A Genome-Wide Association Study in Psoriasis Patients Reveals Variants Associated with Response to Treatment with Interleukin-17A Pathway Inhibitors
Abstract
1. Introduction
2. Materials and Methods
2.1. Patient Selection and Classification
2.2. Genotyping and Quality Control Procedure
2.3. Association Analysis
2.4. In Silico Analysis
3. Results
3.1. Patients and Treatment Response
3.2. Identification of SNPs Associated with Response to Treatment with Inhibitors of IL-17A Signaling
3.3. In Silico Analysis of the Regulatory Potential of the SNPs Associated with Response to IL-17A Inhibitors
3.4. Replication Analysis
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
| IL | Interleukin |
| PASI | Psoriasis Area and Severity Index |
| GWAS | Genome-wide association study |
| eQTL | Expression quantitative trait locus |
| SNP | Single-nucleotide polymorphism |
References
- Rendon, A.; Schäkel, K. Psoriasis pathogenesis and treatment. Int. J. Mol. Sci. 2019, 20, 1475. [Google Scholar] [CrossRef]
- Yi, R.C.; Akbik, M.; Smith, L.R.; Klionsky, Y.; Feldman, S.R. Therapeutic Advancements in Psoriasis and Psoriatic Arthritis. J. Clin. Med. 2025, 14, 1312. [Google Scholar] [CrossRef]
- Karle, A.; Spindeldreher, S.; Kolbinger, F. Secukinumab, a novel anti-IL-17A antibody, shows low immunogenicity potential in human in vitro assays comparable to other marketed biotherapeutics with low clinical immunogenicity. mAbs 2016, 8, 536. [Google Scholar] [CrossRef]
- Liu, L.; Lu, J.; Allan, B.W.; Tang, Y.; Tetreault, J.; Chow, C.-K.; Barmettler, B.; Nelson, J.; Bina, H.; Huang, L.; et al. Generation and characterization of ixekizumab, a humanized monoclonal antibody that neutralizes interleukin-17A. J. Inflamm. Res. 2016, 9, 39. [Google Scholar] [CrossRef] [PubMed]
- Adams, R.; Maroof, A.; Baker, T.; Lawson, A.D.G.; Oliver, R.; Paveley, R.; Rapecki, S.; Shaw, S.; Vajjah, P.; West, S.; et al. Bimekizumab, a Novel Humanized IgG1 Antibody That Neutralizes Both IL-17A and IL-17F. Front. Immunol. 2020, 11, 1894. [Google Scholar] [CrossRef]
- Papp, K.A.; Leonardi, C.; Menter, A.; Ortonne, J.-P.; Krueger, J.G.; Kricorian, G.; Aras, G.; Li, J.; Russell, C.B.; Thompson, E.H.; et al. Brodalumab, an anti-interleukin- 17-receptor antibody for psoriasis. N. Engl. J. Med. 2012, 366, 1181–1189. [Google Scholar] [CrossRef] [PubMed]
- Gaffen, S.L. Recent advances in the IL-17 cytokine family. Curr. Opin. Immunol. 2011, 23, 613–619. [Google Scholar] [CrossRef]
- Amatya, N.; Garg, A.V.; Gaffen, S.L. IL-17 signaling: The Yin and the Yang. Trends Immunol. 2017, 38, 310–322. [Google Scholar] [CrossRef]
- Brembilla, N.C.; Senra, L.; Boehncke, W.-H. The IL-17 Family of Cytokines in Psoriasis: IL-17A and Beyond. Front. Immunol. 2018, 9, 1682. [Google Scholar] [CrossRef]
- Boehncke, W.H.; Schon, M.P. Psoriasis. Lancet 2015, 386, 983–994. [Google Scholar] [CrossRef]
- Potestio, L.; Martora, F.; Lauletta, G.; Vallone, Y.; Battista, T.; Megna, M. The Role of Interleukin 23/17 Axis in Psoriasis Management: A Comprehensive Review of Clinical Trials. Clin. Cosmet. Investig. Dermatol. 2024, 17, 829–842. [Google Scholar] [CrossRef]
- Galluzzo, M.; Trovato, E.; Talamonti, M.; Caldarola, G.; Di Nardo, L.; Lazzeri, L.; Mugheddu, C.; Burlando, M.; Balestri, R.; Bernardini, N.; et al. Long-Term Persistence Rate of Secukinumab in Psoriatic Patients: A Six-Year Multicenter, Real-World Experience, Retrospective Study. J. Clin. Med. 2024, 13, 3864. [Google Scholar] [CrossRef]
- Potestio, L.; Ruggiero, A.; Martora, F.; Megna, M. Long-term efficacy and safety of bimekizumab in real-world setting: A 52-week prospective study. Arch. Dermatol. Res. 2024, 317, 102. [Google Scholar] [CrossRef]
- Puig, L.; Sewerin, P.; Schuster, C.; Ng, K.J.; Papadimitropoulos, M.; Gadagamma, S.; Nuñez, M.; Lampropoulou, A. Real-World Evidence for Ixekizumab in the Treatment of Psoriasis, Psoriatic Arthritis, and Axial Spondyloarthritis: Systematic Literature Review 2022–2023. Adv. Ther. 2025, 42, 4224–4254. [Google Scholar] [CrossRef]
- Rigopoulos, D.; Tampouratzi, E.; Angelakopoulos, C.; Apalla, Z.; Barkis, I.; Georgiou, S.; Delli, F.; Drosos, A.; Zafiriou, E.; Katsantonis, J.; et al. Real-world data on the effectiveness of brodalumab in patients with moderate-to severe plaque psoriasis in the Greek clinical setting (the BrIDGE study). J. Eur. Acad. Dermatol. Venereol. 2024, 38, 1121–1130. [Google Scholar] [CrossRef] [PubMed]
- Aggarwal, P.; Fleischer, A.B., Jr. IL-17 and IL-23 Inhibitors Have the Fastest Time to Meaningful Clinical Response for Plaque Psoriasis: A Network Meta-Analysis. J. Clin. Med. 2024, 13, 5139. [Google Scholar] [CrossRef]
- Thomas, S.E.; Barenbrug, L.; Hannink, G.; Seyger, M.M.B.; de Jong, E.M.G.J.; van den Reek, J.M.P.A. Drug Survival of IL-17 and IL-23 Inhibitors for Psoriasis: A Systematic Review and Meta-Analysis. Drugs 2024, 84, 565–578. [Google Scholar] [CrossRef]
- Wang, C.Y.; Wang, C.W.; Chen, C.B.; Chen, W.T.; Chang, Y.C.; Hui, R.C.; Chung, W.H. Pharmacogenomics on the Treatment Response in Patients with Psoriasis: An Updated Review. Int. J. Mol. Sci. 2023, 24, 7329. [Google Scholar] [CrossRef]
- Anzengruber, F.; Drach, M.; Maul, J.T.; Kolios, A.G.; Meier, B.; Navarini, A.A. Therapy response was not altered by HLA-Cw6 status in psoriasis patients treated with secukinumab: A retrospective case series. J. Eur. Acad. Dermatol. Venereol. 2018, 32, e274. [Google Scholar] [CrossRef]
- Costanzo, A.; Bianchi, L.; Flori, M.L.; Malara, G.; Stingeni, L.; Bartezaghi, M.; Carraro, L.; Castellino, G.; the SUPREME Study Group. Secukinumab shows high efficacy irrespective of HLA-Cw6 status in patients with moderate-to-severe plaque- type psoriasis: SUPREME study. Br. J. Dermatol. 2018, 179, 1072. [Google Scholar] [CrossRef] [PubMed]
- van Vugt, L.; Reek, J.v.D.; Meulewaeter, E.; Hakobjan, M.; Heddes, N.; Traks, T.; Kingo, K.; Galluzzo, M.; Talamonti, M.; Lambert, J.; et al. Response to IL-17A inhibitors secukinumab and ixekizumab cannot be explained by genetic variation in the protein-coding and untranslated regions of the IL-17A gene: Results from a multicentre study of four European psoriasis cohorts. J. Eur. Acad. Dermatol. Venereol. 2020, 34, 112. [Google Scholar] [CrossRef] [PubMed]
- Loras, A.; Gil-Barrachina, M.; Hernando, B.; Perez-Pastor, G.; Martinez-Domenech, A.; Mahiques, L.; Pitarch, G.; Valcuende-Cavero, F.; Ballester-Sanchez, R.; Marques-Torrejon, M.A.; et al. Association between several immune response-related genes and the effectiveness of biological treatments in patients with moderate-to- severe psoriasis. Exp. Dermatol. 2024, 33, e15003. [Google Scholar] [CrossRef] [PubMed]
- Morelli, M.; Galluzzo, M.; Madonna, S.; Scarponi, C.; Scaglione, G.L.; Galluccio, T.; Andreani, M.; Pallotta, S.; Girolomoni, G.; Bianchi, L.; et al. HLA-Cw6 and other HLAC alleles, as well as MICB-DT, DDX58, and TYK2 genetic variants associate with optimal response to anti-IL-17A treatment in patients with psoriasis. Expert. Opin. Biol. Ther. 2021, 21, 259. [Google Scholar] [CrossRef] [PubMed]
- Ständer, S.; Thaçi, D. Interleukin-23p19 inhibitors for the treatment of moderate-to-severe psoriasis: An expert opinion of real-world evidence studies in Europe. J. Dermatolog Treat. 2025, 36, 2438803. [Google Scholar] [CrossRef]
- Liadaki, K.; Zafiriou, E.; Giannoulis, T.; Alexouda, S.; Chaidaki, K.; Gidarokosta, P.; Roussaki-Schulze, A.-V.; Tsiogkas, S.G.; Daponte, A.; Mamuris, Z.; et al. PDE4 Gene Family Variants Are Associated with Response to Apremilast Treatment in Psoriasis. Genes 2024, 15, 369. [Google Scholar] [CrossRef]
- Torres, T.; Puig, L. Treatment goals for psoriasis: Should PASI 90 become the standard of care? Actas Dermosifiliogr. 2015, 106, 155–157. [Google Scholar] [CrossRef]
- Kirsten, N.; Rustenbach, S.; von Kiedrowski, R.; Sorbe, C.; Reich, K.; Augustin, M. Which PASI Outcome Is Most Relevant to the Patients in Real-World Care? Life 2021, 11, 1151. [Google Scholar] [CrossRef]
- Kim, H.Y. Statistical notes for clinical researchers: Chi-squared test and Fisher’s exact test. Restor. Dent. Endod. 2017, 42, 152–155. [Google Scholar] [CrossRef]
- Ostertagová, E.; Ostertag, O.; Kováč, J. Methodology and Application of the Kruskal-Wallis Test. Appl. Mech. Mater. 2014, 611, 115–120. [Google Scholar] [CrossRef]
- Purcell, S.; Neale, B.; Todd-Brown, K.; Thomas, L.; Ferreira, M.A.; Bender, D.; Maller, J.; Sklar, P.; de Bakker, P.I.; Daly, M.J.; et al. PLINK: A tool set for whole-genome association and population-based linkage analyses. Am. J. Hum. Genet. 2007, 81, 559–575. [Google Scholar] [CrossRef]
- Martin, F.J.; Amode, M.R.; Aneja, A.; Austine-Orimoloye, O.; Azov, A.G.; Barnes, I.; Becker, A.; Bennett, R.; Berry, A.; Bhai, J.; et al. Ensembl 2023. Nucleic Acids Res. 2023, 51, D933–D941. [Google Scholar] [CrossRef] [PubMed]
- Sherry, S.T.; Ward, M.; Sirotkin, K. dbSNP-Database for Single Nucleotide Polymorphisms and Other Classes of Minor Genetic. Var. Genome Res. 1999, 9, 677–679. [Google Scholar] [CrossRef]
- Ward, L.D.; Kellis, M. HaploReg: A resource for exploring chromatin states, conservation, and regulatory motif alterations within sets of genetically linked variants. Nucleic Acids Res. 2012, 40, D930–D934. [Google Scholar] [CrossRef]
- Lynde, C.; Riedl, E.; Maul, J.T.; Torres, T.; Pinter, A.; Fabbrocini, G.; Daniele, F.; Brnabic, A.; Reed, C.; Wilhelm, S.; et al. Comparative Effectiveness of Biologics Across Subgroups of Patients with Moderate-to-Severe Plaque Psoriasis: Results at Week 12 from the PSoHO Study in a Real-World Setting. Adv. Ther. 2023, 40, 869–886. [Google Scholar] [CrossRef]
- Galluzzo, M.; Talamonti, M.; De Simone, C.; D’Adamio, S.; Moretta, G.; Tambone, S.; Caldarola, G.; Fargnoli, M.C.; Peris, K.; Bianchi, L. Secukinumab in moderate-to-severe plaque psoriasis: A multi-center, retrospective, real-life study up to 52 weeks observation. Expert Opin. Biol. Ther. 2018, 18, 727–735. [Google Scholar] [CrossRef]
- Sheng, X.; Yung, Y.C.; Chen, A.; Chun, J. Lysophosphatidic acid signalling in development. Development 2015, 142, 1390–1395. [Google Scholar] [CrossRef]
- Lei, L.; Yan, B.; Liu, P.; Li, J.; Chen, C.; Zhu, W.; Kuang, Y.; Chen, X.; Peng, C. Lysophosphatidic acid mediates the pathogenesis of psoriasis by activating keratinocytes through LPAR5. Signal Transduct. Target. Ther. 2021, 6, 19. [Google Scholar] [CrossRef]
- Gaire, B.P.; Lee, C.H.; Kim, W.; Sapkota, A.; Lee, D.Y.; Choi, J.W. Lysophosphatidic Acid Receptor 5 Contributes to Imiquimod-Induced Psoriasis-Like Lesions through NLRP3 Inflammasome Activation in Macrophages. Cells 2020, 9, 1753. [Google Scholar] [CrossRef] [PubMed]
- Kim, D.; Kim, H.-J.; Baek, J.-O.; Roh, J.-Y.; Jun, H.-S. Lysophosphatidic Acid Mediates Imiquimod-Induced Psoriasis-like Symptoms by Promoting Keratinocyte Proliferation through LPAR1/ROCK2/PI3K/AKT Signaling Pathway. Int. J. Mol. Sci. 2021, 22, 10777. [Google Scholar] [CrossRef]
- An, Y.; Furber, K.L.; Ji, S. Pseudogenes regulate parental gene expression via ceRNA network. J. Cell. Mol. Med. 2017, 21, 185–192. [Google Scholar] [CrossRef] [PubMed]
- Deng, S.; Zhou, G.; Li, X.; Zhang, G.; Hu, K.; Lu, Y.; Li, J.; Liu, Y.; Zhou, G.; Zhang, M.; et al. The impacts of biologic treatment on metabolic profiling in psoriasis. Exp. Dermatol. 2024, 33, e15011. [Google Scholar] [CrossRef]
- Boboryko, D.; Bratborska, A.W.; Skórka, P.; Pawlik, A. The role of lipidomics in psoriasis. Clin. Chim. Acta 2026, 578, 120515. [Google Scholar] [CrossRef]
- Maltez, V.I.; Miao, E.A. NAIP inflammasomes give the NOD to bacterial ligands. Trends Immunol. 2014, 35, 503–504. [Google Scholar] [CrossRef]
- Chen, X.; Shibu, G.; Sokolsky, B.A.; Soussana, T.N.; Fisher, L.; Deochand, D.K.; Dacic, M.; Mantel, I.; Ramirez, D.C.; Bell, R.D.; et al. Disrupting the RNA polymerase II transcription cycle through CDK7 inhibition ameliorates inflammatory arthritis. Sci. Transl. Med. 2024, 16, eadq5091. [Google Scholar] [CrossRef]
- Westra, H.-J.; Peters, M.J.; Esko, T.; Yaghootkar, H.; Schurmann, C.; Kettunen, J.; Christiansen, M.W.; Fairfax, B.P.; Schramm, K.; Powell, J.E.; et al. Systematic identification of trans eQTLs as putative drivers of known disease associations. Nat. Genet. 2013, 45, 1238–1243. [Google Scholar] [CrossRef]
- Liu, Q.; Zheng, J.; Yin, D.-D.; Xiang, J.; He, F.; Wang, Y.-C.; Liang, L.; Qin, H.-Y.; Liu, L.; Liang, Y.-M.; et al. Monocyte to macrophage differentiation-associated (MMD) positively regulates ERK and Akt activation and TNF-a and NO production in macrophages. Mol. Biol. Rep. 2012, 39, 5643–5650. [Google Scholar] [CrossRef] [PubMed]
- Truong, A.B.; Khavari, P.A. Control of keratinocyte proliferation and differentiation by p63. Cell Cycle 2007, 6, 295–299. [Google Scholar] [CrossRef]
- Shen, C.S.; Tsuda, T.; Fushiki, S.; Mizutani, H.; Yamanishi, K. The expression of p63 during epidermal remodeling in psoriasis. J. Dermatol. 2005, 32, 236–242. [Google Scholar] [CrossRef] [PubMed]
- Gu, X.; Lundqvist, E.N.; Coates, P.J.; Thurfjell, N.; Wettersand, E.; Nylander, K. Dysregulation of TAp63 mRNA and protein levels in psoriasis. J. Investig. Dermatol. 2006, 126, 137–141. [Google Scholar] [CrossRef] [PubMed]
- Gao, L.; Dou, J.; Zhang, B.; Zeng, J.; Cheng, Q.; Lei, L.; Tan, L.; Zeng, Q.; Ding, S.; Guo, A.; et al. Ozone therapy promotes the differentiation of basal keratinocytes via increasing Tp63-mediated transcription of KRT10 to improve psoriasis. J. Cell. Mol. Med. 2020, 24, 4819–4829. [Google Scholar] [CrossRef]
- Gentile, A.; D’Acquisto, F.; Leposavic, G. Editorial: The Bidirectional Communication Between Neurons and Immune Cells in the Development of Psychiatric, Neurological and Immune-Mediated Disorders. Front. Immunol. 2021, 12, 781151. [Google Scholar] [CrossRef]
- Marballi, K.; Quinones, M.P.; Jimenez, F.; Escamilla, M.A.; Raventós, H.; Soto-Bernardini, M.C.; Ahuja, S.S.; Walss-Bass, C. In vivo and in vitro genetic evidence of involvement of neuregulin 1 in immune system dysregulation. J. Mol. Med. 2010, 88, 1133–1141. [Google Scholar] [CrossRef] [PubMed]
- Simmons, L.J.; Surles-Zeigler, M.C.; Li, Y.; Ford, G.D.; Newman, G.D.; Ford, B.D. Regulation of inflammatory responses by neuregulin-1 in brain ischemia and microglial cells in vitro involves the NF-kappa B pathway. J. Neuroinflamm. 2016, 13, 237. [Google Scholar] [CrossRef] [PubMed]
- Yun, J.H.; Hong, Y.; Hong, M.H.; Kim, G.; Lee, J.-S.; Woo, R.-S.; Lee, J.; Yang, E.J.; Kim, I.S. Anti-inflammatory effects of neuregulin-1 in HaCaT keratinocytes and atopic dermatitis-like mice stimulated with Der p38. Cytokine 2024, 174, 156439. [Google Scholar] [CrossRef]
- Yu, B.; Cao, Y.; Li, S.; Bai, R.; Zhou, G.; Fu, Q.; Liang, L.; Gu, W.; Zhang, L.; Chen, M. Identification and validation of CRLF1 and NRG1 as immune-related signatures in hypertrophic scar. Genomics 2024, 116, 110797. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Qiao, Q.; Liu, M.; He, T.; Shi, J.; Bai, X.; Zhang, Y.; Li, Y.; Cai, W.; Han, S.; et al. IL-17 Promotes Scar Formation by Inducing Macrophage Infiltration. Am. J. Pathol. 2018, 188, 1693–1702. [Google Scholar] [CrossRef]
- Black, J.A.; Waxman, S.G. Noncanonical Roles of Voltage-Gated Sodium Channels. Neuron 2013, 80, 280. [Google Scholar] [CrossRef]
- Zhao, P.; Barr, T.P.; Hou, Q.; Dib-Hajj, S.D.; Black, J.A.; Albrecht, P.J.; Petersen, K.; Eisenberg, E.; Wymer, J.P.; Rice, F.L.; et al. Voltage-gated sodium channel expression in rat and human epidermal keratinocytes: Evidence for a role in pain. Pain 2008, 139, 90–105. [Google Scholar] [CrossRef]
- Alrashdi, B.; Dawod, B.; Tacke, S.; Kuerten, S.; Côté, P.D.; Marshall, J.S. Mice Heterozygous for the Sodium Channel Scn8a (Nav1.6) Have Reduced Inflammatory Responses During EAE and Following LPS Challenge. Front. Immunol. 2021, 12, 533423. [Google Scholar] [CrossRef]
- Zhang, X.; He, Y. The Role of Nociceptive Neurons in the Pathogenesis of Psoriasis. Front. Immunol. 2020, 11, 1984. [Google Scholar] [CrossRef]
- Dema, B.; Pellefigues, C.; Hasni, S.; Gault, N.; Jiang, C.; Ricks, T.K.; Bonelli, M.M.; Scheffel, J.; Sacré, K.; Jablonski, M.; et al. Autoreactive IgE Is Prevalent in Systemic Lupus Erythematosus and Is Associated with Increased Disease Activity and Nephritis. PLoS ONE 2014, 9, e90424. [Google Scholar] [CrossRef]
- Rulten, S.L.; Kinloch, R.A.; Tateossian, H.; Robinson, C.; Gettins, L.; Kay, J.E. The human FK506-binding proteins: Characterization of human FKBP19. Mamm. Genome 2006, 17, 322–331. [Google Scholar] [CrossRef]
- Ruer-Laventie, J.; Simoni, L.; Schickel, J.N.; Soley, A.; Duval, M.; Knapp, A.M.; Marcellin, L.; Lamon, D.; Korganow, A.S.; Martin, T.; et al. Overexpression of Fkbp11, a feature of lupus B cells, leads to B cell tolerance breakdown and initiates plasma cell differentiation. Immun. Inflamm. Dis. 2015, 3, 265–279. [Google Scholar] [CrossRef]
- Wang, X.; Cui, X.; Zhu, C.; Li, M.; Zhao, J.; Shen, Z.; Shan, X.; Wang, L.; Wu, H.; Shen, Y.; et al. FKBP11 protects intestinal epithelial cells against inflammation-induced apoptosis via the JNK-caspase pathway in Crohn’s disease. Mol. Med. Rep. 2018, 18, 4428–4438. [Google Scholar] [CrossRef]
- Wei, W.; Jiang, F.; Liu, X.C.; Su, Q. TMEM9 mediates IL-6 and IL-1β secretion and is modulated by the Wnt pathway. Int. Immunopharmacol. 2018, 63, 253–260. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Zhao, P.; Tian, K.; Qiao, Z.; Dong, H.; Li, J.; Guan, Z.; Su, H.; Song, Y.; Ma, X. TMEM9 promotes lung adenocarcinoma progression via activating the MEK/ERK/STAT3 pathway to induce VEGF expression. Cell Death Dis. 2024, 15, 295. [Google Scholar] [CrossRef] [PubMed]
- Fu, X.G.; Huang, Z.; Zhou, S.J.; Yang, J.; Peng, Y.J.; Cao, L.Y.; Guo, H.; Wu, G.H.; Lin, Y.H.; Huang, B.Y. Novel heterozygous BPIFC variant in a Chinese pedigree with hereditary trichilemmal cysts. Mol. Genet. Genomic Med. 2019, 7, e697. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Zhao, J.; Jin, Q.; Zhuang, L. Transcriptomic Analyses and Experimental Validation Identified Immune-Related lncRNA-mRNA Pair MIR210HG- BPIFC Regulating the Progression of Hypertrophic Cardiomyopathy. Int. J. Mol. Sci. 2024, 25, 2816. [Google Scholar] [CrossRef]
| Patient Characteristic | Value |
|---|---|
| Gender (males/females) | 63/25 |
| Age of disease onset (years, mean ± SD) | 30.7 (± 13.2) |
| Age of treatment onset (years, mean ± SD) | 49.5 (± 13.2) |
| Baseline PASI (mean ± SD) | 14.9 (± 8.2) |
| Baseline weight (kg, mean ± SD) | 91.8 (± 16.7) |
| Baseline BMI (kg/m2, mean ± SD) | 30.1 (± 5.3) |
| Patients with comorbidities, n (%) | 43 (48.9) |
| Patients with nail psoriasis, n (%) | 52 (59.1) |
| Patients with psoriatic arthritis, n (%) | 31 (35.2) |
| Biologic-naïve patients, n (%) | 48 (54.5) |
| Treatment Response | SNP | Location (bp) | F_R | F_NR | p Raw | p Adj | OR | 95% CI |
|---|---|---|---|---|---|---|---|---|
| 3 m: R (n = 65) > PASI75; NR (n = 11) < PASI50 | rs9848736 (C/A) | Chr. 3: 190.810.697 | 0.061 | 0.454 | 1.32 × 10−7 | 0.0392 | 12.71 | 4.2–38.3 |
| rs4252217 (C/T) | Chr. 5: 69.369.635 | 0 | 0.227 | 3.25 × 10−8 | 0.0096 | N/A | N/A | |
| rs12448418 (C/T) | Chr. 16: 57.504.782 | 0.007 | 0.273 | 4.14 × 10−8 | 0.0123 | 48.38 | 5.4–427.8 | |
| 3 m: R (n = 31) = PASI100; NR (n = 28) < PASI75 | rs11649499 (G/C) | Chr. 16: 298.971.112 | 0.693 | 0.196 | 6.21 × 10−8 | 0.0184 | 0.108 | 0.05–0.25 |
| 6 m: R (n = 67) > PASI75; NR (n = 6) < PASI50 | rs6468095 (C/T) | Chr. 8: 32.306.960 | 0.082 | 0.666 | 8.11 × 10−9 | 0.0024 | 22.36 | 5.8–86.2 |
| rs9914970 (C/T) | Chr. 17: 55.456.223 | 0.074 | 0.583 | 1.41 × 10−7 | 0.0421 | 17.36 | 4.6–64.7 | |
| rs17056507 (T/C) | Chr. 13: 59.392.598 | 0.044 | 0.5 | 3.79 × 10−8 | 0.0112 | 21.33 | 5.3–86.3 | |
| rs115692430 (G/A) | Chr. 12: 51.609.277 | 0.052 | 0.5 | 1.81 × 10−7 | 0.0539 | 18.14 | 4.6–70.9 | |
| rs78216879 (A/G) | Chr. 3: 153.571.831 | 0.022 | 0.416 | 8.95 × 10−9 | 0.0026 | 31.19 | 6.2–157.3 | |
| rs62279932 (T/C) | Chr. 3: 189.766.500 | 0.029 | 0.416 | 9.42 × 10−8 | 0.028 | 23.21 | 5.1–106.1 | |
| rs34437895 (C/A) | Chr. 1: 209.938.683 | 0.007 | 0.25 | 8.19 × 10−7 | 0.0167 | 44.32 | 4.2–470.3 | |
| rs115790464 (C/T) | Chr. 1: 201.144.928 | 0.022 | 0.333 | 1.37 × 10−6 | 0.0252 | 21.83 | 4.2–114.6 | |
| rs74894123 (G/A) | Chr. 2: 36.293.569 | 0.022 | 0.333 | 1.37 × 10−6 | 0.0252 | 21.83 | 4.2–114.6 | |
| rs75264797 (A/G) | Chr. 2: 148.972.862 | 0.022 | 0.333 | 1.37 × 10−6 | 0.0252 | 21.83 | 4.2–114.6 | |
| rs17624997 (G/A) | Chr. 8: 32.280.133 | 0.067 | 0.5 | 2.23 × 10−6 | 0.0307 | 13.89 | 3.7–51.9 | |
| rs7867365 (C/T) | Chr. 9: 13.772.938 | 0.0074 | 0.25 | 8.19 × 10−7 | 0.0167 | 44.32 | 4.2–470.3 | |
| rs41291977 (T/G) | Chr. 12: 48.937.896 | 0.015 | 0.333 | 1.02 × 10−7 | 0.0303 | 33 | 5.3–208.1 | |
| rs77691176 (G/A) | Chr. 22: 32.421.411 | 0.015 | 0.333 | 1.02 × 10−7 | 0.0303 | 33 | 5.3–208.1 | |
| rs2051337 (A/G) | Chr. 18: 42.624.131 | 0.015 | 0.333 | 1.02 × 10−7 | 0.0303 | 33 | 5.3–208.1 | |
| rs10166913 (G/A) * | Chr. 2: 29.072.523 | 0 | 0.333 | 1.23 × 10−11 | 3.65 × 10−6 | N/A | N/A | |
| 6 m: R (n = 65) > PASI90; NR (n = 13) < PASI75 | 0 | 0.231 | 2.23 × 10−8 | 0.0069 | N/A | N/A | ||
| rs75504215 (T/C) | Chr. 15: 40.910.502 | 0 | 0.231 | 2.23 × 10−8 | 0.0069 | N/A | N/A |
| SNP | Binding Motifs Altered | DNase HSS | Enhancer/Promoter Histone Modifications |
|---|---|---|---|
| rs11649499 | ZBTB7A | ||
| rs10166913 | CTCF, Ncx | fibroblasts, melanocytes | |
| rs12448418 | Hdx | fibroblasts | |
| rs9848736 | Pou2f2 | ||
| rs17056507 | Stat, Smad3, Smad4 | B, T cells | B, Th memory, Th17, Th-naïve, Treg, T CD8+-naïve, T CD8+ memory cells |
| rs74894123 | ERalpha-a, Egr1, Ets, Sin3Ak20, YY1 | ||
| rs75504215 | Egr1 | fibroblasts, melanocytes | keratinocytes, fibroblasts, melanocytes; monocytes, Th-naïve, Th, Treg cells |
| rs78216879 | Foxl1 | melanocytes | |
| rs2051337 | |||
| rs7867365 | |||
| rs4252217 | BCL, BHLHE40, E2F, ELF1, HEN1, HEY1, Rad21, Sin3Ak20, YY1 | keratinocytes, fibroblasts, melanocytes; T, B cells | keratinocytes, fibroblasts, melanocytes; Th, Th17, Treg cells |
| rs6468095 | Hlx1 | keratinocytes | keratinocytes, fibroblasts |
| rs17624997 | Foxa, Foxl1, Myf4, Zfp105 | keratinocytes, fibroblasts | keratinocytes, fibroblasts |
| rs62279932 | Ets, Myc, Smad3, AP4 | keratinocytes | keratinocytes; T CD8+-naïve cells |
| rs115692430 | CEBPG, DMRT2, Myb4, Sox-2, -7, -10, -13, -14, -16, -18, -19, YY1 | T cells | Th, T CD8+-naïve cells |
| rs9914970 | STAT, Irf, HDAC2, TCF12, RXRA, TATA | fibroblasts; Th-naïve cells | |
| rs77691176 | Pou2f2, Pou3f3, p300 | Th-naïve, mononuclear cells | |
| rs115790464 | Nanog, Sox17 | fibroblasts, keratinocytes | |
| rs34437895 | ELF1, Egr1, Evi1, HDAC2, Pou2f2, TATA, p300 | fibroblasts | fibroblasts, melanocytes, keratinocytes; T, B, Th-naïve, Th, Th17 cells |
| rs75264797 | LRH1 | melanocytes | |
| rs41291977 | fibroblasts, melanocytes; monocytes, B, Th-naïve, Th memory, Th17 cells |
| SNP | Gene Symbol | P | Tissue | Functional Role |
|---|---|---|---|---|
| rs11649499 | PAGR1 | 3.50 × 10−5 | Whole Blood | In complex with histone H3K4 methyltransferases PAGR1 regulates gene expression epigenetically |
| ENSG00000275371 (GDPD3 antisense RNA) | 1.60 × 10−4 | Lymphocytes | GDPD3, encoded by the target gene, produces lysophosphatidic acid, which has a known role in psoriasis pathogenesis | |
| CDIPTOSP (CDIPT opposite strand, pseudogene) | 1.60 × 10−5 | Skin | CDIPT, encoded by the relevant functional gene, catalyzes phosphatidylinositol biosynthesis | |
| rs4252217 | CCDC125 | 2.00 × 10−5 | Whole Blood | CCDC125 variants were associated with lymphocyte and neutrophil counts |
| TAF9 | 2.20 × 10−5 | Lymphocytes | TAF9 is involved in the initiation of RNA polymerase II-dependent transcription | |
| NAIPP2 (NAIP pseudogene 2) | 1.10 × 10−3 | Skin | NAIP, encoded by the relevant functional gene, is a constituent of the inflammasome and a regulator of innate immune signaling | |
| CDK7 | CCDC125 | Fibroblasts | CDK7 is implicated in inflammation |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ioakeimidou, D.; Zafiriou, E.; Giannoulis, T.; Kouvarou, O.; Gerogianni, K.; Bogdanos, D.P.; Sarafidou, T.; Liadaki, K. A Genome-Wide Association Study in Psoriasis Patients Reveals Variants Associated with Response to Treatment with Interleukin-17A Pathway Inhibitors. Genes 2025, 16, 1187. https://doi.org/10.3390/genes16101187
Ioakeimidou D, Zafiriou E, Giannoulis T, Kouvarou O, Gerogianni K, Bogdanos DP, Sarafidou T, Liadaki K. A Genome-Wide Association Study in Psoriasis Patients Reveals Variants Associated with Response to Treatment with Interleukin-17A Pathway Inhibitors. Genes. 2025; 16(10):1187. https://doi.org/10.3390/genes16101187
Chicago/Turabian StyleIoakeimidou, Dimitra, Efterpi Zafiriou, Themistoklis Giannoulis, Olga Kouvarou, Kalliopi Gerogianni, Dimitrios P. Bogdanos, Theologia Sarafidou, and Kalliopi Liadaki. 2025. "A Genome-Wide Association Study in Psoriasis Patients Reveals Variants Associated with Response to Treatment with Interleukin-17A Pathway Inhibitors" Genes 16, no. 10: 1187. https://doi.org/10.3390/genes16101187
APA StyleIoakeimidou, D., Zafiriou, E., Giannoulis, T., Kouvarou, O., Gerogianni, K., Bogdanos, D. P., Sarafidou, T., & Liadaki, K. (2025). A Genome-Wide Association Study in Psoriasis Patients Reveals Variants Associated with Response to Treatment with Interleukin-17A Pathway Inhibitors. Genes, 16(10), 1187. https://doi.org/10.3390/genes16101187

