag-RNA-Seq. Nat. Protoc. 2025, 20, 2383–2417. [Google Scholar] [CrossRef]
- Zhang, D.; Deng, Y.; Kukanja, P.; Agirre, E.; Bartosovic, M.; Dong, M.; Ma, C.; Ma, S.; Su, G.; Bao, S.; et al. Spatial Epigenome–Transcriptome Co-Profiling of Mammalian Tissues. Nature 2023, 616, 113–122. [Google Scholar] [CrossRef]
- Lee, C.N.; Fu, H.; Cardilla, A.; Zhou, W.; Deng, Y. Spatial Joint Profiling of DNA Methylome and Transcriptome in Tissues. Nature 2025, 646, 1261–1271. [Google Scholar] [CrossRef]
- Bai, Z.; Zhang, D.; Gao, Y.; Tao, B.; Zhang, D.; Bao, S.; Enninful, A.; Wang, Y.; Li, H.; Su, G.; et al. Spatially Exploring RNA Biology in Archival Formalin-Fixed Paraffin-Embedded Tissues. Cell 2024, 187, 6760–6779.e24. [Google Scholar] [CrossRef]
- Huang, Y.-H.; Belk, J.A.; Zhang, R.; Weiser, N.E.; Chiang, Z.; Jones, M.G.; Mischel, P.S.; Buenrostro, J.D.; Chang, H.Y. Unified Molecular Approach for Spatial Epigenome, Transcriptome, and Cell Lineages. Proc. Natl. Acad. Sci. USA 2025, 122, e2424070122. [Google Scholar] [CrossRef] [PubMed]
- Bennett, H.M.; Stephenson, W.; Rose, C.M.; Darmanis, S. Single-Cell Proteomics Enabled by next-Generation Sequencing or Mass Spectrometry. Nat. Methods 2023, 20, 363–374. [Google Scholar] [CrossRef] [PubMed]
- Lu, W.; Su, X.; Klein, M.S.; Lewis, I.A.; Fiehn, O.; Rabinowitz, J.D. Metabolite Measurement: Pitfalls to Avoid and Practices to Follow. Annu. Rev. Biochem. 2017, 86, 277–304. [Google Scholar] [CrossRef] [PubMed]
- Petrosius, V.; Aragon-Fernandez, P.; Üresin, N.; Kovacs, G.; Phlairaharn, T.; Furtwängler, B.; Op De Beeck, J.; Skovbakke, S.L.; Goletz, S.; Thomsen, S.F.; et al. Exploration of Cell State Heterogeneity Using Single-Cell Proteomics through Sensitivity-Tailored Data-Independent Acquisition. Nat. Commun. 2023, 14, 5910. [Google Scholar] [CrossRef]
- Ye, Z.; Sabatier, P.; van der Hoeven, L.; Lechner, M.Y.; Phlairaharn, T.; Guzman, U.H.; Liu, Z.; Huang, H.; Huang, M.; Li, X.; et al. Enhanced Sensitivity and Scalability with a Chip-Tip Workflow Enables Deep Single-Cell Proteomics. Nat. Methods 2025, 22, 499–509. [Google Scholar] [CrossRef]
- Zhu, Y.; Piehowski, P.D.; Zhao, R.; Chen, J.; Shen, Y.; Moore, R.J.; Shukla, A.K.; Petyuk, V.A.; Campbell-Thompson, M.; Mathews, C.E.; et al. Nanodroplet Processing Platform for Deep and Quantitative Proteome Profiling of 10–100 Mammalian Cells. Nat. Commun. 2018, 9, 882. [Google Scholar] [CrossRef]
- Budnik, B.; Levy, E.; Harmange, G.; Slavov, N. SCoPE-MS: Mass Spectrometry of Single Mammalian Cells Quantifies Proteome Heterogeneity during Cell Differentiation. Genome Biol. 2018, 19, 161. [Google Scholar] [CrossRef]
- Petelski, A.A.; Emmott, E.; Leduc, A.; Huffman, R.G.; Specht, H.; Perlman, D.H.; Slavov, N. Multiplexed Single-Cell Proteomics Using SCoPE2. Nat. Protoc. 2021, 16, 5398–5425. [Google Scholar] [CrossRef]
- Ye, Z.; Batth, T.S.; Rüther, P.; Olsen, J.V. A Deeper Look at Carrier Proteome Effects for Single-Cell Proteomics. Commun. Biol. 2022, 5, 150. [Google Scholar] [CrossRef]
- Stoeckius, M.; Hafemeister, C.; Stephenson, W.; Houck-Loomis, B.; Chattopadhyay, P.K.; Swerdlow, H.; Satija, R.; Smibert, P. Simultaneous Epitope and Transcriptome Measurement in Single Cells. Nat. Methods 2017, 14, 865–868. [Google Scholar] [CrossRef] [PubMed]
- Giesen, C.; Wang, H.A.O.; Schapiro, D.; Zivanovic, N.; Jacobs, A.; Hattendorf, B.; Schüffler, P.J.; Grolimund, D.; Buhmann, J.M.; Brandt, S.; et al. Highly Multiplexed Imaging of Tumor Tissues with Subcellular Resolution by Mass Cytometry. Nat. Methods 2014, 11, 417–422. [Google Scholar] [CrossRef]
- Ptacek, J.; Locke, D.; Finck, R.; Cvijic, M.-E.; Li, Z.; Tarolli, J.G.; Aksoy, M.; Sigal, Y.; Zhang, Y.; Newgren, M.; et al. Multiplexed Ion Beam Imaging (MIBI) for Characterization of the Tumor Microenvironment across Tumor Types. Lab. Investig. 2020, 100, 1111–1123. [Google Scholar] [CrossRef]
- Kuett, L.; Catena, R.; Özcan, A.; Plüss, A.; Schraml, P.; Moch, H.; de Souza, N.; Bodenmiller, B. Three-Dimensional Imaging Mass Cytometry for Highly Multiplexed Molecular and Cellular Mapping of Tissues and the Tumor Microenvironment. Nat. Cancer 2022, 3, 122–133. [Google Scholar] [CrossRef] [PubMed]
- Mund, A.; Coscia, F.; Kriston, A.; Hollandi, R.; Kovács, F.; Brunner, A.-D.; Migh, E.; Schweizer, L.; Santos, A.; Bzorek, M.; et al. Deep Visual Proteomics Defines Single-Cell Identity and Heterogeneity. Nat. Biotechnol. 2022, 40, 1231–1240. [Google Scholar] [CrossRef] [PubMed]
- Caprioli, R.M.; Farmer, T.B.; Gile, J. Molecular Imaging of Biological Samples: Localization of Peptides and Proteins Using MALDI-TOF MS. Anal. Chem. 1997, 69, 4751–4760. [Google Scholar] [CrossRef] [PubMed]
- Soltwisch, J.; Kettling, H.; Vens-Cappell, S.; Wiegelmann, M.; Müthing, J.; Dreisewerd, K. Mass Spectrometry Imaging with Laser-Induced Postionization. Science 2015, 348, 211–215. [Google Scholar] [CrossRef] [PubMed]
- Niehaus, M.; Soltwisch, J.; Belov, M.E.; Dreisewerd, K. Transmission-Mode MALDI-2 Mass Spectrometry Imaging of Cells and Tissues at Subcellular Resolution. Nat. Methods 2019, 16, 925–931. [Google Scholar] [CrossRef] [PubMed]
- Nunes, J.B.; Ijsselsteijn, M.E.; Abdelaal, T.; Ursem, R.; van der Ploeg, M.; Giera, M.; Everts, B.; Mahfouz, A.; Heijs, B.; de Miranda, N.F.C.C. Integration of Mass Cytometry and Mass Spectrometry Imaging for Spatially Resolved Single-Cell Metabolic Profiling. Nat. Methods 2024, 21, 1796–1800. [Google Scholar] [CrossRef]
- Wang, Z.; Ge, S.; Liao, T.; Yuan, M.; Qian, W.; Chen, Q.; Liang, W.; Cheng, X.; Zhou, Q.; Ju, Z.; et al. Integrative Single-Cell Metabolomics and Phenotypic Profiling Reveals Metabolic Heterogeneity of Cellular Oxidation and Senescence. Nat. Commun. 2025, 16, 2740. [Google Scholar] [CrossRef]
- Lombard-Banek, C.; Li, J.; Portero, E.P.; Onjiko, R.M.; Singer, C.D.; Plotnick, D.O.; Al Shabeeb, R.Q.; Nemes, P. In Vivo Subcellular Mass Spectrometry Enables Proteo-Metabolomic Single-Cell Systems Biology in a Chordate Embryo Developing to a Normally Behaving Tadpole (X. Laevis)*. Angew. Chem. Int. Ed. Engl. 2021, 60, 12852–12858. [Google Scholar] [CrossRef]
- Wang, G.; Moffitt, J.R.; Zhuang, X. Multiplexed Imaging of High-Density Libraries of RNAs with MERFISH and Expansion Microscopy. Sci. Rep. 2018, 8, 4847. [Google Scholar] [CrossRef]
- Wang, S.; Shin, T.W.; Yoder, H.B.; McMillan, R.B.; Su, H.; Liu, Y.; Zhang, C.; Leung, K.S.; Yin, P.; Kiessling, L.L.; et al. Single-Shot 20-Fold Expansion Microscopy. Nat. Methods 2024, 21, 2128–2134. [Google Scholar] [CrossRef]
- Chen, F.; Tillberg, P.W.; Boyden, E.S. Expansion Microscopy. Science 2015, 347, 543–548. [Google Scholar] [CrossRef]
- Acke, A.; Van Belle, S.; Louis, B.; Vitale, R.; Rocha, S.; Voet, T.; Debyser, Z.; Hofkens, J. Expansion Microscopy Allows High Resolution Single Cell Analysis of Epigenetic Readers. Nucleic Acids Res. 2022, 50, e100. [Google Scholar] [CrossRef]
- Woodworth, M.A.; Ng, K.K.H.; Halpern, A.R.; Pease, N.A.; Nguyen, P.H.B.; Kueh, H.Y.; Vaughan, J.C. Multiplexed Single-Cell Profiling of Chromatin States at Genomic Loci by Expansion Microscopy. Nucleic Acids Res. 2021, 49, e82. [Google Scholar] [CrossRef] [PubMed]
- Al’Khafaji, A.M.; Smith, J.T.; Garimella, K.V.; Babadi, M.; Popic, V.; Sade-Feldman, M.; Gatzen, M.; Sarkizova, S.; Schwartz, M.A.; Blaum, E.M.; et al. High-Throughput RNA Isoform Sequencing Using Programmed cDNA Concatenation. Nat. Biotechnol. 2024, 42, 582–586. [Google Scholar] [CrossRef]
- Gupta, I.; Collier, P.G.; Haase, B.; Mahfouz, A.; Joglekar, A.; Floyd, T.; Koopmans, F.; Barres, B.; Smit, A.B.; Sloan, S.A.; et al. Single-Cell Isoform RNA Sequencing Characterizes Isoforms in Thousands of Cerebellar Cells. Nat. Biotechnol. 2018, 36, 1197–1202. [Google Scholar] [CrossRef]
- Lebrigand, K.; Magnone, V.; Barbry, P.; Waldmann, R. High Throughput Error Corrected Nanopore Single Cell Transcriptome Sequencing. Nat. Commun. 2020, 11, 4025. [Google Scholar] [CrossRef] [PubMed]
- Valdes, P.A.; Yu, C.-C.; Aronson, J.; Ghosh, D.; Zhao, Y.; An, B.; Bernstock, J.D.; Bhere, D.; Felicella, M.M.; Viapiano, M.S.; et al. Improved Immunostaining of Nanostructures and Cells in Human Brain Specimens through Expansion-Mediated Protein Decrowding. Sci. Transl. Med. 2024, 16, eabo0049. [Google Scholar] [CrossRef] [PubMed]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Casmey, K.; Zimmermann, M.; Xie, Y.; Codeluppi-Arrowsmith, S.A.; Turecki, G. A Single-Cell Omics Technical Guide for Advancing Neuropsychiatric Research. Genes 2025, 16, 1394. https://doi.org/10.3390/genes16121394
Casmey K, Zimmermann M, Xie Y, Codeluppi-Arrowsmith SA, Turecki G. A Single-Cell Omics Technical Guide for Advancing Neuropsychiatric Research. Genes. 2025; 16(12):1394. https://doi.org/10.3390/genes16121394
Chicago/Turabian StyleCasmey, Kayleigh, Maria Zimmermann, Yuxin Xie, Sierra A. Codeluppi-Arrowsmith, and Gustavo Turecki. 2025. "A Single-Cell Omics Technical Guide for Advancing Neuropsychiatric Research" Genes 16, no. 12: 1394. https://doi.org/10.3390/genes16121394
APA StyleCasmey, K., Zimmermann, M., Xie, Y., Codeluppi-Arrowsmith, S. A., & Turecki, G. (2025). A Single-Cell Omics Technical Guide for Advancing Neuropsychiatric Research. Genes, 16(12), 1394. https://doi.org/10.3390/genes16121394

