Hypoxia-Inducible Factor in Renal Cell Carcinoma: From Molecular Insights to Targeted Therapies
Abstract
:1. Introduction
2. The VHL/HIF Pathway: Structure, Function, and Pathophysiological Significance
2.1. Structural Components of the VHL/HIF Pathway
2.2. HIF and Its Regulatory Mechanisms
- VEGF (vascular endothelial growth factor) promotes new blood vessel formation, enhancing oxygen delivery to hypoxic tissues.
- EPO (erythropoietin) stimulates red blood cell production, increasing the blood’s oxygen-carrying capacity.
- GLUT1 (glucose transporter 1) and other glycolytic enzymes shift cellular metabolism from oxidative phosphorylation to glycolysis, a process known as the “Warburg effect” in cancer, which allows cells to generate adenosine triphosphate (ATP) anaerobically.
2.3. HIF Isoforms and Their Functional Specificity
- HIF-1α is broadly expressed and is primarily responsible for regulating genes involved in glycolysis, facilitating anaerobic metabolism. It is crucial for acute responses to hypoxia and enables cells to meet energy demands when oxygen is limited [25].
- HIF-2α is more tissue-specific, primarily found in endothelial cells, interstitial fibroblasts, and certain types of cancer cells. It governs the expression of genes related to erythropoiesis (e.g., EPO), angiogenesis (e.g., VEGF), and iron metabolism, and is more prominent in chronic hypoxia adaptation. Notably, HIF-2α plays a crucial role in the progression of hypoxia-driven cancers like RCC [25].
- HIF-3α, though less well characterized, may act as a modulator rather than an activator of hypoxia responses, potentially inhibiting the function of HIF-1α and HIF-2α in specific contexts [26].
2.4. Pseudohypoxia: Pathological Activation of the VHL/HIF Pathway
3. Clinical Trials Involving Anti-HIF-2α
3.1. Belzutifan Monotherapy
3.2. Belzutifan Plus CDK4/6 Inhibitors
3.3. Belzutifan Plus TKI
3.4. Belzutifan Plus Immune Checkpoint Inhibitors
3.5. Other Combinations
4. Resistance Mechanisms of HIF-2α-Targeted Therapies
5. New Anti HIF-2 Inhibitors
6. Conclusions and Future Directions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Glossary Abbreviation
AEs | adverse events |
ATP | adenosine triphosphate |
AUC | area under the plasma concentration–time curve |
ccRCC | clear cell RCC |
CDK | cyclin-dependent kinase |
CTLA-4 | cytotoxic T-lymphocyte antigen 4 |
DCR | disease control rate |
DFS | disease-free survival |
EORTC QLQ-C30 | European Organisation for Research and Treatment of Cancer Core Quality of Life questionnaire |
EPAS1 | endothelial PAS domain-containing protein 1 |
EPO | erythropoietin |
FGFRs | fibroblast growth factor receptors |
FKSI-DRS | The Functional Assessment of Cancer Therapy–Kidney Symptom Index—Disease-Related Symptoms |
GCN2 | general control nonderepressible 2 |
GLUT1 | glucose transporter 1 |
HIF | hypoxia-inducible factor |
HREs | hypoxia-responsive elements |
HRQoL | health-related quality of life |
ICI | immune checkpoint inhibitor |
mRCC | metastatic RCC |
MTD | maximum tolerated dose |
ORR | overall response rate |
OS | overall survival |
PD-1 | programmed death 1 |
PD-L1 | programmed death-ligand 1 |
PDGFRs | platelet-derived growth factor receptors |
PFS | progression-free survival |
PHD | prolyl hydroxylase domain |
PK | pharmacokinetics |
PPGLs | pheochromocytomas/paragangliomas |
RCC | renal cell carcinoma |
RDE | recommended dose for expansion |
RP2D | recommended phase II dose |
SCF | stem cell factor |
siRNA | small interfering RNA |
TKIs | tyrosine kinase inhibitors |
VEGF | vascular endothelial growth factor |
VEGFR | vascular endothelial growth factor receptor |
VHL | von Hippel–Lindau |
References
- Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA. Cancer J. Clin. 2021, 71, 209–249. [Google Scholar] [CrossRef] [PubMed]
- Warren, A.Y.; Harrison, D. WHO/ISUP Classification, Grading and Pathological Staging of Renal Cell Carcinoma: Standards and Controversies. World J. Urol. 2018, 36, 1913–1926. [Google Scholar] [CrossRef] [PubMed]
- Shen, C.; Kaelin, W.G. The VHL/HIF Axis in Clear Cell Renal Carcinoma. Semin. Cancer Biol. 2013, 23, 18–25. [Google Scholar] [CrossRef]
- Cowey, C.L.; Rathmell, W.K. VHL Gene Mutations in Renal Cell Carcinoma: Role as a Biomarker of Disease Outcome and Drug Efficacy. Curr. Oncol. Rep. 2009, 11, 94–101. [Google Scholar] [CrossRef]
- Motzer, R.J.; Escudier, B.; McDermott, D.F.; George, S.; Hammers, H.J.; Srinivas, S.; Tykodi, S.S.; Sosman, J.A.; Procopio, G.; Plimack, E.R.; et al. Nivolumab versus Everolimus in Advanced Renal Cell Carcinoma. N. Engl. J. Med. 2015, 373, 1803. [Google Scholar] [CrossRef]
- Catalano, M.; Nesi, G.; Roviello, G. Tumor Microenvironment in Renal Cell Carcinoma: What Is the Current Impact? Future Oncol. 2023, 19, 1315–1318. [Google Scholar] [CrossRef]
- Rini, B.I.; Plimack, E.R.; Stus, V.; Gafanov, R.; Hawkins, R.; Nosov, D.; Pouliot, F.; Alekseev, B.; Soulières, D.; Melichar, B.; et al. Pembrolizumab plus Axitinib versus Sunitinib for Advanced Renal-Cell Carcinoma. N. Engl. J. Med. 2019, 380, 1116–1127. [Google Scholar] [CrossRef]
- Motzer, R.; Alekseev, B.; Rha, S.-Y.; Porta, C.; Eto, M.; Powles, T.; Grünwald, V.; Hutson, T.E.; Kopyltsov, E.; Méndez-Vidal, M.J.; et al. Lenvatinib plus Pembrolizumab or Everolimus for Advanced Renal Cell Carcinoma. N. Engl. J. Med. 2021, 384, 1289–1300. [Google Scholar] [CrossRef]
- Choueiri, T.K.; Powles, T.; Burotto, M.; Escudier, B.; Bourlon, M.T.; Zurawski, B.; Oyervides Juárez, V.M.; Hsieh, J.J.; Basso, U.; Shah, A.Y.; et al. Nivolumab plus Cabozantinib versus Sunitinib for Advanced Renal-Cell Carcinoma. N. Engl. J. Med. 2021, 384, 829–841. [Google Scholar] [CrossRef]
- Motzer, R.J.; Tannir, N.M.; McDermott, D.F.; Arén Frontera, O.; Melichar, B.; Choueiri, T.K.; Plimack, E.R.; Barthélémy, P.; Porta, C.; George, S.; et al. Nivolumab plus Ipilimumab versus Sunitinib in Advanced Renal-Cell Carcinoma. N. Engl. J. Med. 2018, 378, 1277–1290. [Google Scholar] [CrossRef]
- Qannita, R.A.; Alalami, A.I.; Harb, A.A.; Aleidi, S.M.; Taneera, J.; Abu-Gharbieh, E.; El-Huneidi, W.; Saleh, M.A.; Alzoubi, K.H.; Semreen, M.H.; et al. Targeting Hypoxia-Inducible Factor-1 (HIF-1) in Cancer: Emerging Therapeutic Strategies and Pathway Regulation. Pharmaceuticals 2024, 17, 195. [Google Scholar] [CrossRef] [PubMed]
- Peng, S.; Zhang, J.; Tan, X.; Huang, Y.; Xu, J.; Silk, N.; Zhang, D.; Liu, Q.; Jiang, J. The VHL/HIF Axis in the Development and Treatment of Pheochromocytoma/Paraganglioma. Front. Endocrinol. 2020, 11, 586857. [Google Scholar] [CrossRef] [PubMed]
- Rioja, P.; Rey-Cardenas, M.; De Velasco, G. Targeting HIF-2α and Anemia: A Therapeutic Breakthrough for Clear-Cell Renal Cell Carcinoma. Cancer Treat. Rev. 2024, 129, 102801. [Google Scholar] [CrossRef] [PubMed]
- Haase, V.H. The VHL/HIF Oxygen-Sensing Pathway and Its Relevance to Kidney Disease. Kidney Int. 2006, 69, 1302–1307. [Google Scholar] [CrossRef]
- Maxwell, P.H.; Wlesener, M.S.; Chang, G.W.; Clifford, S.C.; Vaux, E.C.; Cockman, M.E.; Wykoff, C.C.; Pugh, C.W.; Maher, E.R.; Ratcliffe, P.J. The Tumour Suppressor Protein VHL Targets Hypoxia-Inducible Factors for Oxygen-Dependent Proteolysis. Nature 1999, 399, 271–275. [Google Scholar] [CrossRef]
- HIF-1 and Human Disease: One Highly Involved Factor–PubMed. Available online: https://pubmed.ncbi.nlm.nih.gov/10950862/ (accessed on 29 November 2024).
- Kaelin, W.G. The von Hippel-Lindau Tumour Suppressor Protein: O2 Sensing and Cancer. Nat. Rev. Cancer 2008, 8, 865–873. [Google Scholar] [CrossRef]
- Ratcliffe, P.J. HIF-1 and HIF-2: Working Alone or Together in Hypoxia? J. Clin. Investig. 2007, 117, 862–865. [Google Scholar] [CrossRef]
- Ivan, M.; Kondo, K.; Yang, H.; Kim, W.; Valiando, J.; Ohh, M.; Salic, A.; Asara, J.M.; Lane, W.S.; Kaelin, J. HIFalpha Targeted for VHL-Mediated Destruction by Proline Hydroxylation: Implications for O2 Sensing. Science 2001, 292, 464–468. [Google Scholar] [CrossRef]
- Bruick, R.K.; McKnight, S.L. A Conserved Family of Prolyl-4-Hydroxylases That Modify HIF. Science 2001, 294, 1337–1340. [Google Scholar] [CrossRef]
- Fiorini, G.; Schofield, C.J. Biochemistry of the Hypoxia-Inducible Factor Hydroxylases. Curr. Opin. Chem. Biol. 2024, 79, 102428. [Google Scholar] [CrossRef]
- Wang, G.L.; Jiang, B.H.; Rue, E.A.; Semenza, G.L. Hypoxia-Inducible Factor 1 Is a Basic-Helix-Loop-Helix-PAS Heterodimer Regulated by Cellular O2 Tension. Proc. Natl. Acad. Sci. USA 1995, 92, 5510–5514. [Google Scholar] [CrossRef] [PubMed]
- Shen, C.; Beroukhim, R.; Schumacher, S.E.; Zhou, J.; Chang, M.; Signoretti, S.; Kaelin, W.G. Genetic and Functional Studies Implicate HIF1α as a 14q Kidney Cancer Suppressor Gene. Cancer Discov. 2011, 1, 222–235. [Google Scholar] [CrossRef] [PubMed]
- Lando, D.; Peet, D.J.; Whelan, D.A.; Gorman, J.J.; Whitelaw, M.L. Asparagine Hydroxylation of the HIF Transactivation Domain a Hypoxic Switch. Science 2002, 295, 858–861. [Google Scholar] [CrossRef] [PubMed]
- Isaacs, J.S.; Jung, Y.J.; Mimnaugh, E.G.; Martinez, A.; Cuttitta, F.; Neckers, L.M. Hsp90 Regulates a von Hippel Lindau-Independent Hypoxia-Inducible Factor-1α-Degradative Pathway. J. Biol. Chem. 2002, 277, 29936–29944. [Google Scholar] [CrossRef]
- Linehan, W.M.; Ricketts, C.J. The Metabolic Basis of Kidney Cancer. Semin. Cancer Biol. 2013, 23, 46–55. [Google Scholar] [CrossRef]
- Hayashi, Y.; Yokota, A.; Harada, H.; Huang, G. Hypoxia/Pseudohypoxia-Mediated Activation of Hypoxia-Inducible Factor-1α in Cancer. Cancer Sci. 2019, 110, 1510–1517. [Google Scholar] [CrossRef]
- Yuan, X.; Ruan, W.; Bobrow, B.; Carmeliet, P.; Eltzschig, H.K. Targeting Hypoxia-Inducible Factors: Therapeutic Opportunities and Challenges. Nat. Rev. Drug Discov. 2024, 23, 175–200. [Google Scholar] [CrossRef]
- Shurin, M.R.; Umansky, V. Cross-Talk between HIF and PD-1/PD-L1 Pathways in Carcinogenesis and Therapy. J. Clin. Investig. 2022, 132, e159473. [Google Scholar] [CrossRef]
- Wu, Q.; You, L.; Nepovimova, E.; Heger, Z.; Wu, W.; Kuca, K.; Adam, V. Hypoxia-Inducible Factors: Master Regulators of Hypoxic Tumor Immune Escape. J. Hematol. Oncol. 2022, 15, 77. [Google Scholar] [CrossRef]
- Choueiri, T.K.; Plimack, E.R.; Powles, T.; Voss, M.H.; Gurney, H.; Silverman, R.K.; Perini, R.F.; Rodriguez-Lopez, K.; Rini, B.I. Phase 3 Study of First-Line Treatment with Pembrolizumab + Belzutifan + Lenvatinib or Pembrolizumab/Quavonlimab + Lenvatinib versus Pembrolizumab + Lenvatinib for Advanced Renal Cell Carcinoma (RCC). J. Clin. Oncol. 2022, 40, TPS399. [Google Scholar] [CrossRef]
- Majmundar, A.J.; Wong, W.J.; Simon, M.C. Hypoxia-Inducible Factors and the Response to Hypoxic Stress. Mol. Cell 2010, 40, 294–309. [Google Scholar] [CrossRef] [PubMed]
- Chen, W.; Hill, H.; Christie, A.; Kim, M.S.; Holloman, E.; Pavia-Jimenez, A.; Homayoun, F.; Ma, Y.; Patel, N.; Yell, P.; et al. Targeting Renal Cell Carcinoma with a HIF-2 Antagonist. Nature 2016, 539, 112–117. [Google Scholar] [CrossRef] [PubMed]
- Courtney, K.D.; Ma, Y.; de Leon, A.D.; Christie, A.; Xie, Z.; Woolford, L.; Singla, N.; Joyce, A.; Hill, H.; Madhuranthakam, A.J.; et al. HIF-2 Complex Dissociation, Target Inhibition, and Acquired Resistance with PT2385, a First-in-Class HIF-2 Inhibitor, in Patients with Clear Cell Renal Cell Carcinoma. Clin. Cancer Res. 2020, 26, 793–803. [Google Scholar] [CrossRef] [PubMed]
- Stransky, L.A.; Vigeant, S.M.; Huang, B.; West, D.; Denize, T.; Walton, E.; Signoretti, S.; Kaelin, W.G. Sensitivity of VHL Mutant Kidney Cancers to HIF2 Inhibitors Does Not Require an Intact P53 Pathway. Proc. Natl. Acad. Sci. USA 2022, 119, e2120403119. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Cattoglio, C.; Dailey, G.M.; Zhu, Q.; Tjian, R.; Darzacq, X. Mechanisms Governing Target Search and Binding Dynamics of Hypoxia-Inducible Factors. eLife 2022, 11, e75064. [Google Scholar] [CrossRef]
- Mennitto, A.; Zattarin, E.; Di Maio, M.; Bimbatti, D.; De Giorgi, U.; Buti, S.; Santini, D.; Casadei, C.; Sorarù, M.; Messina, C.; et al. Cabozantinib beyond Progression Improves Survival in Advanced Renal Cell Carcinoma Patients: The CABEYOND Study (Meet-URO 21). Expert Rev. Anticancer. Ther. 2022, 22, 115–121. [Google Scholar] [CrossRef]
- Catalano, M.; Procopio, G.; Sepe, P.; Santoni, M.; Sessa, F.; Villari, D.; Nesi, G.; Roviello, G. Tyrosine Kinase and Immune Checkpoints Inhibitors in Favorable Risk Metastatic Renal Cell Carcinoma: Trick or Treat? Pharmacol. Ther. 2023, 249, 108499. [Google Scholar] [CrossRef]
Study (number) | Phase | Patients | Enrollment Estimated | Experimental Drug | Start Date | Status |
---|---|---|---|---|---|---|
NCT04846920 (LITESPARK-018) | Phase I | Advanced ccRCC | 52 | Belzutifan | 14 June 2021 | Active not recruiting |
NCT04489771 (LITESPARK-013) | Phase II | Advanced RCC | 154 | Belzutifan | 13 September 2020 | Active not recruiting |
NCT06234605 | Phase Ib | Advanced RCC | 80 | HC-7366 plus Belzutifan | 29 April 2024 | Recruiting |
NCT04195750 (LITESPARK-005) | Phase 3 | Advanced RCC | 755 | Belzutifan versus Everolimus | 27 February 2020 | Active not recruiting |
NCT05468697 (LITESPARK-024) | Phase I/II | Advanced RCC | 210 | Belzutifan plus Palbociclib versus Belzutifan Monotherapy | 10 August 2022 | Recruiting |
NCT05239728 (LITESPARK-022) | Phase III | ccRCC post-Nephrectomy | 1800 | Belzutifan plus Pembrolizumab versus Placebo plus Pembrolizumab | 15 March 2022 | Active not recruiting |
NCT03634540 (LITESPARK-003) | Phase II | ccRCC | 118 | Belzutifan plus Cabozantinib | 27 September 2018 | Active not recruiting |
NCT04586231 | Phase III | Advanced RCC | 708 | Belzutifan plus Lenvatinib versus Cabozantinib | 25 February 2021 | Active not recruiting |
NCT05030506 (LITESPARK-010) | Phase I | Advanced RCC | 45 | Belzutifan as Monotherapy plus Lenvatinib with or without Pembrolizumab | 13 October 2021 | Active not recruiting |
NCT05899049 | Phase III | Advanced ccRCC-China Extension Study | 249 | Pembrolizumab plus Belzutifan and Lenvatinib, or Pembrolizumab/Quavonlimab plus Lenvatinib, versus Pembrolizumab and Lenvatinib | 27 July 2022 | Active not recruiting |
NCT04736706 | Phase III | Advanced ccRCC | 1653 | Pembrolizumab plus Belzutifan and Lenvatinib, or Pembrolizumab/Quavonlimab plus Lenvatinib, versus Pembrolizumab and Lenvatinib | 14 April 2021 | Active not recruiting |
NCT02974738 (LITESPARK-001) | Phase I | Advanced Solid Tumors | 120 | Belzutifan Tablets | 7 December 2016 | Active not recruiting |
NCT03401788 (LITESPARK-004) | Phase II | Von Hippel–Lindau (VHL) Disease-Associated RCC (MK-6482-004) | 50 | Belzutifan (PT2977, MK-6482) | 2 May 2018 | Active not recruiting |
NCT04626518 (KEYMAKER-U03B) Substudy 03B | Phase I/II | Second-Line Plus (2L+) RCC | 370 | Immune and Targeted Combination Therapies | 17 December 2020 | Active not recruiting |
NCT04626479 (KEYMAKER-U03B) Substudy 03A | Phase I/II | First-Line (1L) RCC | 400 | Immune and Targeted Combination Therapies | 16 December 2020 | Active not recruiting |
NCT04627064 | Phase Ib | ccRCC Sarcomatoid RCC | 40 | Abemaciclib Monotherapy or in Combination with MK-6482 | 31 December 2020 | Active not recruiting |
NCT02293980 | Phase I | Advanced ccRCC | 110 | PT2385 Tablets | 25 November 2014 | Active not recruiting |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Roviello, G.; De Gennaro, I.; Vascotto, I.; Venturi, G.; D’Angelo, A.; Winchler, C.; Guarino, A.; Cacioppo, S.; Modesti, M.; Mela, M.M.; et al. Hypoxia-Inducible Factor in Renal Cell Carcinoma: From Molecular Insights to Targeted Therapies. Genes 2025, 16, 6. https://doi.org/10.3390/genes16010006
Roviello G, De Gennaro I, Vascotto I, Venturi G, D’Angelo A, Winchler C, Guarino A, Cacioppo S, Modesti M, Mela MM, et al. Hypoxia-Inducible Factor in Renal Cell Carcinoma: From Molecular Insights to Targeted Therapies. Genes. 2025; 16(1):6. https://doi.org/10.3390/genes16010006
Chicago/Turabian StyleRoviello, Giandomenico, Irene De Gennaro, Ismaela Vascotto, Giulia Venturi, Alberto D’Angelo, Costanza Winchler, Adriana Guarino, Salvatore Cacioppo, Mikol Modesti, Marinella Micol Mela, and et al. 2025. "Hypoxia-Inducible Factor in Renal Cell Carcinoma: From Molecular Insights to Targeted Therapies" Genes 16, no. 1: 6. https://doi.org/10.3390/genes16010006
APA StyleRoviello, G., De Gennaro, I., Vascotto, I., Venturi, G., D’Angelo, A., Winchler, C., Guarino, A., Cacioppo, S., Modesti, M., Mela, M. M., Francini, E., Doni, L., Rossi, V., Gambale, E., Giorgione, R., Antonuzzo, L., Nesi, G., & Catalano, M. (2025). Hypoxia-Inducible Factor in Renal Cell Carcinoma: From Molecular Insights to Targeted Therapies. Genes, 16(1), 6. https://doi.org/10.3390/genes16010006