Transcriptome Reveals the Differential Regulation of Sugar Metabolism to Saline–Alkali Stress in Different Resistant Oats
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Materials and Salt–Alkali Stress Treatment
2.2. Sugar Content Determination
2.3. RNA Extraction and Library Sequencing
2.4. Sequencing Read Length Analysis and Splicing
2.5. DEG Analysis
2.6. RT-qPCR Analysis
3. Results
3.1. Determination of Sugar Levels
3.2. Data Quality Control
3.3. Differential Gene Expression Analysis
3.4. Functional Annotation of DEGs
3.5. Main Pathways of Glucose Metabolism
3.6. Gene Expression in the Carbohydrate Pathway
3.7. RT-qPCR
4. Discussion
4.1. Glycolysis
4.2. Pentose Phosphate Pathway
4.3. Starch and Sucrose Metabolism
4.4. Fructose and Mannose Metabolism
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- FAO. World Map of Salt-Affected Soils Launched at Virtual Conference [EB/OL]. Available online: https://www.fao.org/global-soil-partnership/resources/highlights/detail/en/c/1445579/ (accessed on 20 October 2021).
- Liu, X.; Guo, K.; Feng, X.; Sun, H. Discussion on the efficient utilization of saline-alkali land resources in agriculture. Chin. J. Eco-Agric. 2023, 31, 345–353. (In Chinese) [Google Scholar]
- Ren, C.Z.; Hu, Y.G. Sciences of Chinese Oats; Agriculture Press: Beijing, China, 2013. [Google Scholar]
- Sadras, V.O.; Mahadevan, M.; Zwer, P.K. Oat phenotypes for drought adaptation and yield potential. Field Crop. Res. 2017, 212, 135–144. [Google Scholar] [CrossRef]
- Han, L.; Eneji, A.E.; Steinberger, Y.; Wang, W.; Yu, S.; Liu, H.; Liu, J. Comparative Biomass Production of Six Oat Varieties in a Saline Soil Ecology. Commun. Soil Sci. Plant Anal. 2014, 45, 2552–2564. [Google Scholar] [CrossRef]
- Ruan, Y.-L. Sucrose Metabolism: Gateway to Diverse Carbon Use and Sugar Signaling. Annu. Rev. Plant Biol. 2014, 65, 33–67. [Google Scholar] [CrossRef] [PubMed]
- Bolouri-Moghaddam, M.R.; Le Roy, K.; Xiang, L.; Rolland, F.; Ende, W.V.D. Sugar signalling and antioxidant network connections in plant cells. FEBS J. 2010, 277, 2022–2037. [Google Scholar] [CrossRef] [PubMed]
- Zhu, L.; Li, Y.; Wang, C.; Wang, Z.; Cao, W.; Su, J.; Peng, Y.; Li, B.; Ma, B.; Ma, F.; et al. The SnRK2.3-AREB1-TST1/2 cascade activated by cytosolic glucose regulates sugar accumulation across tonoplasts in apple and tomato. Nat. Plants 2023, 9, 951–964. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Zhu, H.; Chen, C.; Shang, N.; Sheng, L.; Yu, J. The function of an apple ATP-dependent Phosphofructokinase gene MdPFK5 in regulating salt stress. Physiol. Plant. 2024, 176, e14590. [Google Scholar] [CrossRef]
- Li, J.; Zhang, Y.; Chen, Y.; Wang, Y.; Zhou, Z.; Tu, J.; Guo, L.; Yao, X. The roles of cell wall polysaccharides in response to waterlogging stress in Brassica napus L. root. BMC Biol. 2024, 22, 191. [Google Scholar] [CrossRef] [PubMed]
- Thakur, P.; Kumar, S.; Malik, J.A.; Berger, J.D.; Nayyar, H. Cold stress effects on reproductive de-velopment in grain crops: An overview. Environ. Exp. Bot. 2009, 67, 429–443. [Google Scholar] [CrossRef]
- Ren, H.; Zhang, B.; Zhang, F.; Liu, X.; Wang, X.; Zhang, C.; Zhao, K.; Yuan, R.; Lamlom, S.F.; Abdelghany, A.M.; et al. Integration of physiological and transcriptomic approaches in investigating salt-alkali stress resilience in soybean. Plant Stress 2024, 11, 100375. [Google Scholar] [CrossRef]
- Gu, R.; Wan, Z.Q.; Tang, F.; Liu, X.T.; Yang, Y.T.; Shi, F.L. Physiological and transcriptomic analysis of salt tolerant Glaux maritima grown under high saline condition. Front. Plant Sci. 2023, 14, 1173191. [Google Scholar] [CrossRef] [PubMed]
- Ji, H.; Qi, Y.; Zhang, X.; Yang, G. Transcriptomics and Metabolomics Analysis Revealed the Ability of-Microbacterium ginsengiterraeS4 to Enhance the Saline-Alkali Tolerance of Rice (Oryza sativa L.). Seedl. Agron. 2024, 14, 649. [Google Scholar] [CrossRef]
- Cao, Y.; Wang, J.; Zhao, S.; Fang, Q.; Ruan, J.; Li, S.; Liu, T.; Qi, Y.; Zhang, L.; Zhang, X.; et al. Overexpression of the aldehyde dehydrogenase AhALDH3H1 from Arachis hypogaea in soybean increases saline-alkali stress tolerance. Front. Plant Sci. 2023, 14, 1165384. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Zhang, Q.; Wang, H.; Tao, S.; Cao, H.; Shi, Y.; Bakirov, A.; Xu, A.; Huang, Z. Discovery of common loci and candidate genes for controlling salt-alkali tolerance and yield-related traits in Brassica napus L. Plant Cell Rep. 2023, 42, 1039–1057. [Google Scholar] [CrossRef] [PubMed]
- Xu, Z.; Chen, X.; Lu, X.; Zhao, B.; Yang, Y.; Liu, J. Integrative analysis of transcriptome and metabolome reveal mechanism of tolerance to salt stress in oat (Avena sativa L.). Plant Physiol. Biochem. 2021, 160, 315–328. [Google Scholar] [CrossRef]
- Hao, Z.; Tan, Y.; Feng, J.; Lin, H.; Sun, Z.; Zhuang, J.Y.; Chen, Q.; Jin, X.; Sun, Y. Integrated metabolomic and transcriptomic analysis reveal the effect of mechanical stress on sugar metabolism in tea leaves (Camellia sinensis) post-harvest. PeerJ 2023, 11, e14869. [Google Scholar] [CrossRef]
- Liu, X.; Wei, R.; Tian, M.; Liu, J.; Ruan, Y.; Sun, C.; Liu, C. Combined Transcriptome and Metabolome Profiling Provide Insights into Cold Responses in Rapeseed (Brassica napus L.) Genotypes with Contrasting Cold-Stress Sensitivity. Int. J. Mol. Sci. 2022, 23, 13546. [Google Scholar] [CrossRef]
- Zou, Q. Plant Physiology Laboratory Manual; China Agriculture Press: Beijing, China, 2000. (In Chinese) [Google Scholar]
- Zhiliang, Z.; Wei, Q. Practice Guidance of Botany Experiment; Higher Education Press: Beijing, China, 2003. (In Chinese) [Google Scholar]
- Yaseen, I.; Choi, S.; Mukhtar, T.; Park, J.I.; Kim, H.T. Quantification of growth and physiological characteristics in tolerant and sensitive watermelon lines under cold treatment. Hortic. Environ. Biotechnol. (Prepublish) 2024, 1–16. [Google Scholar] [CrossRef]
- Zemour, K.; Adda, A.; Chouhim, K.M.A.; Labdelli, A.; Merah, O. Amylase Activity and Soluble Sugars Content of Durum Wheat Seeds During Germination Under Water Stress. Agric. Res. 2024, 13, 676–683. [Google Scholar] [CrossRef]
- Mizuki, K.; Thapanee, S.; Rujira, T.; Cattarin, T.; Kwankhao, C.U.; Michiko, T.; Suriyan, C.U. Calcium and soluble sugar enrichments and physiological adaptation to mild NaCl salt stress in sweet potato (Ipomoea batatas) genotypes. J. Hortic. Sci. Biotechnol. 2020, 95, 782–793. [Google Scholar]
- Li, Q.; Song, J. Analysis of widely targeted metabolites of the euhalophyte Suaeda salsa under saline conditions provides new insights into salt tolerance and nutritional value in halophytic species. BMC Plant Biol. 2019, 19, 388. [Google Scholar] [CrossRef] [PubMed]
- Lim, H.; Denison, M.I.J.; Lee, K.; Natarajan, S.; Kim, T.-L.; Oh, C. Genome-Wide Characterization of Glyceraldehyde-3-Phosphate Dehydrogenase Genes and Their Expression Profile under Drought Stress in Quercus rubra. Plants 2024, 13, 2312. [Google Scholar] [CrossRef] [PubMed]
- Bogdanović, J.; Mojović, M.; Milosavić, N.; Mitrović, A.; Vučinić, Ž.; Spasojević, I. Role of fructose in the adaptation of plants to cold-induced oxidative stress. Eur. Biophys. J. EBJ 2008, 37, 1241–1246. [Google Scholar] [CrossRef] [PubMed]
- Liu, L.; Jia, L.; Xu, L.; Deng, L.; Zhao, P.; Zeng, W. Mutation of iPGAM using the CRISPR/Cas9 system affects pollen vitality and chlorophyll synthesis in Nicotiana tabacum. Plant Biotechnol. Rep. 2021, 15, 217–227. [Google Scholar] [CrossRef]
- Liao, Y.; Ji, D.; Xu, Y.; Xu, K.; Chen, C.; Wang, W.; Xie, C. Cloning and functional analysis of a phosphoglycerate kinase (PhPGK) from Pyropia haitanensis. J. Appl. Phycol. 2023, 35, 1933–1943. [Google Scholar] [CrossRef]
- Zhu, F.; Wang, K.; Li, D.; Liu, Z.; Li, M.; Wang, Z.; Li, X.; Lan, X.; Guan, Q. OsSAP6 Positively Regulates Soda Saline–Alkaline Stress Tolerance in Rice. Rice 2022, 15, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Sharma, S.; Mustafiz, A.; Singla-Pareek, S.L.; Srivastava, P.S.; Sopory, S.K. Characterization of stress and methylglyoxal inducible triose phosphate isomerase (OscTPI) from rice. Plant Signal. Behav. 2012, 7, 1337–1345. [Google Scholar] [CrossRef] [PubMed]
- Cai, B.; Li, Q.; Xu, Y.; Yang, L.; Bi, H.; Ai, X. Genome-wide analysis of the fructose 1,6-bisphosphate aldolase (FBA) gene family and functional characterization of FBA7 in tomato. Plant Physiol. Biochem. 2016, 108, 251–265. [Google Scholar] [CrossRef]
- Liu, X.Z.; Wang, Z.L.; Gao, Y.Z. Effect of Whaterlogging on Phosphate Pentose Pathway in Corn Roots. Jiangsu J. Agric. Sci. 1992, 8, 43–45. (In Chinese) [Google Scholar]
- Gao, J.; van Kleeff, P.J.M.; de Boer, M.H.; Erban, A.; Kopka, J.; Hincha, D.K.; de Boer, A.H. Ion Homeostasis and Metabolome Analysis of Arabidopsis 14-3-3 Quadruple Mutants to Salt Stress. Front. Plant Sci. 2021, 12, 697324. [Google Scholar] [CrossRef]
- Ghosh, S.; Bagchi, S.; Majumder, A.L. Chloroplast fructose-1,6-bisphosphatase from Oryza differs in salt tolerance property from the Porteresia enzyme and is protected by osmolytes. Plant Sci. 2001, 160, 1171–1181. [Google Scholar] [CrossRef]
- Yao, K.; Wu, Y.Y. Phosphofructokinase and glucose-6-phosphate dehydrogenase in response to drought and bicar-bonate stress at transcriptional and functional levels in mulberry. Russ. J. Plant Physiol. 2016, 83, 235–242. [Google Scholar] [CrossRef]
- Yao, H.; Wang, W.; Cao, Y.; Liang, Z.; Zhang, P. Interaction Network Construction and Functional Analysis of the Plasma Membrane H+-ATPase in Bangia fuscopurpurea (Rhodophyta). Int. J. Mol. Sci. 2023, 24, 7644. [Google Scholar] [CrossRef] [PubMed]
- Khanna, S.M.; Taxak, P.C.; Jain, P.K.; Saini, R.; Srinivasan, R. Glycolytic enzyme activities and gene expression in Cicer arietinum exposed to water-deficit stress. Appl. Biochem. Biotechnol. 2014, 173, 2241–2253. [Google Scholar] [CrossRef] [PubMed]
- Rapala-Kozik, M.; Kowalska, E.; Ostrowska, K. Modulation of thiamine metabolism in Zea mays seedlings under conditions of abiotic stress. J. Exp. Bot. 2008, 59, 4133–4143. [Google Scholar] [CrossRef] [PubMed]
- Pan, C. PagTAL Involved in the Study of Poplar Tree Quality Synthesis and High Temperature Stress Resistance. Master’s Thesis, Beijing Forestry University, Beijing, China, 2019. (In Chinese). [Google Scholar]
- Shao, X.; Gai, D.; Gao, D.; Geng, Y.; Guo, L. Effects of Salt-Alkaline Stress on Carbohydrate Metabolism in Rice Seedlings. Phyton 2022, 12, 745–759. [Google Scholar] [CrossRef]
- Shen, W. Study on Relieving Effect of Exogenous Melatonin Saline-Alkali Stress of Soybean. Master’s Thesis, Hei-longjiang Bayi Agricultural Reclamation University, Daqing, China, 2023. (In Chinese). [Google Scholar] [CrossRef]
- V, P.; Tyagi, A. Correlation between expression and activity of ADP glucose pyrophosphorylase and starch synthase and their role in starch accumulation during grain filling under drought stress in rice. Plant Physiol. Biochem. 2020, 157, 239–243. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Ding, M.; Wang, M.; Yan, F.; Zhang, Z.; Liang, W. Gene cloning of 1,4-α-glucan branchase (GBE) in Fa Cai and its response to drought stress. Mol. Plant Breed. 2019, 17, 6305–6313. (In Chinese) [Google Scholar] [CrossRef]
- Ma, Y.; Han, Y.; Feng, X.; Gao, H.; Cao, B.; Song, L. Genome-wide identification of BAM (β-amylase) gene family in jujube (Ziziphus jujuba Mill.) and expression in response to abiotic stress. BMC Genom. 2022, 23, 438. [Google Scholar] [CrossRef] [PubMed]
- Yang, T.; Li, H.; Li, L.; Wei, W.; Huang, Y.; Xiong, F.; Wei, M. Genome-wide char-acterization and expression analysis of α-amylase and β-amylase genes underlying drought tolerance in cassava. BMC Genom. 2023, 24, 190. [Google Scholar] [CrossRef]
- Nidumolu, L.C.M.; Lorilla, K.M.; Chakravarty, I.; Uhde-Stone, C. Soybean Root Transcriptomics: Insights into Sucrose Signaling at the Crossroads of Nutrient Deficiency and Biotic Stress Responses. Plants 2023, 12, 2117. [Google Scholar] [CrossRef] [PubMed]
- Ruan, Y.-L. Signaling Role of Sucrose Metabolism in Development. Mol. Plant 2012, 5, 763–765. [Google Scholar] [CrossRef] [PubMed]
- Suyu, C. Effects of Exogenous Melatonin on the Growth of Soybean Plants Under Salt Stress. Master’s Thesis, Hei-longjiang Bayi Agricultural Reclamation University, Daqing, China, 2023. (In Chinese). [Google Scholar] [CrossRef]
- Barrero-Sicilia, C.; Hernando-Amado, S.; González-Melendi, P.; Carbonero, P. Structure, expression profile and subcellular localisation of four different sucrose synthase genes from barley. Planta 2011, 234, 391–403. [Google Scholar] [CrossRef]
- Vishal, B.; Krishnamurthy, P.; Kumar, P.P. Arabidopsis class II TPS controls root development and confers salt stress tolerance through enhanced hydrophobic barrier deposition. Plant Cell Rep. 2024, 43, 115. [Google Scholar] [CrossRef] [PubMed]
- Cheng, L.; Jin, J.; He, X.; Luo, Z.; Wang, Z.; Yang, J.; Xu, X. Genome-wide identification and analysis of the invertase gene family in tobacco (Nicotiana tabacum) reveals NtNINV10 participating the sugar metabolism. Front. Plant Sci. 2023, 14, 1164296. [Google Scholar] [CrossRef] [PubMed]
- Orsák, M.; Kotíková, Z.; Hnilička, F.; Lachman, J. Effect of drought and waterlogging on saccharides and amino acids content in potato tubers. Plant Soil Environ. 2021, 67, 408–416. [Google Scholar] [CrossRef]
- Pego, J.V.; Smeekens, S.C. Plant fructokinases: A sweet family get-together. Trends Plant Sci. 2000, 5, 531–536. [Google Scholar] [CrossRef] [PubMed]
- Zhao, S.; Zeng, W.; Li, Z.; Peng, Y. Mannose regulates water balance, leaf senescence, and genes related to stress tolerance in white clover under osmotic stress. Biol. Plant. 2020, 64, 406–416. [Google Scholar] [CrossRef]
- Zhou, L.; Yan, P.; Shuxia, Y. Effect of mannose on drought resistance and accumulation of sugar and sugar alcohol metabolites in white clover. Acta Prataculturae Sin. 2019, 28, 85–93. (In Chinese) [Google Scholar]
- Rider, M.H.; Bertrand, L.; Vertommen, D.; Michels, P.A.; Rousseau, G.G.; Hue, L. 6-Phosphofructo-2-kinase/fructose-2,6-bisphosphatase: Head-to-head with a bifunctional enzyme that controls glycolysis. Biochem. J. 2004, 381, 561–579. [Google Scholar] [CrossRef] [PubMed]
- Eom, S.H.; Kim, E.; Hyun, T.K. HXK, SnRK1, and TOR signaling in plants: Unraveling mechanisms of stress response and secondary metabolism. Sci. Prog. 2024, 107, 368504241301533. [Google Scholar] [CrossRef] [PubMed]
- Zörb, C.; Schmitt, S.; Mühling, K.H. Proteomic changes in maize roots after short-term adjustment to saline growth conditions. Proteomics 2010, 10, 4441–4449. [Google Scholar] [CrossRef]
- Shi, X.; Ren, J.; Yu, Q.; Zhou, S.; Ren, Q.; Kong, L.; Wang, X. Overexpression of SDH confers tolerance to salt and osmotic stress, but decreases ABA sensitivity in Arabidopsis. Plant Biol. 2017, 20, 327–337. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.; Zhang, M.; Ma, X.; Meng, Q.; Zhuang, K. Differential heat-response characteristics of two plastid isoforms of triose phosphate isomerase in tomato. Plant Biotechnol. J. 2023, 22, 650–661. [Google Scholar] [CrossRef] [PubMed]
Gene Name | Forward Sequences (5′-3′) | Reverse Sequences (5′-3′) |
---|---|---|
FBA4 | GCTCTAGAAGCACACACACTGTTAGC | GCGGTACCCTGGCTAACAAAGAGGAA |
GAPDH | ATGTTCAAATATGACACCGTTC | TCGGGATTTCTAGCACCA |
TPI | TGATGTTCGTGCTTATCTTTCC | GTCAGGTTGAGTGGCAAGTTC |
SUS2 | ATGGCTGATCACAGAACCTTGA | TTAATCATGGTGCAAAGGAAC |
ATP-PFK | TGCCCTGGTCTCAATGATGTCA | TGATAAGCACTATGTGCCTCAAT |
TKT | ATAAGGTACCGAGCTCGGATCCTAAGGGTAAACACATAAGGA | ATAAGGTACCGAGCTCGGATCCTAAGGGTAAACACATAAGGA |
HXK6 | TGTGACATAGTGACGGAGCG | AGGAACAAAGCACCAGTTCCA |
ISA3 | GATTGGACTCGAGCATTTGTGGTAG | GCTTCTCAGGAGTTCAAGCAGATGG |
PPDK1 | CCGCTCGAGATGGCGGCATCGGTTTCC | CGGGATCCTGACAAGCACCTGAGCTG |
BAM2 | TGTGAATAGAAAGAAGGCGATG | CTTGGGTAAAGGGATAGAGACG |
Actin | GATGCTGAGGATATTCAACCCC | CCATGACACCAGTATGACGAGG |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, N.; Xing, S.; Song, J.; Lu, S.; Ling, L.; Qu, L. Transcriptome Reveals the Differential Regulation of Sugar Metabolism to Saline–Alkali Stress in Different Resistant Oats. Genes 2025, 16, 105. https://doi.org/10.3390/genes16010105
Chen N, Xing S, Song J, Lu S, Ling L, Qu L. Transcriptome Reveals the Differential Regulation of Sugar Metabolism to Saline–Alkali Stress in Different Resistant Oats. Genes. 2025; 16(1):105. https://doi.org/10.3390/genes16010105
Chicago/Turabian StyleChen, Naiyu, Shuya Xing, Jiaxin Song, Shutong Lu, Lei Ling, and Lina Qu. 2025. "Transcriptome Reveals the Differential Regulation of Sugar Metabolism to Saline–Alkali Stress in Different Resistant Oats" Genes 16, no. 1: 105. https://doi.org/10.3390/genes16010105
APA StyleChen, N., Xing, S., Song, J., Lu, S., Ling, L., & Qu, L. (2025). Transcriptome Reveals the Differential Regulation of Sugar Metabolism to Saline–Alkali Stress in Different Resistant Oats. Genes, 16(1), 105. https://doi.org/10.3390/genes16010105