Stability Matters: Revealing Causal Roles of G-Quadruplexes (G4s) in Regulation of Chromatin and Transcription
Abstract
1. Introduction
2. Materials and Methods
2.1. Data Availability
2.2. Identification eG4 Regions
2.3. Generating and Mapping Stability Levels
2.4. Mapping Chromatin States to eG4 Regions
2.5. Mapping ATAC-Seq Intensity to eG4 Regions
2.6. Mapping phyloP Score to eG4 Regions
2.7. Count the Occupancy of TFs in eG4 Regions
2.8. Workflow of Bayesian Network Construction
2.9. Explanation of Metrics and Scores Used in the Workflow
- •
- Mismatch percentage (MM%) was used to quantify G4 stability by comparing base-calling discrepancies between reads generated under K+ and Na+ conditions, calculated as the fraction of different calls across the reads [9].
- •
- eG4 signal intensity was represented by the reproducibility significance score generated by MSPC [24], derived from combined p-values across biological replicates.
- •
- Chromatin state annotations were generated using the ChromHMM model [25], based on six histone modifications, H3K4me1, H3K4me3, H3K9me3, H3K27ac, H3K27me3, and H3K36me3.
- •
- Chromatin accessibility (ATAC-Seq signal intensity) was measured as the normalized average coverage of ATAC-Seq fragments within each eG4 region.
- •
- Evolutionary conservation (phyloP score) was derived from multiple alignments of 241 mammalian genomes, provided by the Zoonomia Project [29].
- •
- The recruitment of TFs within an eG4 region was evaluated by the total number of TFs colocalized within the eG4 region, and the TFs were from the ReMap2022 non-redundant dataset [30]. The occupancy of a specific TF in an eG4 region was defined as the hits of the TF in the region.
2.10. Bayesian Network Inference
2.11. The Stratified Sampling Strategies
2.12. Gene Ontology Enrichment Analysis
3. Results
3.1. G4 Stability Correlates with eG4 Signals as Well as Chromatin and Transcriptional Regulatory Signals
3.2. Causal Bayesian Network Demonstrates That G4 Stability Affects Other G4-Related Signals
3.3. G4 Stability Drives Selective TF Binding
3.4. Stability of the TSS-Proximal eG4s Relates to the Functions of the Downstream Genes
4. Discussion
4.1. A Stability-Centric Perspective on G4 Analysis
4.2. Limitations and Future Directions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Huppert, J.L. Prevalence of Quadruplexes in the Human Genome. Nucleic Acids Res. 2005, 33, 2908–2916. [Google Scholar] [CrossRef]
- Miskiewicz, J.; Sarzynska, J.; Szachniuk, M. How Bioinformatics Resources Work with G4 RNAs. Briefings Bioinf. 2021, 22, bbaa201. [Google Scholar] [CrossRef]
- Bedrat, A.; Lacroix, L.; Mergny, J.-L. Re-Evaluation of G-Quadruplex Propensity with G4Hunter. Nucleic Acids Res. 2016, 44, 1746–1759. [Google Scholar] [CrossRef]
- Hon, J.; Martínek, T.; Zendulka, J.; Lexa, M. Pqsfinder: An Exhaustive and Imperfection-Tolerant Search Tool for Potential Quadruplex-Forming Sequences in R. Bioinformatics 2017, 33, 3373–3379. [Google Scholar] [CrossRef]
- Burge, S.; Parkinson, G.N.; Hazel, P.; Todd, A.K.; Neidle, S. Quadruplex DNA: Sequence, Topology and Structure. Nucleic Acids Res. 2006, 34, 5402–5415. [Google Scholar] [CrossRef]
- Dell’Oca, M.C.; Quadri, R.; Bernini, G.M.; Menin, L.; Grasso, L.; Rondelli, D.; Yazici, O.; Sertic, S.; Marini, F.; Pellicioli, A.; et al. Spotlight on G-Quadruplexes: From Structure and Modulation to Physiological and Pathological Roles. Int. J. Mol. Sci. 2024, 25, 3162. [Google Scholar] [CrossRef]
- Robinson, J.; Raguseo, F.; Nuccio, S.P.; Liano, D.; Di Antonio, M. DNA G-Quadruplex Structures: More than Simple Roadblocks to Transcription? Nucleic Acids Res. 2021, 49, 8419–8431. [Google Scholar] [CrossRef]
- Varshney, D.; Spiegel, J.; Zyner, K.; Tannahill, D.; Balasubramanian, S. The Regulation and Functions of DNA and RNA G-Quadruplexes. Nat. Rev. Mol. Cell Biol. 2020, 21, 459–474. [Google Scholar] [CrossRef]
- Chambers, V.S.; Marsico, G.; Boutell, J.M.; Di Antonio, M.; Smith, G.P.; Balasubramanian, S. High-Throughput Sequencing of DNA G-Quadruplex Structures in the Human Genome. Nat. Biotechnol. 2015, 33, 877–881. [Google Scholar] [CrossRef]
- Tu, J.; Duan, M.; Liu, W.; Lu, N.; Zhou, Y.; Sun, X.; Lu, Z. Direct Genome-Wide Identification of G-Quadruplex Structures by Whole-Genome Resequencing. Nat. Commun. 2021, 12, 6014. [Google Scholar] [CrossRef]
- Hänsel-Hertsch, R.; Beraldi, D.; Lensing, S.V.; Marsico, G.; Zyner, K.; Parry, A.; Antonio, M.D.; Pike, J.; Kimura, H.; Narita, M.; et al. G-Quadruplex Structures Mark Human Regulatory Chromatin. Nat. Genet. 2016, 48, 1267–1272. [Google Scholar] [CrossRef] [PubMed]
- Zheng, K.; Zhang, J.; He, Y.; Gong, J.; Wen, C.; Chen, J.; Hao, Y.; Zhao, Y.; Tan, Z. Detection of Genomic G-Quadruplexes in Living Cells Using a Small Artificial Protein. Nucleic Acids Res. 2020, 48, 11706–11720. [Google Scholar] [CrossRef]
- Li, C.; Wang, H.; Yin, Z.; Fang, P.; Xiao, R.; Xiang, Y.; Wang, W.; Li, Q.; Huang, B.; Huang, J.; et al. Ligand-Induced Native G-Quadruplex Stabilization Impairs Transcription Initiation. Genome Res. 2021, 31, 1546–1560. [Google Scholar] [CrossRef]
- Lyu, J.; Shao, R.; Kwong Yung, P.Y.; Elsässer, S.J. Genome-Wide Mapping of G-Quadruplex Structures with CUT & tag. Nucleic Acids Res. 2022, 50, e13. [Google Scholar] [CrossRef]
- Varizhuk, A.; Isaakova, E.; Pozmogova, G. DNA G-Quadruplexes (G4s) Modulate Epigenetic (Re)Programming and Chromatin Remodeling. Bioessays 2019, 41, 1900091. [Google Scholar] [CrossRef]
- Mukherjee, A.K.; Sharma, S.; Chowdhury, S. Non-Duplex G-Quadruplex Structures Emerge as Mediators of Epigenetic Modifications. Trends Genet. 2019, 35, 129–144. [Google Scholar] [CrossRef]
- Sarkies, P.; Reams, C.; Simpson, L.J.; Sale, J.E. Epigenetic Instability Due to Defective Replication of Structured DNA. Mol. Cell 2010, 40, 703–713. [Google Scholar] [CrossRef] [PubMed]
- Schiavone, D.; Guilbaud, G.; Murat, P.; Papadopoulou, C.; Sarkies, P.; Prioleau, M.; Balasubramanian, S.; Sale, J.E. Determinants of G Quadruplex-induced Epigenetic Instability in REV1-deficient Cells. EMBO J. 2014, 33, 2507–2520. [Google Scholar] [CrossRef] [PubMed]
- Pavlova, I.I.; Tsvetkov, V.B.; Isaakova, E.A.; Severov, V.V.; Khomyakova, E.A.; Lacis, I.A.; Lazarev, V.N.; Lagarkova, M.A.; Pozmogova, G.E.; Varizhuk, A.M. Transcription-Facilitating Histone Chaperons Interact with Genomic and Synthetic G4 Structures. Int. J. Biol. Macromol. 2020, 160, 1144–1157. [Google Scholar] [CrossRef]
- Komůrková, D.; Svobodová Kovaříková, A.; Bártová, E. G-Quadruplex Structures Colocalize with Transcription Factories and Nuclear Speckles Surrounded by Acetylated and Dimethylated Histones H3. Int. J. Mol. Sci. 2021, 22, 1995. [Google Scholar] [CrossRef]
- Spiegel, J.; Cuesta, S.M.; Adhikari, S.; Hänsel-Hertsch, R.; Tannahill, D.; Balasubramanian, S. G-Quadruplexes Are Transcription Factor Binding Hubs in Human Chromatin. Genome Biol. 2021, 22, 117. [Google Scholar] [CrossRef]
- Guiblet, W.M.; DeGiorgio, M.; Cheng, X.; Chiaromonte, F.; Eckert, K.A.; Huang, Y.-F.; Makova, K.D. Selection and Thermostability Suggest G-Quadruplexes Are Novel Functional Elements of the Human Genome. Genome Res. 2021, 31, 1136–1149. [Google Scholar] [CrossRef]
- Zhang, Y.; Liu, T.; Meyer, C.A.; Eeckhoute, J.; Johnson, D.S.; Bernstein, B.E.; Nusbaum, C.; Myers, R.M.; Brown, M.; Li, W.; et al. Model-Based Analysis of ChIP-Seq (MACS). Genome Biol. 2008, 9, R137. [Google Scholar] [CrossRef]
- Jalili, V.; Cremona, M.A.; Palluzzi, F. Rescuing Biologically Relevant Consensus Regions across Replicated Samples. BMC Bioinform. 2023, 24, 240. [Google Scholar] [CrossRef]
- Kundaje, A.; Meuleman, W.; Ernst, J.; Bilenky, M.; Yen, A.; Heravi-Moussavi, A.; Kheradpour, P.; Zhang, Z.; Wang, J.; Ziller, M.J.; et al. Integrative Analysis of 111 Reference Human Epigenomes. Nature 2015, 518, 317–330. [Google Scholar] [CrossRef]
- Zhang, X.; Jiang, Q.; Li, J.; Zhang, S.; Cao, Y.; Xia, X.; Cai, D.; Tan, J.; Chen, J.; Han, J.-D.J. KCNQ1OT1 Promotes Genome-Wide Transposon Repression by Guiding RNA–DNA Triplexes and HP1 Binding. Nat. Cell Biol. 2022, 24, 1617–1629. [Google Scholar] [CrossRef] [PubMed]
- Bhattacharya, S.; Reddy, D.; Zhang, N.; Li, H.; Workman, J.L. Elevated Levels of the Methyltransferase SETD2 Causes Transcription and Alternative Splicing Changes Resulting in Oncogenic Phenotypes. Front. Cell Dev. Biol. 2022, 10, 945668. [Google Scholar] [CrossRef] [PubMed]
- Langmead, B.; Salzberg, S.L. Fast Gapped-Read Alignment with Bowtie 2. Nat. Methods 2012, 9, 357–359. [Google Scholar] [CrossRef]
- Foley, N.M.; Mason, V.C.; Harris, A.J.; Bredemeyer, K.R.; Damas, J.; Lewin, H.A.; Eizirik, E.; Gatesy, J.; Karlsson, E.K.; Lindblad-Toh, K.; et al. A Genomic Timescale for Placental Mammal Evolution. Science 2023, 380, eabl8189. [Google Scholar] [CrossRef] [PubMed]
- Hammal, F.; de Langen, P.; Bergon, A.; Lopez, F.; Ballester, B. ReMap 2022: A Database of Human, Mouse, Drosophila and Arabidopsis Regulatory Regions from an Integrative Analysis of DNA-Binding Sequencing Experiments. Nucleic Acids Res. 2022, 50, D316–D325. [Google Scholar] [CrossRef]
- Yu, H.; Zhu, S.; Zhou, B.; Xue, H.; Han, J.-D.J. Inferring Causal Relationships among Different Histone Modifications and Gene Expression. Genome Res. 2008, 18, 1314–1324. [Google Scholar] [CrossRef] [PubMed]
- Scutari, M. Learning Bayesian Networks with the Bnlearn R Package. J. Stat. Softw. 2010, 35, 1–22. [Google Scholar] [CrossRef]
- Colombo, D.; Maathuis, M.H. Order-Independent Constraint-Based Causal Structure Learning. J. Mach. Learn. Res. 2014, 15, 3741–3782. [Google Scholar]
- Pearl, J. Causality: Models, Reasoning and Inference, 2nd ed.; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2009; ISBN 978-0-521-89560-6. [Google Scholar]
- Spirtes, P.; Glymour, C.; Scheines, R. Causation, Prediction, and Search, 2nd ed.; The MIT Press: Cambridge, UK, 2001. [Google Scholar]
- Edwards, D. Introduction to Graphical Modelling. In Springer Texts in Statistics; Springer: New York, NY, USA, 2000; ISBN 978-1-4612-6787-4. [Google Scholar]
- Xu, S.; Hu, E.; Cai, Y.; Xie, Z.; Luo, X.; Zhan, L.; Tang, W.; Wang, Q.; Liu, B.; Wang, R.; et al. Using clusterProfiler to Characterize Multiomics Data. Nat. Protoc. 2024, 19, 3292–3320. [Google Scholar] [CrossRef] [PubMed]
- Mohanty, S.K.; Chiaromonte, F.; Makova, K.D. Evolutionary Dynamics of Predicted G-Quadruplexes in Human and Other Great Apes. Genome Biol. 2025, 26, 161. [Google Scholar] [CrossRef]
- Esain-Garcia, I.; Kirchner, A.; Melidis, L.; Tavares, R.d.C.A.; Dhir, S.; Simeone, A.; Yu, Z.; Madden, S.K.; Hermann, R.; Tannahill, D.; et al. G-Quadruplex DNA Structure Is a Positive Regulator of MYC Transcription. Proc. Natl. Acad. Sci. USA 2024, 121, e2320240121. [Google Scholar] [CrossRef]
- Hirschi, A.; Martin, W.J.; Luka, Z.; Loukachevitch, L.V.; Reiter, N.J. G-Quadruplex RNA Binding and Recognition by the Lysine-Specific Histone Demethylase-1 Enzyme. RNA 2016, 22, 1250–1260. [Google Scholar] [CrossRef]
- Saha, D.; Singh, A.; Hussain, T.; Srivastava, V.; Sengupta, S.; Kar, A.; Dhapola, P.; Dhople, V.; Ummanni, R.; Chowdhury, S. Epigenetic Suppression of Human Telomerase (hTERT) Is Mediated by the Metastasis Suppressor NME2 in a G-Quadruplex–Dependent Fashion. J. Biol. Chem. 2017, 292, 15205–15215. [Google Scholar] [CrossRef]
- Zyner, K.G.; Simeone, A.; Flynn, S.M.; Doyle, C.; Marsico, G.; Adhikari, S.; Portella, G.; Tannahill, D.; Balasubramanian, S. G-Quadruplex DNA Structures in Human Stem Cells and Differentiation. Nat. Commun. 2022, 13, 142. [Google Scholar] [CrossRef]
- Li, D.; Shu, X.; Zhu, P.; Pei, D. Chromatin Accessibility Dynamics during Cell Fate Reprogramming. EMBO Rep. 2021, 22, e51644. [Google Scholar] [CrossRef]
- Nitsch, S.; Zorro Shahidian, L.; Schneider, R. Histone Acylations and Chromatin Dynamics: Concepts, Challenges, and Links to Metabolism. EMBO Rep. 2021, 22, e52774. [Google Scholar] [CrossRef]
- Lin, Z.; Rong, B.; Lyu, R.; Zheng, Y.; Chen, Y.; Yan, J.; Wu, M.; Gao, X.; Tang, F.; Lan, F.; et al. SETD1B-Mediated Broad H3K4me3 Controls Proper Temporal Patterns of Gene Expression Critical for Spermatid Development. Cell Res. 2025, 35, 345–361. [Google Scholar] [CrossRef]
- Mayran, A.; Drouin, J. Pioneer Transcription Factors Shape the Epigenetic Landscape. J. Biol. Chem. 2018, 293, 13795–13804. [Google Scholar] [CrossRef]
- Zaret, K.S. Pioneer Transcription Factors Initiating Gene Network Changes. Annu. Rev. Genet. 2020, 54, 367–385. [Google Scholar] [CrossRef] [PubMed]
- Pentland, I.; Campos-León, K.; Cotic, M.; Davies, K.-J.; Wood, C.D.; Groves, I.J.; Burley, M.; Coleman, N.; Stockton, J.D.; Noyvert, B.; et al. Disruption of CTCF-YY1–Dependent Looping of the Human Papillomavirus Genome Activates Differentiation-Induced Viral Oncogene Transcription. PLoS Biol. 2018, 16, e2005752. [Google Scholar] [CrossRef]
- Stoeber, S.; Godin, H.; Xu, C.; Bai, L. Pioneer Factors: Nature or Nurture? Crit. Rev. Biochem. Mol. Biol. 2024, 59, 139–153. [Google Scholar] [CrossRef]
- Ridley, A.J. Life at the Leading Edge. Cell 2011, 145, 1012–1022. [Google Scholar] [CrossRef] [PubMed]
- Wilson, B.J.; Allen, J.L.; Caswell, P.T. Vesicle Trafficking Pathways That Direct Cell Migration in 3D Matrices and In Vivo. Traffic 2018, 19, 899–909. [Google Scholar] [CrossRef] [PubMed]
- Ciechanover, A. The Ubiquitin–Proteasome Pathway: On Protein Death and Cell Life. EMBO J. 1998, 17, 7151–7160. [Google Scholar] [CrossRef]
- Mogre, S.S.; Brown, A.I.; Koslover, E.F. Getting around the Cell: Physical Transport in the Intracellular World. Phys. Biol. 2020, 17, 061003. [Google Scholar] [CrossRef]
- Pines, J. Cubism and the Cell Cycle: The Many Faces of the APC/C. Nat. Rev. Mol. Cell Biol. 2011, 12, 427–438. [Google Scholar] [CrossRef]
- Le Guen, T.; Ragu, S.; Guirouilh-Barbat, J.; Lopez, B.S. Role of the Double-Strand Break Repair Pathway in the Maintenance of Genomic Stability. Mol. Cell. Oncol. 2015, 2, e968020. [Google Scholar] [CrossRef]
- Mizushima, N.; Komatsu, M. Autophagy: Renovation of Cells and Tissues. Cell 2011, 147, 728–741. [Google Scholar] [CrossRef] [PubMed]
- Colgin, L.M.; Reddel, R.R. Telomere Maintenance Mechanisms and Cellular Immortalization. Curr. Opin. Genet. Dev. 1999, 9, 97–103. [Google Scholar] [CrossRef]
- White, J.; Dalton, S. Cell Cycle Control of Embryonic Stem Cells. Stem Cell Rev. 2005, 1, 131–138. [Google Scholar] [CrossRef]
- de Nadal, E.; Ammerer, G.; Posas, F. Controlling Gene Expression in Response to Stress. Nat. Rev. Genet. 2011, 12, 833–845. [Google Scholar] [CrossRef] [PubMed]
- Pearl, J.; Glymour, M.; Jewell, N. Causal Inference in Statistics: A Primer; John Wiley & Sons, Inc.: New York, NY, USA, 2016; ISBN 978-1-119-18686-1. [Google Scholar]
- Zhang, R.; Wang, Y.; Wang, C.; Sun, X.; Mergny, J.-L. G-Quadruplexes as Pivotal Components of Cis-Regulatory Elements in the Human Genome. BMC Biol. 2024, 22, 177. [Google Scholar] [CrossRef] [PubMed]
- Yu, H.; Qi, Y.; Yang, B.; Yang, X.; Ding, Y. G4Atlas: A Comprehensive Transcriptome-Wide G-Quadruplex Database. Nucleic Acids Res. 2023, 51, D126–D134. [Google Scholar] [CrossRef]
- Zok, T.; Kraszewska, N.; Miskiewicz, J.; Pielacinska, P.; Zurkowski, M.; Szachniuk, M. ONQUADRO: A Database of Experimentally Determined Quadruplex Structures. Nucleic Acids Res. 2022, 50, D253–D258. [Google Scholar] [CrossRef]
Cell Line | Data | Source | Comment |
---|---|---|---|
K562 | G4 ChIP-Seq, with BG4, Single-end | GEO: GSE145090 | G4 peak regions |
ATAC-Seq | ENCODE: ENCSR483RKN | For analysis of chromatin openness signal | |
chromeState | The NIH Roadmap Epigenomics, Expanded 18-state model: https://egg2.wustl.edu/roadmap/data/byFileType/chromhmmSegmentations/ChmmModels/core_K27ac/jointModel/final/ (accessed on 1 January 2025) | For analysis of chromatin state | |
TF binding | The ReMap2022 datasets: https://remap.univ-amu.fr/storage/remap2022/hg19/MACS2/remap2022_all_macs2_hg19_v1_0.bed.gz (accessed on 1 January 2025) | For analysis of TF- binding events | |
HepG2 | G4 ChIP-Seq, with BG4, Single-end | GEO: GSE145090 | G4 peak regions |
ATAC-Seq | GEO: GSE170251 ENCLB750JRI | For analysis of chromatin openness signal | |
chromeState | The NIH Roadmap Epigenomics, Expanded 18-state model: https://egg2.wustl.edu/roadmap/data/byFileType/chromhmmSegmentations/ChmmModels/core_K27ac/jointModel/final/ (accessed on 1 January 2025) | For analysis of chromatin state | |
TF binding | The ReMap2022 datasets: https://remap.univ-amu.fr/storage/remap2022/hg19/MACS2/remap2022_all_macs2_hg19_v1_0.bed.gz (accessed on 1 January 2025) | For analysis of TF- binding events | |
HEK293T | G4 ChIP-Seq, with BG4, Paired-end | GEO: GSE178668 | G4 peak regions |
ATAC-Seq | GEO: GSE235014 | For analysis of chromatin openness signal | |
H3K4me1 | GEO: GSE178668 | For prediction and analysis of the cell-specific chromatin state | |
H3K4me3 | GEO: GSE178668 | ||
H3K9me3 | GEO: GSE208200 | ||
H3K27ac | GEO: GSE178668 | ||
H3K27me3 | GEO: GSE235014 | ||
H3K36me3 | GEO: GSE147752 | ||
chromeState | The NIH Roadmap Epigenomics, Expanded 18-state model: https://egg2.wustl.edu/roadmap/data/byFileType/chromhmmSegmentations/ChmmModels/core_K27ac/jointModel/final/ (accessed on 1 January 2025) | For analysis of chromatin state | |
TF binding | The ReMap2022 datasets: https://remap.univ-amu.fr/storage/remap2022/hg19/MACS2/remap2022_all_macs2_hg19_v1_0.bed.gz (accessed on 1 January 2025) | For analysis of TF- binding events | |
Non-cell-specific data | pG4 motifs | pqsfinder: https://pqsfinder.fi.muni.cz/hub/hg19/pqsfinder_hg19_gff.tar.gz (accessed on 1 January 2025) | Putative G4 loci |
G4-Seq | GEO: GSE63874 | G4 stability data (Mismatch Percentage) | |
phyloP score | Zoonomia Project: https://cgl.gi.ucsc.edu/data/cactus/241-mammalian-2020v2-hub/Homo_sapiens/241-mammalian-2020v2.bigWig (accessed on 1 January 2025) | Evolutionary conservation data |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xiao, K.; Zhang, R.; Tao, T.; Shu, H.; Huang, H.; Sun, X.; Tu, J. Stability Matters: Revealing Causal Roles of G-Quadruplexes (G4s) in Regulation of Chromatin and Transcription. Genes 2025, 16, 1231. https://doi.org/10.3390/genes16101231
Xiao K, Zhang R, Tao T, Shu H, Huang H, Sun X, Tu J. Stability Matters: Revealing Causal Roles of G-Quadruplexes (G4s) in Regulation of Chromatin and Transcription. Genes. 2025; 16(10):1231. https://doi.org/10.3390/genes16101231
Chicago/Turabian StyleXiao, Ke, Rongxin Zhang, Tiantong Tao, Huiling Shu, Hao Huang, Xiao Sun, and Jing Tu. 2025. "Stability Matters: Revealing Causal Roles of G-Quadruplexes (G4s) in Regulation of Chromatin and Transcription" Genes 16, no. 10: 1231. https://doi.org/10.3390/genes16101231
APA StyleXiao, K., Zhang, R., Tao, T., Shu, H., Huang, H., Sun, X., & Tu, J. (2025). Stability Matters: Revealing Causal Roles of G-Quadruplexes (G4s) in Regulation of Chromatin and Transcription. Genes, 16(10), 1231. https://doi.org/10.3390/genes16101231