Development of KASP Molecular Markers and Candidate Gene Mining for Heat Tolerance-Related Traits in Gossypium hirsutum
Abstract
1. Introduction
2. Materials and Methods
2.1. Plant Materials
2.2. Development of KASP Markers
2.3. qRT—PCR
2.4. Data Analysis
3. Results
3.1. Descriptive Statistics and Correlation Analysis of Population Phenotypes
3.2. Development of KASP Molecular Markers
3.3. Genotype—Phenotype Association Analysis
3.4. Screening of Candidate Genes
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Khan, A.H.; Min, L.; Ma, Y.; Zeeshan, M.; Jin, S.; Zhang, X. High-temperature stress in crops: Male sterility, yield loss and potential remedy approaches. Plant Biotechnol. J. 2023, 21, 680–697. [Google Scholar] [CrossRef]
- Zhao, C.; Liu, B.; Piao, S.; Wang, X.; Lobell, D.B.; Huang, Y.; Huang, M.T.; Yao, Y.T.; Bassu, S.; Ciais, P.; et al. Temperature increase reduces global yields of major crops in four independent estimates. Proc. Natl. Acad. Sci. USA 2017, 114, 9326–9331. [Google Scholar] [CrossRef]
- Luqman, T.; Hussain, M.; Ahmed, S.R.; Ijaz, I.; Maryum, Z.; Nadeem, S.; Khan, Z.; Khan, S.M.U.D.; Aslam, M.; Liu, Y.; et al. Cotton under heat stress: A comprehensive review of molecular breeding, genomics, and multi-omics strategies. Front. Genet. 2025, 16, 1553406. [Google Scholar] [CrossRef]
- Yuan, X.; Li, S.; Chen, J.; Yu, H.; Yang, T.; Wang, C.; Huang, S.; Chen, H.; Ao, X. Impacts of global climate change on agricultural production: A comprehensive review. Agronomy 2024, 14, 1360. [Google Scholar] [CrossRef]
- Majeed, S.; Rana, I.A.; Mubarik, M.S.; Atif, R.M.; Yang, S.H.; Chung, G.; Jia, Y.; Du, X.; Hinze, L.; Azhar, M.T. Heat stress in cotton: A review on predicted and unpredicted growth-yield anomalies and mitigating breeding strategies. Agronomy 2021, 11, 1825. [Google Scholar] [CrossRef]
- Han, Z.; Chen, H.; Cao, Y.; He, L.; Si, Z.; Hu, Y.; Lin, H.; Ning, X.; Li, J.; Ma, Q.; et al. Genomic insights into genetic improvement of upland cotton in the world’s largest growing region. Ind. Crops Prod. 2022, 183, 114929. [Google Scholar] [CrossRef]
- Tao, H.; Fischer, T.; Su, B.; Mao, W.; Jiang, T.; Fraedrich, K. Observed changes in maximum and minimum temperatures in Xinjiang autonomous region, China. Int. J. Climatol. 2017, 37, 5120–5128. [Google Scholar] [CrossRef]
- Zahid, K.R.; Ali, F.; Shah, F.; Younas, M.; Shah, T.; Shahwar, D.; Hassan, W.; Ahmad, Z.; Qi, C.; Lu, Y.; et al. Response and tolerance mechanism of cotton Gossypium hirsutum L. to elevated temperature stress: A Review. Front. Plant Sci. 2016, 7, 937. [Google Scholar] [CrossRef]
- Mehmood, M.; Tanveer, N.A.; Joyia, F.A.; Ullah, I.; Mohamed, H.I. Effect of high temperature on pollen grains and yield in economically important crops: A review. Planta 2025, 261, 141. [Google Scholar] [CrossRef] [PubMed]
- Wang, P.; Abbas, M.; He, J.; Zhou, L.; Cheng, H.; Guo, H. Advances in genome sequencing and artificially induced mutation provides new avenues for cotton breeding. Front. Plant Sci. 2024, 15, 1400201. [Google Scholar] [CrossRef] [PubMed]
- Cobb, J.N.; Biswas, P.S.; Platten, J.D. Back to the future: Revisiting MAS as a tool for modern plant breeding. Theor. Appl. Genet. 2019, 132, 647–667. [Google Scholar] [CrossRef]
- Arabzai, M.G.; Gul, H. Application techniques of molecular marker and achievement of marker assisted selection (MAS) in three major crops rice, wheat and maize. Int. J. Res. Appl. Sci. Biotechnol. 2021, 8, 82–93. [Google Scholar] [CrossRef]
- Kumar, R.; Das, S.P.; Choudhury, B.U.; Kumar, A.; Prakash, N.R.; Verma, R.; Chakraborti, M.; Devi, A.G.; Bhattacharjee, B.; Das, R.; et al. Advances in genomic tools for plant breeding: Harnessing DNA molecular markers, genomic selection, and genome editing. Biol. Res. 2024, 57, 80. [Google Scholar] [CrossRef] [PubMed]
- Dipta, B.; Sood, S.; Mangal, V.; Bhardwaj, V.; Thakur, A.K.; Kumar, V.; Singh, B. KASP: A high-throughput genotyping system and its applications in major crop plants for biotic and abiotic stress tolerance. Mol. Biol. Rep. 2024, 51, 508. [Google Scholar] [CrossRef]
- Yang, F.; Lang, T.; Wu, J.; Zhang, C.; Qu, H.; Pu, Z.; Yang, F.; Yu, M.; Feng, J. SNP loci identification and KASP marker development system for genetic diversity, population structure, and fingerprinting in sweetpotato (Ipomoea batatas L.). BMC Genom. 2024, 25, 1245. [Google Scholar] [CrossRef]
- Yang, G.; Chen, S.; Chen, L.; Sun, K.; Huang, C.; Zhou, D.; Huang, Y.; Wang, J.; Liu, Y.; Wang, H.; et al. Development of a core SNP arrays based on the KASP method for molecular breeding of rice. Rice 2019, 12, 21. [Google Scholar] [CrossRef]
- Geethanjali, S.; Kadirvel, P.; Periyannan, S. Wheat improvement through advances in single nucleotide polymorphism (SNP) detection and genotyping with a special emphasis on rust resistance. Theor. Appl. Genet. 2024, 137, 224. [Google Scholar] [CrossRef]
- Yang, G.; Chen, S.; Chen, L.; Gao, W.; Huang, Y.; Huang, C.; Zhou, D.; Wang, J.; Liu, Y.; Huang, M.; et al. Development and utilization of functional KASP markers to improve rice eating and cooking quality through MAS breeding. Euphytica 2019, 215, 66. [Google Scholar] [CrossRef]
- Tan, C.T.; Assanga, S.; Zhang, G.; Rudd, J.C.; Haley, S.D.; Xue, Q.; Ibrahim, A.; Bai, G.; Zhang, X.; Byrne, P.; et al. Development and validation of KASP markers for wheat streak mosaic virus resistance gene Wsm2. Crop Sci. 2017, 57, 340–349. [Google Scholar] [CrossRef]
- Ali, G.S.; Eltaher, S.; Li, J.; Freeman, B.; Singh, S. GWAS identifies a polyembryony locus in mango: Development of KASP and PACE markers for marker-assisted breeding. Front. Plant Sci. 2025, 16, 1508027. [Google Scholar] [CrossRef] [PubMed]
- Migicovsky, Z.; Myles, S. Exploiting Wild Relatives for Genomics-assisted Breeding of Perennial Crops. Front. Plant Sci. 2017, 8, 460. [Google Scholar] [CrossRef]
- Liang, Y.; Gong, Z.; Wang, J.; Zheng, J.; Ma, Y.; Min, L.; Chen, Q.; Li, Z.; Qu, Y.; Chen, Q.; et al. Nanopore-Based Comparative Transcriptome Analysis Reveals the Potential Mechanism of High-Temperature Tolerance in Cotton (Gossypium hirsutum L.). Plants 2021, 10, 2517. [Google Scholar] [CrossRef]
- Fu, Y.; van Silfhout, A.; Shahin, A.; Egberts, R.; Beers, M.; van der Velde, A.; van Houten, A.; van Tuyl, J.M.; Visser, R.G.F.; Arens, P. Genetic mapping and QTL analysis of Botrytis resistance in Gerbera hybrida. Mol. Breed. 2017, 37, 13. [Google Scholar] [CrossRef] [PubMed]
- Livak, K.J.; Schmittgen, T.D. Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method. Methods 2001, 25, 402–408. [Google Scholar] [CrossRef]
- Zhu, T.; De Lima, C.F.F.; De Smet, I. The Heat is On: How Crop Growth, Development and Yield Respond to High Temperature. J. Exp. Bot. 2021, 72, erab308. [Google Scholar] [CrossRef]
- Santiago, J.P.; Sharkey, T.D. Pollen development at high temperature and role of carbon and nitrogen metabolites. Plant Cell Environ. 2019, 42, 2759–2775. [Google Scholar] [CrossRef]
- Endo, M.; Tsuchiya, T.; Hamada, K.; Kawamura, S.; Yano, K.; Ohshima, M. High temperatures cause male sterility in rice plants with transcriptional alterations during pollen development. Plant Cell Physiol. 2009, 50, 1911–1922. [Google Scholar] [CrossRef]
- Opole, R.A.; Prasad, P.V.V.; Djanaguiraman, M.; Vimala, K.; Kirkham, M.B.; Upadhyaya, H.D. Thresholds, sensitive stages and genetic variability of finger millet to high temperature stress. J. Agron. Crop Sci. 2018, 204, 477–492. [Google Scholar] [CrossRef]
- Liu, M.; Zhou, Y.; Sun, J.; Mao, F.; Yao, Q.; Li, B.; Wang, Y.; Gao, Y.; Dong, X.; Liao, S.; et al. From the floret to the canopy: High temperature tolerance during flowering. Plant Commun. 2023, 4, 100629. [Google Scholar] [CrossRef] [PubMed]
- Qian, D.; Wang, M.; Niu, Y.; Yang, Y.; Xiang, Y. Sexual reproduction in plants under high temperature and drought stress. Cell Rep. 2025, 44, 115390. [Google Scholar] [CrossRef] [PubMed]
- Gao, M.; Xu, B.; Wang, Y.; Zhou, Z.; Hu, W. Quantifying individual and interactive effects of elevated temperature and drought stress on cotton yield and fibre quality. J. Agron. Crop Sci. 2021, 207, 422–436. [Google Scholar] [CrossRef]
- Bernacchi, C.J.; Long, S.P.; Ort, D.R. Safeguarding crop photosynthesis in a rapidly warming world. Science 2025, 388, 1153–1160. [Google Scholar] [CrossRef]
- Huang, X.; Huang, S.; Han, B.; Li, J. The integrated genomics of crop domestication and breeding. Cell 2022, 185, 2828–2839. [Google Scholar] [CrossRef]
- Kashyap, A.; Garg, P.; Tanwar, K.; Sharma, J.; Gupta, N.C.; Ha, P.T.T. Strategies for utilization of crop wild relatives in plant breeding programs. Theor. Appl. Genet. 2022, 135, 4151–4167. [Google Scholar] [CrossRef]
- Gao, C. Genome engineering for crop improvement and future agriculture. Cell 2021, 184, 1621–1635. [Google Scholar] [CrossRef]
- Hamdan, M.F.; Mohd Noor, S.N.; Abd-Aziz, N.; Pua, T.L.; Tan, B.C. Green revolution to gene revolution: Technological advances in agriculture to feed the world. Plants 2022, 11, 1297. [Google Scholar] [CrossRef] [PubMed]
- Baloch, F.S.; Altaf, M.T.; Liaqat, W.; Bedir, M.; Nadeem, M.A.; Cömertpay, G.; Çoban, N.; Habyarimana, E.; Barutçular, C.; Cerit, I.; et al. Recent advancements in the breeding of sorghum crop: Current status and future strategies for marker-assisted breeding. Front. Genet. 2023, 14, 1150616. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Tang, J.; Srivastava, R.; Bassham, D.C.; Howell, S.H. The Transcription Factor bZIP60 Links the Unfolded Protein Response to the Heat Stress Response in Maize. Plant Cell 2020, 32, 3559–3575. [Google Scholar] [CrossRef]
- Liu, W.; Wang, M.; Zhong, M.; Luo, C.; Shi, S.; Qian, Y.; Kang, Y.; Jiang, B. Genome-wide identification of bZIP gene family and expression analysis of BhbZIP58 under heat stress in wax gourd. BMC Plant Biol. 2023, 23, 598. [Google Scholar] [CrossRef]
- Samtani, H.; Sharma, A.; Khurana, P. Wheat ocs-Element Binding Factor 1 Enhances Thermotolerance by Modulating the Heat Stress Response Pathway. Front. Plant Sci. 2022, 13, 914363. [Google Scholar] [CrossRef] [PubMed]
- Kerr, T.C.C.; Abdel-Mageed, H.; Aleman, L.; Lee, J.; Payton, P.; Cryer, D.; Allen, R.D. Ectopic expression of two AREB/ABF orthologs increases drought tolerance in cotton (Gossypium hirsutum). Plant Cell Environ. 2018, 41, 898–907. [Google Scholar] [CrossRef]
- Zhang, B.; Feng, C.; Chen, L.; Li, B.; Zhang, X.; Yang, X. Identification and Functional Analysis of bZIP Genes in Cotton Response to Drought Stress. Int. J. Mol. Sci. 2022, 23, 14894. [Google Scholar] [CrossRef] [PubMed]
- Garcia-Oliveira, A.L.; Ortiz, R.; Sarsu, F.; Rasmussen, S.K.; Agre, P.; Asfaw, A.; Kante, M.; Chander, S. The importance of genotyping within the climate-smart plant breeding value chain—Integrative tools for genetic enhancement programs. Front. Plant Sci. 2025, 15, 1518123. [Google Scholar] [CrossRef] [PubMed]
Trait | Mean | SD | Min | Max | Skew | Kurtosis | CV |
---|---|---|---|---|---|---|---|
PH | 84.35 | 9.87 | 48.75 | 113.07 | 0.28 | 0.74 | 11.70% |
HFNFH | 30.70 | 3.24 | 19.60 | 41.45 | 0.27 | 0.67 | 10.55% |
EFB | 7.36 | 0.49 | 5.30 | 8.70 | −0.74 | 1.73 | 6.66% |
NB | 6.54 | 0.85 | 2.40 | 11.25 | 0.93 | 5.48 | 13.00% |
SBW | 5.94 | 0.58 | 3.54 | 7.63 | −0.22 | 1.54 | 9.76% |
LP | 42.21 | 2.78 | 31.28 | 48.52 | −0.90 | 0.90 | 6.59% |
PV | 0.61 | 0.20 | 0.17 | 0.98 | 0.06 | −0.73 | 32.79% |
LA | 84.42 | 19.68 | 47.29 | 152.25 | 0.85 | 0.33 | 23.31% |
Chl | 62.93 | 14.63 | 43.67 | 141.33 | 2.40 | 7.57 | 23.25% |
DBs | 2.54 | 1.19 | 0.20 | 8.40 | 0.91 | 1.54 | 46.85% |
FB3 | 2.93 | 1.06 | 0.67 | 5.67 | 0.10 | −0.66 | 36.18% |
CB3 | 3.29 | 1.42 | 0.67 | 7.33 | 0.32 | −0.67 | 43.16% |
DR | 43.42 | 12.70 | 8.33 | 87.50 | 0.13 | 0.10 | 29.25% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gong, Z.; Yang, N.; Geng, S.; Zheng, J.; Liu, Z.; Sun, F.; Li, S.; Li, X.; Liang, Y.; Wang, J. Development of KASP Molecular Markers and Candidate Gene Mining for Heat Tolerance-Related Traits in Gossypium hirsutum. Genes 2025, 16, 1154. https://doi.org/10.3390/genes16101154
Gong Z, Yang N, Geng S, Zheng J, Liu Z, Sun F, Li S, Li X, Liang Y, Wang J. Development of KASP Molecular Markers and Candidate Gene Mining for Heat Tolerance-Related Traits in Gossypium hirsutum. Genes. 2025; 16(10):1154. https://doi.org/10.3390/genes16101154
Chicago/Turabian StyleGong, Zhaolong, Ni Yang, Shiwei Geng, Juyun Zheng, Zhi Liu, Fenglei Sun, Shengmei Li, Xueyuan Li, Yajun Liang, and Junduo Wang. 2025. "Development of KASP Molecular Markers and Candidate Gene Mining for Heat Tolerance-Related Traits in Gossypium hirsutum" Genes 16, no. 10: 1154. https://doi.org/10.3390/genes16101154
APA StyleGong, Z., Yang, N., Geng, S., Zheng, J., Liu, Z., Sun, F., Li, S., Li, X., Liang, Y., & Wang, J. (2025). Development of KASP Molecular Markers and Candidate Gene Mining for Heat Tolerance-Related Traits in Gossypium hirsutum. Genes, 16(10), 1154. https://doi.org/10.3390/genes16101154