The Role of TuACO Gene Family in Response to Biotic and Abiotic Stresses in Triticum urartu
Abstract
1. Introduction
2. Materials and Methods
2.1. Gene Identification and Evolutionary Analysis
2.2. Gene Structure, Promoter, Protein Conserved Motif Analysis, Chromosomal Localization, and Expression Patterns
2.3. Material Handling
2.4. QRT-PCR Analysis
3. Results
3.1. Identification and Physicochemical Properties Analysis of TuACO Gene Family in T. urartu
3.2. Clustering Analysis of TuACO Genes
3.3. Chromosomal Localization of TuACO
3.4. The Structure and Protein Conserved Motifs of TuACO
3.5. Promoter Cis-Acting Primitive Analysis
3.6. TuACO Response to Biotic Stress
3.7. TuACO Response to Abiotic Stress
4. Discussion
4.1. The TuACO Genes Exhibit Significant Structural Diversity During Evolution While Maintaining Conserved Sequence Architecture
4.2. The Distribution of Core Promoter Elements Varies Significantly Among Different TuACO Genes
4.3. Functional Divergence of TuACO Genes in Response to Biotic and Abiotic Stresses
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Li, J.; Li, C.Y. Progress of phytohormone research in the 70 years since the founding of New China. Sci. China Life Sci. 2019, 49, 1227–1281. [Google Scholar]
- Pierik, R.; Sasidharan, R.; Voesenek, L.A.C.J. Growth control by ethylene: Adjusting phenotypes to the environment. J. Plant Growth Regul. 2007, 26, 188–200. [Google Scholar] [CrossRef]
- Lieberman, M.; Kunishi, A.; Mapson, L.; Wardale, D.A. Stimulation of ethylene production in apple tissue slices by methionine. Plant Physiol. 1966, 44, 376–382. [Google Scholar] [CrossRef]
- Adams, D.O.; Yang, S.O. Methionine metabolism in apple tissue: Implication of s-adenosylmethionine as an intermediate in the conversion of methionine to ethylene. Plant Physiol. 1977, 60, 892–896. [Google Scholar] [CrossRef] [PubMed]
- Murr, D.P.; Yang, S.F. Conversion of 5′-methylthioadenosine to methionine by apple tissue. Phytochemistry 1975, 14, 1291–1292. [Google Scholar] [CrossRef]
- Adams, D.O.; Yang, S.F. Ethylene biosynthesis: Identification of 1-aminocyclopropane-1-carboxylic acid as an intermediate in the conversion of methionine to ethylene. Proc. Natl. Acad. Sci. USA 1979, 76, 170–174. [Google Scholar] [CrossRef]
- Boller, T.; Herner, R.C.; Kende, H. Assay for and enzymatic formation of an ethylene precursor, 1-aminocyclopropane-1-carboxylic acid. Planta 1979, 145, 293–303. [Google Scholar] [CrossRef] [PubMed]
- Hamilton, A.J.; Lycett, G.W.; Grierson, D. Antisense gene that inhibits synthesis of the hormone ethylene in transgenic plants. Nature 1990, 346, 284–287. [Google Scholar] [CrossRef]
- Ververidis, P.; John, P. Complete recovery in vitro of ethylene-forming enzyme activity. Phytochemistry 1991, 30, 725–727. [Google Scholar] [CrossRef]
- Xu, Z.C. Differential expression of ACC oxidase gene in different tissues of ripe kiwifruit. J. Univ. Sci. Technol. China 2001, 31, 235–240. [Google Scholar]
- Zhang, X.S.; Zhong, H.W.; Lu, C.; Huang, X.; Cao, Z.X. Pollination-induced ethylene synthesis and ACC oxidase gene expression in Phalaenopsis pistils. Acta Bot. Sin. 1996, 38, 375–378. [Google Scholar]
- Binnie, J.E.; McManus, M.T. Characterization of the 1-aminocyclopropane-1-carboxylic acid (ACC) oxidase multigene family of Malus domestica Borkh. Phytochemistry 2009, 70, 348–360. [Google Scholar] [CrossRef]
- Chen, B.C.; McManus, M.T. Expression of 1-aminocyclopropane-1-carboxylate (ACC) oxidase genes during the development of vegetative tissues in white clover (Trifolium repens L.) is regulated by ontological cues. Plant Mol. Biol. 2006, 60, 451–467. [Google Scholar] [CrossRef]
- Dahleen, L.S.; Tyagi, N.; Bregitzer, P.; Ryan, H.B.; William, C.M. Developing tools for investigating the multiple roles of ethylene: Identification and mapping genes for ethylene biosynthesis and reception in barley. Mol. Genet. Genom. 2012, 287, 793–802. [Google Scholar] [CrossRef]
- Houben, M.; Poel, B.V. 1-aminocyclopropane-1-carboxylic acid oxidase (ACO): The enzyme that makes the plant hormone ethylene. Front. Plant Sci. 2019, 10, 695. [Google Scholar] [CrossRef]
- Chen, D.H.; Ma, X.Y.; Li, C.L.; Zhang, W.; Xia, G.M.; Wang, M. A wheat aminocyclopropane-1-carboxylate oxidase gene, TaACO1, negatively regulates salinity stress in Arabidopsis thaliana. Plant Cell Rep. 2014, 33, 1815–1827. [Google Scholar] [CrossRef]
- Zhang, J.C.; Zheng, H.Y.; Li, Y.W.; Li, H.J.; Liu, X.; Qin, H.J.; Dong, L.L.; Wang, D.W. Coexpression network analysis of the genes regulated by two types of resistance responses to powdery mildew in wheat. Sci. Rep. 2016, 6, 23805. [Google Scholar] [CrossRef] [PubMed]
- Zhu, T.; Tan, W.R.; Deng, X.G.; Zheng, T.; Zhang, D.W.; Lin, H.H. Effects of brassinosteroids on quality attributes and ethylene synthesis in postharvest tomato fruit. Postharvest Biol. Tec. 2015, 100, 196–204. [Google Scholar] [CrossRef]
- Leaungthitikanchana, S.; Fujibe, T.; Tanaka, M.; Wang, S.; Sotta, N.; Takano, J.; Fujiwara, T. Differential expression of three BOR1 genes corresponding to different genomes in response to boron conditions in hexaploid wheat (Triticum Aestivum L). Plant Cell Physiol. 2013, 54, 1056–1063. [Google Scholar] [CrossRef] [PubMed]
- Chae, H.S.; Cho, Y.G.; Park, M.Y.; Lee, M.C.; Eun, M.Y.; Kang, B.G.; Kim, W.T. Hormonal cross-talk between auxin and ethylene differentially regulates the expression of two members of the 1-aminocyclopropane-1-carboxylate oxidase gene family in rice (Oryza sativa L.). Plant Cell Physiol. 2000, 41, 354–362. [Google Scholar] [CrossRef] [PubMed]
- Rzewuski, G.; Sauter, M. Ethylene biosynthesis and signaling in rice. Plant Sci. 2008, 175, 32–42. [Google Scholar] [CrossRef]
- Vande, P.B.; Smet, D.; Van Der, S.D. Ethylene and hormonal cross talk in vegetative growth and development. Plant Physiol. 2015, 169, 61–72. [Google Scholar] [CrossRef]
- Hu, X.F.; Xiang, X.B.; Xiong, L.J.; Zhu, Y.F.; Deng, Z.J. Differences in seed germination rates of different rice varieties and their responses to exogenous phytohormones. Seed 2017, 36, 1–6. [Google Scholar] [CrossRef]
- Yang, S.F.; Hoffman, N.E. Ethylene biosynthesis and its regulation in higher plants. Ann. Rev. Plant Physiol. 1984, 35, 155–189. [Google Scholar] [CrossRef]
- Mekhedov, S.L.; Kende, H. Submergence enhances expression of a gene encoding 1-aminocyclopropane-1-carboxylate oxidase in deepwater rice. Plant Cell Physiol. 1996, 37, 531–537. [Google Scholar] [CrossRef] [PubMed]
- Yang, C.; Li, W.; Cao, J.; Meng, F.W.; Yu, Y.Q.; Huang, J.K.; Jiang, L.; Liu, M.X.; Zhang, Z.G.; Chen, X.W.; et al. Activation of ethylene signaling pathways enhances disease resistance by regulating ROS and phytoalexin production in rice. Plant J. 2017, 89, 338–353. [Google Scholar] [CrossRef] [PubMed]
- Ahmadizadeh, M.; Chen, J.T.; Hasanzadeh, S.; Ahmar, S.; Heidari, P. Insights into the genes involved in the ethylene biosynthesis pathway in Arabidopsis thaliana and Oryza sativa. J. Genet. Eng. Biotechnol. 2020, 18, 62. [Google Scholar] [CrossRef]









| Gene Name | Upstream Primer | Downstream Primer | Amplicon Length |
|---|---|---|---|
| TuACO1a | GCTTCGTCGTTCCCGATCAT | GCCCTTTGGTCATCTTCTCCA | 166 |
| TuACO1b | AACCTCGGCGACCAGC | CGGGTTGTAGAAGGATGCGA | 113 |
| TuACO3a | CCACCACTACAGGCAAGTGA | CAAAGGCCCGCTTCAGGT | 122 |
| TuACO3b | GTCGGAGATCGAGAAGCTGG | GAGGCCGTCAACCAGGTC | 169 |
| TuACO6 | GAGACACTTGCGCTTCTCCA | TTGAGGTGACTTTGTCGGGA | 190 |
| TuACO4 | TGAAGAAGCTGGCGGAGAAG | GCCGTAGAAAGGCTCGAAGT | 113 |
| TuACO5a | GGACTACGTGTTCGGGGATT | GCCTCGAATCTTGGCTCCTT | 56 |
| TuACO5b | CAAGGTCAGCCACTACCCAC | GCACGTCCAGCCACTCG | 149 |
| Gene | ID | Physical Position | Genome (bp) | CDS (bp) | Protein (aa) | Intron | Exon | Weight | Isoelectric Point | Hydrophobicity | Subcellular Localization |
|---|---|---|---|---|---|---|---|---|---|---|---|
| TuACO1a | TUG1812G0500002671.01 | 429986928–429989061 | 1067 | 960 | 319 | 1 | 2 | 35.69 | 5.27 | −0.545 | cytoplasmic translation |
| TuACO1b | TuG1812G0500002672.01 | 430039786–430041136 | 1063 | 960 | 319 | 1 | 2 | 35.69 | 5.29 | −0.167 | cytoplasmic translation |
| TuACO3a | TuG1812G0600003491.01 | 520096987–520099477 | 1426 | 990 | 329 | 2 | 3 | 36.47 | 5.17 | −0.111 | cytoplasmic translation |
| TuACO3b | TuG1812G0600003493.01 | 520135882–520138604 | 1535 | 996 | 331 | 2 | 3 | 36.47 | 5.16 | −0.333 | cytoplasmic translation |
| TuACO6 | TuG1812G0700003990.01 | 532663043–532664967 | 1102 | 882 | 293 | 2 | 3 | 33.55 | 6.56 | −0.945 | cytoplasmic translation |
| TuACO4 | TuG1812G0400001021.01 | 93438404–93440867 | 1307 | 942 | 313 | 2 | 4 | 34.87 | 4.84 | −0.645 | cytoplasmic translation |
| TuACO5a | TuG1812G0100001158.01 | 86510694–86512367 | 927 | 927 | 308 | 0 | 1 | 34.48 | 4.97 | −0.833 | cytoplasmic translation |
| TuACO5b | TuG1812G0100001157.01 | 86396262–86398038 | 927 | 927 | 308 | 0 | 1 | 34.40 | 4.87 | −0.833 | cytoplasmic translation |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, M.; Liu, X.; Wang, S.; Wang, X.; Gao, P.; Gebrewahid, T.W.; Zhang, P.; Li, Z. The Role of TuACO Gene Family in Response to Biotic and Abiotic Stresses in Triticum urartu. Genes 2025, 16, 1259. https://doi.org/10.3390/genes16111259
Li M, Liu X, Wang S, Wang X, Gao P, Gebrewahid TW, Zhang P, Li Z. The Role of TuACO Gene Family in Response to Biotic and Abiotic Stresses in Triticum urartu. Genes. 2025; 16(11):1259. https://doi.org/10.3390/genes16111259
Chicago/Turabian StyleLi, Min, Xiaoting Liu, Shuo Wang, Xinhai Wang, Pu Gao, Takele Weldu Gebrewahid, Peipei Zhang, and Zaifeng Li. 2025. "The Role of TuACO Gene Family in Response to Biotic and Abiotic Stresses in Triticum urartu" Genes 16, no. 11: 1259. https://doi.org/10.3390/genes16111259
APA StyleLi, M., Liu, X., Wang, S., Wang, X., Gao, P., Gebrewahid, T. W., Zhang, P., & Li, Z. (2025). The Role of TuACO Gene Family in Response to Biotic and Abiotic Stresses in Triticum urartu. Genes, 16(11), 1259. https://doi.org/10.3390/genes16111259

