Comparative Analysis of Chloroplast Genome Sequences and Phylogeny in Three Macadamia integrifolia Cultivars
Abstract
1. Introduction
2. Materials and Methods
2.1. Plant Materials
2.2. DNA Extraction and Chloroplast Genome Sequencing
2.3. Assembly and Annotation of Chloroplast Genomes
2.4. Analysis of Chloroplast Genome Features
2.5. Phylogenetic Analysis
3. Results
3.1. Structural Characteristics of the Chloroplast Genome
3.2. Codon Preference Analysis
3.3. Repeated Sequence Analysis
3.4. IR Boundary Analysis
3.5. Phylogenetic Analysis of Three Macadamia integrifolia
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Lin, J.; Zhang, W.; Zhang, X.; Ma, X.; Zhang, S.; Chen, S.; Wang, Y.; Jia, H.; Liao, Z.; Lin, J.; et al. Signatures of selection in recently domesticated macadamia. Nat. Commun. 2022, 13, 242. [Google Scholar] [CrossRef]
- Mast, A.R.; Willis, C.L.; Jones, E.H.; Downs, K.M.; Weston, P.H. A smaller Macadamia from a more vagile tribe: Inference of phylogenetic relationships, divergence times, and diaspore evolution in Macadamia and relatives (tribe Macadamieae; Proteaceae). Am. J. Bot. 2008, 95, 843–870. [Google Scholar] [CrossRef] [PubMed]
- Niu, Y.; Lu, Y.; Song, W.; He, X.; Liu, Z.; Zheng, C.; Wang, S.; Shi, C.; Liu, J. Assembly and comparative analysis of the complete mitochondrial genome of three Macadamia species (M. integrifolia, M. ternifolia and M. tetraphylla). PLoS ONE 2022, 17, e0263545. [Google Scholar] [CrossRef]
- Taylor, P.J.; Grass, I.; Alberts, A.J.; Joubert, E.; Tscharntke, T. Economic value of bat predation services—A review and new estimates from macadamia orchards. Ecosyst. Serv. 2018, 30, 372–381. [Google Scholar] [CrossRef]
- Prasannath, K.; Shivas, R.G.; Galea, V.J.; Akinsanmi, O.A. Neopestalotiopsis Species Associated with Flower Diseases of Macadamia integrifolia in Australia. J. Fungi 2021, 7, 771. [Google Scholar] [CrossRef]
- El Hawary, S.S.; Abubaker, M.; Abd El-Kader, E.M.; Mahrous, E.A. Phytochemical constituents and anti-tyrosinase activity of Macadamia integrifolia leaves extract. Nat. Prod. Res. 2022, 36, 1089–1094. [Google Scholar] [CrossRef]
- Tao, L.; Zhang, C.; Ying, Z.; Xiong, Z.; Vaisman, H.S.; Wang, C.; Shi, Z.; Shi, R. Long-term continuous mono-cropping of Macadamia integrifolia greatly affects soil physicochemical properties, rhizospheric bacterial diversity, and metabolite contents. Front. Microbiol. 2022, 13, 952092. [Google Scholar] [CrossRef]
- Zhang, D.; Tu, J.; Ding, X.; Guan, W.; Gong, L.; Qiu, X.; Huang, Z.; Su, H. Analysis of the chloroplast genome and phylogenetic evolution of Bidens pilosa. BMC Genom. 2023, 24, 113. [Google Scholar] [CrossRef]
- Zou, T.; Li, D.; Zhao, C.-Y.; Chen, M.-L. Chloroplast whole genome assembly and phylogenetic analysis of Persicaria criopolitana reveals its new taxonomic status. Sci. Rep. 2025, 15, 19890. [Google Scholar] [CrossRef] [PubMed]
- Xue, S.; Shi, T.; Luo, W.; Ni, X.; Iqbal, S.; Ni, Z.; Huang, X.; Yao, D.; Shen, Z.; Gao, Z. Comparative analysis of the complete chloroplast genome among Prunus mume, P. armeniaca, and P. salicina. Hortic. Res. 2019, 6, 89. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Gao, H.; Wang, Y.; Song, J.; Henry, R.; Wu, H.; Hu, Z.; Yao, H.; Luo, H.; Luo, K.; et al. Complete chloroplast genome sequence of Magnolia grandiflora and comparative analysis with related species. Sci. China-Life Sci. 2013, 56, 189–198. [Google Scholar] [CrossRef]
- Song, Y.; Zhao, W.; Xu, J.; Li, M.; Zhang, Y. Chloroplast Genome Evolution and Species Identification of Styrax (Styracaceae). Biomed Res. Int. 2022, 2022, 5364094. [Google Scholar] [CrossRef]
- Hao, J.; Lu, Y.; Dang, M.; Xia, R.; Xu, L.; Zhu, Z.; Yu, Y. The complete chloroplast genome sequence of Plectranthus hadiensis (Lamiaceae) and phylogenetic analysis. Mitochondrial DNA Part B-Resour. 2023, 8, 1049–1053. [Google Scholar] [CrossRef]
- Wolfe, K.H.; Li, W.H.; Sharp, P.M. Rates of nucleotide substitution vary greatly among plant mitochondrial, chloroplast, and nuclear DNAs. Proc. Natl. Acad. Sci. USA 1987, 84, 9054–9058. [Google Scholar] [CrossRef]
- Wicke, S.; Schneeweiss, G.M.; dePamphilis, C.W.; Mueller, K.F.; Quandt, D. The evolution of the plastid chromosome in land plants: Gene content, gene order, gene function. Plant Mol. Biol. 2011, 76, 273–297. [Google Scholar] [CrossRef]
- Kurtz, S.; Choudhuri, J.V.; Ohlebusch, E.; Schleiermacher, C.; Stoye, J.; Giegerich, R. REPuter: The manifold applications of repeat analysis on a genomic scale. Nucleic Acids Res. 2001, 29, 4633–4642. [Google Scholar] [CrossRef]
- Wang, J.; Zou, Y.; Mower, J.P.; Reeve, W.; Wu, Z. Rethinking the mutation hypotheses of plant organellar DNA. Genom. Commun. 2024, 1, e003. [Google Scholar] [CrossRef]
- Wang, J.; Kan, S.; Liao, X.; Zhou, J.; Tembrock, L.R.; Daniell, H.; Jin, S.; Wu, Z. Plant organellar genomes: Much done, much more to do. Trends Plant Sci. 2024, 29, 754–769. [Google Scholar] [CrossRef] [PubMed]
- Moore, M.J.; Soltis, P.S.; Bell, C.D.; Burleigh, J.G.; Soltis, D.E. Phylogenetic analysis of 83 plastid genes further resolves the early diversification of eudicots. Proc. Natl. Acad. Sci. USA 2010, 107, 4623–4628. [Google Scholar] [CrossRef] [PubMed]
- Li, E.; Liu, K.; Deng, R.; Gao, Y.; Liu, X.; Dong, W.; Zhang, Z. Insights into the phylogeny and chloroplast genome evolution of Eriocaulon (Eriocaulaceae). BMC Plant Biol. 2023, 23, 32. [Google Scholar] [CrossRef] [PubMed]
- Nock, C.J.; Baten, A.; King, G.J. Complete chloroplast genome of Macadamia integrifolia confirms the position of the Gondwanan early-diverging eudicot family Proteaceae. BMC Genom. 2014, 15, S13. [Google Scholar] [CrossRef]
- Liu, J.; Niu, Y.-F.; Ni, S.-B.; He, X.-Y.; Shi, C. Complete chloroplast genome of a subtropical fruit tree Macadamia ternifolia (Proteaceae). Mitochondrial DNA Part B-Resour. 2017, 2, 738–739. [Google Scholar] [CrossRef]
- Liu, J.; Niu, Y.-F.; Ni, S.-B.; He, X.-Y.; Zheng, C.; Liu, Z.-Y.; Cai, H.-H.; Shi, C. The whole chloroplast genome sequence of Macadamia tetraphylla (Proteaceae). Mitochondrial DNA Part B-Resour. 2018, 3, 1276–1277. [Google Scholar] [CrossRef]
- Li, H.Q.; Liu, X.L.; Wang, J.H.; Fu, Y.Y.; Sun, X.P.; Xing, L.G. Impacts of climate change on potential geographical cultivation areas of longan (Dimocarpus longan) in China. J. Agric. Sci. 2020, 158, 471–478. [Google Scholar] [CrossRef]
- Chen, S.; Zhou, Y.; Chen, Y.; Gu, J. fastp: An ultra-fast all-in-one FASTQ preprocessor. Bioinformatics 2018, 34, 884–890. [Google Scholar] [CrossRef]
- Bankevich, A.; Nurk, S.; Antipov, D.; Gurevich, A.A.; Dvorkin, M.; Kulikov, A.S.; Lesin, V.M.; Nikolenko, S.I.; Son, P.; Prjibelski, A.D.; et al. SPAdes: A New Genome Assembly Algorithm and Its Applications to Single-Cell Sequencing. J. Comput. Biol. 2012, 19, 455–477. [Google Scholar] [CrossRef]
- Qu, X.-J.; Moore, M.J.; Li, D.-Z.; Yi, T.-S. PGA: A software package for rapid, accurate, and flexible batch annotation of plastomes. Plant Methods 2019, 15, 50. [Google Scholar] [CrossRef] [PubMed]
- Greiner, S.; Lehwark, P.; Bock, R. OrganellarGenomeDRAW (OGDRAW) version 1.3.1: Expanded toolkit for the graphical visualization of organellar genomes. Nucleic Acids Res. 2019, 47, W59–W64. [Google Scholar] [CrossRef] [PubMed]
- Beier, S.; Thiel, T.; Muench, T.; Scholz, U.; Mascher, M. MISA-web: A web server for microsatellite prediction. Bioinformatics 2017, 33, 2583–2585. [Google Scholar] [CrossRef] [PubMed]
- Amiryousefi, A.; Hyvonen, J.; Poczai, P. IRscope: An online program to visualize the junction sites of chloroplast genomes. Bioinformatics 2018, 34, 3030–3031. [Google Scholar] [CrossRef]
- Kumar, S.; Stecher, G.; Suleski, M.; Sanderford, M.; Sharma, S.; Tamura, K. MEGA12: Molecular Evolutionary Genetic Analysis Version 12 for Adaptive and Green Computing. Mol. Biol. Evol. 2024, 41, msae263. [Google Scholar] [CrossRef]
- Jansen, R.K.; Cai, Z.; Raubeson, L.A.; Daniell, H.; Depamphilis, C.W.; Leebens-Mack, J.; Muller, K.F.; Guisinger-Bellian, M.; Haberle, R.C.; Hansen, A.K.; et al. Analysis of 81 genes from 64 plastid genomes resolves relationships in angiosperms and identifies genome-scale evolutionary patterns. Proc. Natl. Acad. Sci. USA 2007, 104, 19369–19374. [Google Scholar] [CrossRef]
- Wu, X.-M.; Wu, S.-F.; Ren, D.-M.; Zhu, Y.-P.; He, F.-C. The analysis method and progress in the study of codon bias. Yi Chuan = Hered. 2007, 29, 420–426. [Google Scholar] [CrossRef]
- Morton, B.R. Selection on the codon bias of chloroplast and cyanelle genes in different plant and algal lineages. J. Mol. Evol. 1998, 46, 449–459. [Google Scholar] [CrossRef]
- Suzuki, Y. Statistical methods for detecting natural selection from genomic data. Genes Genet. Syst. 2010, 85, 359–376. [Google Scholar] [CrossRef] [PubMed]
- Hu, J.; Gui, S.; Zhu, Z.; Wang, X.; Ke, W.; Ding, Y. Genome-Wide Identification of SSR and SNP Markers Based on Whole-Genome Re-Sequencing of a Thailand Wild Sacred Lotus (Nelumbo nucifera). PLoS ONE 2015, 10, e0143765. [Google Scholar] [CrossRef]
- Tillich, M.; Beick, S.; Schmitz-Linneweber, C. Chloroplast RNA-binding proteins: Repair and regulation of chloroplast transcripts. RNA Biol. 2010, 7, 172–178. [Google Scholar] [CrossRef] [PubMed]
- Marechal, A.; Brisson, N. Recombination and the maintenance of plant organelle genome stability. New Phytol. 2010, 186, 299–317. [Google Scholar] [CrossRef]
- Li, L.; Hu, Y.; He, M.; Zhang, B.; Wu, W.; Cai, P.; Huo, D.; Hong, Y. Comparative chloroplast genomes: Insights into the evolution of the chloroplast genome of Camellia sinensis and the phylogeny of Camellia. BMC Genom. 2021, 22, 138. [Google Scholar] [CrossRef] [PubMed]
- Birky, C.W., Jr. Uniparental inheritance of mitochondrial and chloroplast genes: Mechanisms and evolution. Proc. Natl. Acad. Sci. USA 1995, 92, 11331–11338. [Google Scholar] [CrossRef]
- Zhong, B.; Fong, R.; Collins, L.J.; McLenachan, P.A.; Penny, D. Two new fern chloroplasts and decelerated evolution linked to the long generation time in tree ferns. Genome Biol. Evol. 2014, 6, 1166–1173. [Google Scholar] [CrossRef] [PubMed]
- Wu, Z.; Waneka, G.; Broz, A.K.; King, C.R.; Sloan, D.B. MSH1 is required for maintenance of the low mutation rates in plant mitochondrial and plastid genomes. Proc. Natl. Acad. Sci. USA 2020, 117, 16448–16455. [Google Scholar] [CrossRef]
- Kim, K.-J.; Lee, H.-L. Widespread occurrence of small inversions in the chloroplast genomes of land plants. Mol. Cells 2005, 19, 104–113. [Google Scholar] [CrossRef]
- Daniell, H.; Lin, C.S.; Yu, M.; Chang, W.J. Chloroplast genomes: Diversity, evolution, and applications in genetic engineering. Genome Biol. 2016, 17, 134. [Google Scholar] [CrossRef] [PubMed]
- Olson, M.S.; McCauley, D.E. Linkage disequilibrium and phylogenetic congruence between chloroplast and mitochondrial haplotypes in Silene vulgaris. Proc. Biol. Sci. 2000, 267, 1801–1808. [Google Scholar] [CrossRef] [PubMed]
- Kan, J.; Nie, L.; Wang, M.; Tiwari, R.; Tembrock, L.R.; Wang, J. The Mendelian pea pan-plastome: Insights into genomic structure, evolutionary history, and genetic diversity of an essential food crop. Genom. Commun. 2024, 1, e004. [Google Scholar] [CrossRef]






| Species | Guilin No. 1 | Nanya No. 1 | Qianao No. 1 |
|---|---|---|---|
| Total length (bp) | 159,714 | 159,195 | 159,508 |
| LSC. length (bp) | 88,093 | 87,651 | 87,921 |
| SSC. length (bp) | 18,813 | 18,788 | 18,743 |
| IR. length (bp) | 26,404 | 26,378 | 26,422 |
| Total GC (%) | 38.12% | 38.16% | 38.14% |
| Genes number | 135 | 135 | 135 |
| Protein-coding genes | 90 | 90 | 90 |
| tRNA genes | 37 | 37 | 37 |
| rRNA genes | 8 | 8 | 8 |
| Category of Genes | Group of Genes | Name of Genes | Number |
|---|---|---|---|
| Photosynthesis | Photosystem I | psaA, psaB, psaC, psaI, psaJ, pafI **, pafII | 7 |
| Photosystem II | psbA, psbB, psbC, psbD, psbE, psbF, psbH, psbI, psbJ, psbK, psbL, psbM, psbN, psbT, psbZ | 15 | |
| NADH-dehydrogenase | ndhA *, ndhB(x2) *, ndhC, ndhD, ndhE, ndhF, ndhG, ndhH, ndhI, ndhJ, ndhK | 12 | |
| Cytochrome b/6f complex | petA, petB *, petD *, petG, petL, petN | 6 | |
| ATP synthase | atpA, atpB, atpE, atpF *, atpH, atpI | 6 | |
| Rubisco | rbcL | 1 | |
| Self-replication | Large subunit of ribosome | rpl14, rpl16 *, rpl2(x2) *, rpl20, rpl22, rpl23(x2), rpl32, rpl33, rpl36 | 11 |
| Small subunit of ribosome | rps11, rps12(x2), rps14, rps15, rps16 *, rps18, rps19, rps2, rps3, rps4, rps7(x2), rps8 | 14 | |
| DNA dependent RNA polymerase | rpoA, rpoB, rpoC1 *, rpoC2 | 4 | |
| rRNA genes | rrn16(x2), rrn23(x2), rrn4.5(x2), rrn5(x2) | 8 | |
| tRNA genes | trnA-UGC(x2) *, trnC-GCA, trnD-GUC, trnE-UUC, trnF-GAA, trnG-GCC, trnG-UCC *, trnH-GUG, trnI-GAU(x2) *, trnK-UUU *, trnL-CAA(x2), trnL-UAA *, trnL-UAG, trnM-CAU(x3), trnN-GUU(x2), trnP-UGG, trnQ-UUG, trnR-ACG(x2), trnR-UCU, trnS-GCU, trnS-GGA, trnS-UGA, trnT-GGU, trnT-UGU, trnV-GAC(x2), trnV-UAC *, trnW-CCA, trnY-GUA, trnfM-CAU | 37 | |
| Biosynthesis | Maturase | matK | 1 |
| Protease | clpP1 ** | 1 | |
| Envelope membrane protein | cemA | 1 | |
| Acetyl-CoA carboxylase | accD | 1 | |
| C-type cytochrome synthesis gene | ccsA | 1 | |
| Translation initiation factor | infA | 1 | |
| Unknown function | Conserved hypothetical chloroplast reading frames | ycf1(x2), ycf15(x2), ycf2(x2), ycf68(x2) | 8 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Guo, J.; Kang, Z.; Xiao, Z.; Zhong, C.; Miao, G.; Zhang, P.; Zhao, W.; Su, R.; Xia, K. Comparative Analysis of Chloroplast Genome Sequences and Phylogeny in Three Macadamia integrifolia Cultivars. Genes 2025, 16, 1248. https://doi.org/10.3390/genes16111248
Guo J, Kang Z, Xiao Z, Zhong C, Miao G, Zhang P, Zhao W, Su R, Xia K. Comparative Analysis of Chloroplast Genome Sequences and Phylogeny in Three Macadamia integrifolia Cultivars. Genes. 2025; 16(11):1248. https://doi.org/10.3390/genes16111248
Chicago/Turabian StyleGuo, Jihua, Zhuanmiao Kang, Zhongchun Xiao, Chunyan Zhong, Guidong Miao, Pei Zhang, Weiwei Zhao, Rongrong Su, and Kecan Xia. 2025. "Comparative Analysis of Chloroplast Genome Sequences and Phylogeny in Three Macadamia integrifolia Cultivars" Genes 16, no. 11: 1248. https://doi.org/10.3390/genes16111248
APA StyleGuo, J., Kang, Z., Xiao, Z., Zhong, C., Miao, G., Zhang, P., Zhao, W., Su, R., & Xia, K. (2025). Comparative Analysis of Chloroplast Genome Sequences and Phylogeny in Three Macadamia integrifolia Cultivars. Genes, 16(11), 1248. https://doi.org/10.3390/genes16111248

