Maximal Fat Oxidation During Exercise in Healthy Individuals: Lack of Genetic Association with the FTO rs9939609 Polymorphism
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Sample Size Calculation
2.3. Experimental Design
2.4. Experimental Protocol
2.5. Statistical Analysis
3. Results
3.1. Whole Group
3.2. Sex × Genotype Interaction
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- The Challenge of Obesity. Available online: https://www.who.int/europe/news-room/fact-sheets/item/the-challenge-of-obesity?utm_source=chatgpt.com (accessed on 1 December 2024).
- Bozkurt, B.; Aguilar, D.; Deswal, A.; Dunbar, S.B.; Francis, G.S.; Horwich, T.; Jessup, M.; Kosiborod, M.; Pritchett, A.M.; Ramasubbu, K.; et al. Contributory Risk and Management of Comorbidities of Hypertension, Obesity, Diabetes Mellitus, Hyperlipidemia, and Metabolic Syndrome in Chronic Heart Failure: A Scientific Statement from the American Heart Association. Circulation 2016, 134, e535–e578. [Google Scholar] [CrossRef] [PubMed]
- Petkeviciene, J.; Smalinskiene, A.; Klumbiene, J.; Petkevicius, V.; Kriaucioniene, V.; Lesauskaite, V. Physical Activity, but Not Dietary Intake, Attenuates the Effect of the FTO Rs9939609 Polymorphism on Obesity and Metabolic Syndrome in Lithuanian Adult Population. Public Health 2016, 135, 23–29. [Google Scholar] [CrossRef] [PubMed]
- Archer, E.; Lavie, C.J.; Hill, J.O. The Contributions of “Diet”, “Genes”, and Physical Activity to the Etiology of Obesity: Contrary Evidence and Consilience. Prog。 Cardiovasc. Dis. 2018, 61, 89–102. [Google Scholar] [CrossRef] [PubMed]
- Schutz, Y.; Tremblay, A.; Weinsier, R.L.; Nelson, K.M. Role of Fat Oxidation in the Long-Term Stabilization of Body Weight in Obese Women. Am. J. Clin. Nutr. 1992, 55, 670–674. [Google Scholar] [CrossRef]
- Ranneries, C.; Bülow, J.; Buemann, B.; Christensen, N.J.; Madsen, J.; Astrup, A. Fat Metabolism in Formerly Obese Women. Am. J. Physiol. Endocrinol. Metab. 1998, 274, E155–E161. [Google Scholar] [CrossRef]
- Lanzi, S.; Codecasa, F.; Cornacchia, M.; Maestrini, S.; Salvadori, A.; Brunani, A.; Malatesta, D. Fat Oxidation, Hormonal and Plasma Metabolite Kinetics during a Submaximal Incremental Test in Lean and Obese Adults. PLoS ONE 2014, 9, e88707. [Google Scholar] [CrossRef]
- Maunder, E.; Plews, D.J.; Kilding, A.E. Contextualising Maximal Fat Oxidation During Exercise: Determinants and Normative Values. Front. Physiol. 2018, 9, 599. [Google Scholar] [CrossRef]
- Goodpaster, B.H.; Wolfe, R.R.; Kelley, D.E. Effects of Obesity on Substrate Utilization during Exercise. Obes. Res. 2002, 10, 575–584. [Google Scholar] [CrossRef]
- Corpeleijn, E.; Petersen, L.; Holst, C.; Saris, W.H.; Astrup, A.; Langin, D.; MacDonald, I.; Martinez, J.A.; Oppert, J.M.; Polak, J.; et al. Obesity-Related Polymorphisms and Their Associations with the Ability to Regulate Fat Oxidation in Obese Europeans: The NUGENOB Study. Obesity 2010, 18, 1369–1377. [Google Scholar] [CrossRef]
- Ponce-Gonzalez, J.G.; Martínez-Ávila, Á.; Velázquez-Díaz, D.; Perez-Bey, A.; Gómez-Gallego, F.; Marín-Galindo, A.; Corral-Pérez, J.; Casals, C. Impact of the FTO Gene Variation on Appetite and Fat Oxidation in Young Adults. Nutrients 2023, 15, 2037. [Google Scholar] [CrossRef]
- Scuteri, A.; Sanna, S.; Chen, W.M.; Uda, M.; Albai, G.; Strait, J.; Najjar, S.; Nagaraja, R.; Orrú, M.; Usala, G.; et al. Genome-Wide Association Scan Shows Genetic Variants in the FTO Gene Are Associated with Obesity-Related Traits. PLoS Genet. 2007, 3, 1200–1210. [Google Scholar] [CrossRef] [PubMed]
- Peng, S.; Zhu, Y.; Xu, F.; Ren, X.; Li, X.; Lai, M. FTO Gene Polymorphisms and Obesity Risk: A Meta-Analysis. BMC Med. 2011, 9, 71. [Google Scholar] [CrossRef] [PubMed]
- Frayling, T.M.; Timpson, N.J.; Weedon, M.N.; Zeggini, E.; Freathy, R.M.; Lindgren, C.M.; Perry, J.R.B.; Elliott, K.S.; Lango, H.; Rayner, N.W.; et al. A Common Variant in the FTO Gene Is Associated with Body Mass Index and Predisposes to Childhood and Adult Obesity. Science 2007, 316, 889–894. [Google Scholar] [CrossRef]
- Speakman, J.R. The “Fat Mass and Obesity Related” (FTO) Gene: Mechanisms of Impact on Obesity and Energy Balance. Curr. Obes. Rep. 2015, 4, 73–91. [Google Scholar] [CrossRef]
- Graff, M.; Scott, R.A.; Justice, A.E.; Young, K.L.; Feitosa, M.F.; Barata, L.; Winkler, T.W.; Chu, A.Y.; Mahajan, A.; Hadley, D.; et al. Genome-Wide Physical Activity Interactions in Adiposity—A Meta-Analysis of 200,452 Adults. PLoS Genet. 2017, 13, e1006528. [Google Scholar] [CrossRef]
- Montes-de-Oca-García, A.; Perez-Bey, A.; Corral-Pérez, J.; Velázquez-Díaz, D.; Opazo-Díaz, E.; Fernandez-Santos, J.R.; Rebollo-Ramos, M.; Amaro-Gahete, F.J.; Cuenca-García, M.; Ponce-González, J.G. Maximal Fat Oxidation Capacity Is Associated with Cardiometabolic Risk Factors in Healthy Young Adults. Eur. J. Sport Sci. 2021, 21, 907–917. [Google Scholar] [CrossRef]
- Warburton, D.E.R.; Bredin, S.S.D.; Jamnik, V.K.; Gledhill, N. Validation of the PAR-Q+ and EPARmed-X+. Health Fit. J. Can. 2011, 4, 38–46. [Google Scholar] [CrossRef]
- Ruíz-Moreno, C.; Gutiérrez-Hellín, J.; González-García, J.; GiráLdez-Costas, V.; Brito de Souza, D.; Del Coso, J. Effect of Ambient Temperature on Fat Oxidation during an Incremental Cycling Exercise Test. Eur. J. Sport Sci. 2021, 21, 1140–1147. [Google Scholar] [CrossRef]
- Muñoz, A.; Aguilar-Navarro, M.; Ruiz-Moreno, C.; Varillas-Delgado, D.; Amaro-Gahete, F.J.; Gutiérrez-Hellín, J.; Del Coso, J.; López-Samanes, Á. Influence of the Time of Day in the Effect of Caffeine on Maximal Fat Oxidation during Exercise in Women: A Randomized, Crossover, Double-Blind, and Placebo-Controlled Study. Eur. J Appl. Physiol. 2024, 124, 849–859. [Google Scholar] [CrossRef]
- Papaioannou, T.G.; Protogerou, A.D.; Vrachatis, D.; Konstantonis, G.; Aissopou, E.; Argyris, A.; Nasothimiou, E.; Gialafos, E.J.; Karamanou, M.; Tousoulis, D.; et al. Mean Arterial Pressure Values Calculated Using Seven Different Methods and Their Associations with Target Organ Deterioration in a Single-Center Study of 1878 Individuals. Hypertens. Res. 2016, 39, 640–647. [Google Scholar] [CrossRef]
- Matthews, D.R.; Hosker, J.P.; Rudenski, A.S.; Naylor, B.A.; Treacher, D.F.; Turner, R.C. Homeostasis Model Assessment: Insulin Resistance and Beta-Cell Function from Fasting Plasma Glucose and Insulin Concentrations in Man. Diabetologia 1985, 28, 412–419. [Google Scholar] [CrossRef] [PubMed]
- Sambrook, J.; Russell, D.W. Molecular Cloning: A Laboratory Manual; Cold Spring Harbor Laboratory Press: Cold Spring Harbor, NY, USA, 2001; ISBN 0879693738. [Google Scholar]
- Marfell-Jones, M.; Olds, T.; Stewart, A.; Carter, J. International Standards for Anthropometric Assessment; International Society for the Advancement of Kinanthropometry (ISAK): Potchefstroom, South Africa, 2006. [Google Scholar]
- Carter, J.E.L. Part 1: The Heath-Carter Anthropometric Somatotype-Instruction Manual; TeP and ROSSCRAFT: Surrey, BA, Canada, 2002. [Google Scholar]
- Brouwer, E. On Simple Formulae for Calculating the Heat Expenditure and the Quantities of Carbohydrate and Fat Oxidized in Metabolism of Men and Animals, from Gaseous. Acta Physiol. Pharmacol. Neerl. 1957, 6, 795–802. [Google Scholar] [PubMed]
- Borg, G. Psychophysical Scaling with Applications in Physical Work and the Perception of Exertion Scand. J. Work Environ. Health 1990, 16, 55–58. [Google Scholar] [CrossRef] [PubMed]
- Edvardsen, E.; Hem, E.; Anderssen, S.A. End Criteria for Reaching Maximal Oxygen Uptake Must Be Strict and Adjusted to Sex and Age: A Cross-Sectional Study. PLoS ONE 2014, 9, e85276. [Google Scholar] [CrossRef]
- rs9939609 (SNP)—Population Genetics—Homo_sapiens—Ensembl Genome Browser 113. Available online: https://www.ensembl.org/Homo_sapiens/Variation/Phenotype?r=16:53786115-53787115;v=rs9939609;vdb=variation;vf=923521178 (accessed on 18 October 2024).
- Prakash, J.; Mittal, B.; Srivastava, A.; Awasthi, S.; Srivastava, N. Association of FTO Rs9939609 SNP with Obesity and Obesity- Associated Phenotypes in a North Indian Population. Oman. Med. J. 2016, 31, 99–106. [Google Scholar] [CrossRef]
- Gayoso-Diz, P.; Otero-González, A.; Rodriguez-Alvarez, M.X.; Gude, F.; García, F.; De Francisco, A.; Quintela, A.G. Insulin Resistance (HOMA-IR) Cut-off Values and the Metabolic Syndrome in a General Adult Population: Effect of Gender and Age: EPIRCE Cross-Sectional Study. BMC Endocr. Disord. 2013, 13, 47. [Google Scholar] [CrossRef]
- Liguori, R.; Labruna, G.; Alfieri, A.; Martone, D.; Farinaro, E.; Contaldo, F.; Sacchetti, L.; Pasanisi, F.; Buono, P. The FTO Gene Polymorphism (Rs9939609) Is Associated with Metabolic Syndrome in Morbidly Obese Subjects from Southern Italy. Mol. Cell. Probes. 2014, 28, 195–199. [Google Scholar] [CrossRef]
- Sonestedt, E.; Roos, C.; Gullberg, B.; Ericson, U.; Wirfält, E.; Orho-Melander, M. Fat and Carbohydrate Intake Modify the Association between Genetic Variation in the FTO Genotype and Obesity. Am. J. Clin. Nutr. 2009, 90, 1418–1425. [Google Scholar] [CrossRef]
- Hofker, M.; Wijmenga, C. A Supersized List of Obesity Genes. Nat. Genet. 2009, 41, 139–140. [Google Scholar] [CrossRef]
- Gao, Z.; Zha, X.; Li, M.; Xia, X.; Wang, S. Insights into the M6A Demethylases FTO and ALKBH5: Structural, Biological Function, and Inhibitor Development. Cell Biosci. 2024, 14, 108. [Google Scholar] [CrossRef]
- Yin, D.; Li, Y.; Liao, X.; Tian, D.; Xu, Y.; Zhou, C.; Liu, J.; Li, S.; Zhou, J.; Nie, Y.; et al. FTO: A Critical Role in Obesity and Obesity-Related Diseases. Br. J. Nutr. 2023, 130, 1657–1664. [Google Scholar] [CrossRef] [PubMed]
- Abdella, H.M.; Farssi, H.O.E.; Broom, D.R.; Hadden, D.A.; Dalton, C.F. Eating Behaviours and Food Cravings; Influence of Age, Sex, BMI and FTO Genotype. Nutrients 2019, 11, 377. [Google Scholar] [CrossRef] [PubMed]
- Ruiz, J.R.; Labayen, I.; Ortega, F.B.; Legry, V.; Moreno, L.A.; Dallongeville, J.; Martínez-Gómez, D.; Bokor, S.; Manios, Y.; Ciarapica, D.; et al. Attenuation of the Effect of the FTO Rs9939609 Polymorphism on Total and Central Body Fat by Physical Activity in Adolescents: The HELENA Study. Arch. Pediatr. Adolesc. Med. 2010, 164, 328–333. [Google Scholar] [CrossRef] [PubMed]
- Kilpeläinen, T.O.; Qi, L.; Brage, S.; Sharp, S.J.; Sonestedt, E.; Demerath, E.; Ahmad, T.; Mora, S.; Kaakinen, M.; Sandholt, C.H.; et al. Physical Activity Attenuates the Influence of FTO Variants on Obesity Risk: A Meta-Analysis of 218,166 Adults and 19,268 Children. PLoS Med. 2011, 8, e1001116. [Google Scholar] [CrossRef]
- Kalantari, N.; Doaei, S.; Keshavarz-Mohammadi, N.; Gholamalizadeh, M.; Pazan, N. Review of Studies on the Fat Mass and Obesity-Associated (FTO) Gene Interactions with Environmental Factors Affecting on Obesity and Its Impact on Lifestyle Interventions. ARYA Atheroscler. 2016, 12, 281–290. [Google Scholar]
- Claussnitzer, M.; Dankel, S.N.; Kim, K.-H.; Quon, G.; Meuleman, W.; Haugen, C.; Glunk, V.; Sousa, I.S.; Beaudry, J.L.; Puviindran, V.; et al. FTO Obesity Variant Circuitry and Adipocyte Browning in Humans. N. Engl. J. Med. 2015, 373, 895–907. [Google Scholar] [CrossRef]
- Loos, R.J.F.; Yeo, G.S.H. The Bigger Picture of FTO: The First GWAS-Identified Obesity Gene. Nat. Rev. Endocrinol. 2014, 10, 51–61. [Google Scholar] [CrossRef]
Variable (Units) | All | Men | Women | p Value |
---|---|---|---|---|
Age (years) | 33.36 (7.67) | 33.29 (7.68) | 33.44 (7.75) | 0.939 |
Body mass (kg) | 81.81 (16.71) | 85.22 (14.05) | 78.23 (18.62) | 0.194 |
Height (cm) | 170.11 (8.57) | 179.06 (6.65) | 163.82 (5.20) * | <0.001 |
Body mass index (kg/m2) | 28.37 (6.12) | 27.53 (4.74) | 29.25 (7.26) | 0.476 |
Body fat (%) | 20.16 (9.23) | 14.02 (5.43) | 26.61 (7.92) * | <0.001 |
Systolic blood pressure (mmHg) | 114 (13) | 119 (12) | 109 (12) | 0.235 |
Diastolic blood pressure (mmHg) | 75 (10) | 75 (10) | 76 (10) | 0.824 |
Mean arterial blood pressure (mmHg) | 88.20 (10.11) | 89.47 (9.92) | 86.87 (10.26) | 0.721 |
Blood glucose concentration (mg/dL) | 87.43 (10.52) | 88.40 (11.22) | 86.44 (9.79) | 0.558 |
Serum HDL concentration (mg/dL) | 51.96 (12.79) | 48.70 (11.82) | 55.31 (13.03) * | 0.030 |
Serum LDL concentration (mg/dL) | 102.31 (29.86) | 101.08 (30.23) | 103.54 (29.83) | 0.755 |
Serum triglycerides concentration (mg/dL) | 89.69 (57.23) | 98.26 (65.56) | 81.13 (46.77) | 0.905 |
VO2peak (mL/kg/min) | 32.49 (10.83) | 37.62 (10.15) | 27.09 (8.78) * | <0.001 |
Peak heart rate (beat/min) | 186 (6) | 186 (6) | 186 (6) | 0.772 |
Variable (Units) | TT | AT | AA | p Value |
---|---|---|---|---|
Men/women (number) | 17/15 | 15/16 | 9/8 | 0.920 |
Age (years) | 32.56 (7.34) | 33.06 (7.34) | 35.41 (8.23) | 0.453 |
Body mass (kg) | 78.71 (17.06) | 81.02 (16.23) | 89.07 (15.57) | 0.111 |
Height (cm) | 170.78 (7.55) | 169.44 (9.41) | 170.02 (9.18) | 0.827 |
Body mass index (kg/m2) | 27.07 (6.20) | 28.19 (5.30) | 31.16 (6.82) | 0.081 |
Body Fat (%) | 18.30 (8.58) | 20.45 (8.60) | 23.12 (11.08) | 0.216 |
Systolic blood pressure (mmHg) | 113 (13) | 116 (12) | 114 (13) | 0.681 |
Diastolic blood pressure (mmHg) | 73 (8) | 76 (10) | 78 (13) | 0.199 |
Mean arterial blood pressure (mmHg) | 86.30 (8.45) | 89.17 (10.53) | 90.04 (12.08) | 0.376 |
Blood glucose concentration (mg/dL) | 85.29 (6.58) | 87.65 (14.14) | 90.94 (7.81) | 0.205 |
Serum HDL concentration (mg/dL) | 54.29 (13.18) | 50.90 (12.62) | 49.65 (12.43) | 0.413 |
Serum LDL concentration (mg/dL) | 106.19 (33.87) | 97.93 (24.63) | 102.94 (31.24) | 0.561 |
Serum triglycerides concentration (mg/dL) | 77.29 (29.69) | 99.10 (79.30) | 95.71 (47.01) | 0.297 |
Serum CRP concentration (mg/dL) | 3.16 (4.94) | 2.50 (3.31) | 2.97 (3.48) | 0.807 |
Serum IL-6 concentration (pg/mL) | 2.03 (1.41) | 2.26 (2.33) | 2.61 (2.02) | 0.622 |
Serum insulin concentration (μU/mL) | 8.62 (6.91) * | 7.19 (4.18) * | 13.45 (10.77) | 0.015 |
HOMA-IR | 1.85 (1.60) * | 1.58 (0.98) * | 3.16 (2.82) | 0.010 |
VO2peak (mL/kg/min) | 31.99 (8.92) | 33.22 (10.68) | 32.08 (14.46) | 0.893 |
MFO (g/min) | 0.35 (0.13) | 0.37 (0.11) | 0.33 (0.11) | 0.702 |
MFO/lean body mass (mg/kg/min) | 4.61 (2.01) | 4.73 (1.90) | 3.85 (1.31) | 0.275 |
Fatmax (%VO2peak) | 49.47 (14.23) | 44.16 (11.94) | 44.19 (12.54) | 0.210 |
Heart rate at Fatmax | 110 (17) | 107 (17) | 111 (15) | 0.707 |
Dominant Model | Recessive Model | |||||
---|---|---|---|---|---|---|
Variable (Units) | TT | A Allele | p Value | T Allele | AA | p Value |
Men/women (number) | 17/15 | 24/24 | 0.784 | 32/31 | 9/8 | 0.875 |
Age (years) | 32.56 (7.34) | 33.90 (7.91) | 0.449 | 32.81 (7.48) | 35.41 (8.23) | 0.216 |
Body mass (kg) | 78.71 (17.06) | 83.88 (16.31) | 0.177 | 79.85 (16.57) | 89.07 * (15.57) | 0.042 |
Height (cm) | 170.78 (7.55) | 169.65 (9.24) | 0.565 | 170.13 (8.48) | 170.02 (9.18) | 0.967 |
Body mass index (kg/m2) | 27.07 (6.20) | 29.24 (5.99) | 0.121 | 27.62 (5.75) | 31.16 (6.82) | 0.033 |
Body Fat (%) | 18.30 (8.58) | 21.40 (9.52) | 0.142 | 19.36 (8.59) | 23.12 (11.08) | 0.136 |
Systolic blood pressure (mmHg) | 113 (13) | 115 (15) | 0.478 | 115 (13) | 114 (13) | 0.865 |
Diastolic blood pressure (mmHg) | 73 (8) | 77 (11) | 0.103 | 75 (9) | 78 (13) | 0.166 |
Mean arterial blood pressure (mmHg) | 86.30 (8.45) | 89.48 (10.98) | 0.169 | 87.71 (9.56) | 90.04 (12.08) | 0.403 |
Blood glucose concentration (mg/dL) | 85.29 (6.58) | 88.81 (14.14) | 0.147 | 86.47 (11.00) | 90.94 (7.81) | 0.121 |
Serum HDL concentration (mmol/L) | 54.29 (13.18) | 50.46 (12.44) | 0.195 | 52.60 (12.91) | 49.65 (12.43) | 0.403 |
Serum LDL concentration (mmol/L) | 106.19 (33.87) | 99.74 (26.98) | 0.354 | 102.13 (29.73) | 102.94 (31.24) | 0.921 |
Serum triglycerides concentration (mmol/L) | 77.29 (29.69) | 97.87 (68.82) | 0.120 | 88.02 (60.01) | 95.71 (47.01) | 0.627 |
Blood CRP concentration (mg/dL) | 3.16 (4.94) | 2.66 (3.35) | 0.595 | 2.83 (4.19) | 2.97 (3.48) | 0.898 |
Blood IL-6 concentration (pg/mL) | 2.03 (1.41) | 2.39 (2.21) | 0.392 | 2.13 (1.91) | 2.61 (2.02) | 0.360 |
Blood insulin concentration (μU/mL) | 8.62 (6.91) | 9.41 (7.74) | 0.645 | 7.91 (5.71) | 13.45 (10.77) * | 0.005 |
HOMA-IR | 1.85 (1.60) | 2.14 (1.97) | 0.501 | 1.72 (1.32) | 3.16 (2.82) * | 0.003 |
VO2peak (mL/kg/min) | 31.99 (8.92) | 32.82 (12.01) | 0.740 | 32.60 (9.77) | 32.08 (14.46) | 0.863 |
MFO (g/min) | 0.35 (0.13) | 0.36 (0.15) | 0.747 | 0.36 (0.15) | 0.33 (0.11) | 0.569 |
MFO/lean body mass (mg/kg/min) | 4.61 (2.01) | 4.42 (1.76) | 0.649 | 4.67 (1.95) | 3.85 (1.31) | 0.111 |
Fatmax (%VO2peak) | 49.47 (14.23) | 44.18 (12.01) | 0.070 | 46.86 (13.31) | 44.19 (12.54) | 0.471 |
Heart rate at Fatmax | 110 (17) | 109 (16) | 0.706 | 109 (17) | 111 (15) | 0.601 |
Variable (Units) | Sex | Genotype | Interaction |
---|---|---|---|
Age (years) | 0.982 | 0.450 | 0.425 |
Body mass (kg) | 0.189 | 0.083 | 0.154 |
Height (cm) | <0.001 | 0.837 | 0.492 |
Body mass index (kg/m2) | 0.055 | 0.053 | 0.064 |
Body Fat (%) | <0.001 | 0.039 | 0.091 |
Systolic blood pressure (mmHg) | 0.002 | 0.538 | 0.578 |
Diastolic blood pressure (mmHg) | 0.508 | 0.190 | 0.625 |
Mean arterial blood pressure (mmHg) | 0.398 | 0.340 | 0.594 |
Blood glucose concentration (mg/dL) | 0.507 | 0.206 | 0.273 |
Serum HDL concentration (mg/dL) | 0.013 | 0.398 | 0.159 |
Serum LDL concentration (mg/dL) | 0.722 | 0.570 | 0.537 |
Serum triglycerides concentration (mg/dL) | 0.207 | 0.253 | 0.186 |
Serum CRP concentration (mg/dL) | 0.019 | 0.756 | 0.360 |
Serum IL-6 concentration (pg/mL) | 0.447 | 0.602 | 0.499 |
Serum insulin concentration (μU/mL) | 0.932 | 0.018 | 0.999 |
HOMA-IR | 0.952 | 0.014 | 0.996 |
VO2peak (mL/kg/min) | <0.001 | 0.730 | 0.054 |
MFO (g/min) | <0.001 | 0.538 | 0.312 |
MFO/lean body mass (mg/kg/min) | 0.010 | 0.170 | 0.100 |
Fatmax (%VO2peak) | <0.001 | 0.890 | 0.268 |
Heart rate at Fatmax | 0.645 | 0.699 | 0.601 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
García-Pastor, T.; Muñoz-Puente, I.; Pérez-Pelayo, M.; Púa, I.; Roberts, J.D.; Del Coso, J. Maximal Fat Oxidation During Exercise in Healthy Individuals: Lack of Genetic Association with the FTO rs9939609 Polymorphism. Genes 2025, 16, 4. https://doi.org/10.3390/genes16010004
García-Pastor T, Muñoz-Puente I, Pérez-Pelayo M, Púa I, Roberts JD, Del Coso J. Maximal Fat Oxidation During Exercise in Healthy Individuals: Lack of Genetic Association with the FTO rs9939609 Polymorphism. Genes. 2025; 16(1):4. https://doi.org/10.3390/genes16010004
Chicago/Turabian StyleGarcía-Pastor, Teresa, Iván Muñoz-Puente, Miriam Pérez-Pelayo, Isabel Púa, Justin D. Roberts, and Juan Del Coso. 2025. "Maximal Fat Oxidation During Exercise in Healthy Individuals: Lack of Genetic Association with the FTO rs9939609 Polymorphism" Genes 16, no. 1: 4. https://doi.org/10.3390/genes16010004
APA StyleGarcía-Pastor, T., Muñoz-Puente, I., Pérez-Pelayo, M., Púa, I., Roberts, J. D., & Del Coso, J. (2025). Maximal Fat Oxidation During Exercise in Healthy Individuals: Lack of Genetic Association with the FTO rs9939609 Polymorphism. Genes, 16(1), 4. https://doi.org/10.3390/genes16010004