De Novo Genome Assembly of Toniniopsis dissimilis (Ramalinaceae, Lecanoromycetes) from Long Reads Shows a Comparatively High Composition of Biosynthetic Genes Putatively Involved in Melanin Synthesis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample Collection, DNA Extraction, and Sequencing
2.2. Genome Assembly and Filtering
2.3. Annotation
2.4. Phylogenetic Analysis
2.5. Identification of the Fungal RiPP-like Orthologues Using OrthoFinder
3. Results and Discussion
3.1. Library Prep and Sequencing
3.2. General Characteristics of the De Novo Toniniopsis dissimilis Genome
Toniniopsis dissimilis | Bacidia gigantensis | Bacidia rubella | Niebla homalea | Ramalina farinacea | Ramalina intermedia | Ramalina peruviana | |
---|---|---|---|---|---|---|---|
Assembly Size (Mb) | 29.22 | 33.11 | 33.7 | 50.56 | 32.74 | 26.24 | 27 |
Largest Scaffold (bp) | 1,545,693 | 3,530,911 | 2,353,056 | 3,158,485 | 2,450,536 | 898,913 | 694,821 |
# Scaffolds | 85 | 24 | 246 | 52 | 44 | 196 | 1657 |
N50 (bp) | 741,547 | 1,807,239 | 1,771,855 | 1,266,640 | 1,546,935 | 273,318 | 40,431 |
GC content | 47.33% | 44.67% | 45.25% | 37.96% | 46.69% | 51.89% | 50.66% |
# Genes | 10,058 | 9207 | 9424 | 8586 | 8640 | 8033 | 7133 |
# Proteins | 10,011 | 9158 | 9365 | 8521 | 8575 | 7982 | 7080 |
# tRNA | 47 | 49 | 59 | 65 | 65 | 51 | 53 |
Unique Proteins | 2463 | 1919 | 1781 | 985 | 789 | 387 | 598 |
Prots at least one ortholog | 7422 | 7135 | 7512 | 7501 | 7774 | 7592 | 6467 |
Single-copy orthologs | 2530 | 2462 | 2462 | 2462 | 2462 | 2462 | 2462 |
Number of BGCs | 47 | 39 | 54 | 77 | 72 | 71 | 51 |
3.3. Phylogenetic Analyses of the KS Domain of T1PKS Genes of T. dissimilis
3.4. Putative Melanin Clades That Include B. gigantensis, B. rubella, and T. dissimilis
3.5. Clade with bacrubpred_003614 (bacrub_6), tondispred_004406 (tondis_774), and bacgigpred_005712 (bacgig_10)
3.6. Clade with bacrubpred_007628 (bacrub_15), tondispred_001459 (tondis_191), and bacgigpred_001679 (bacgig_2)
3.7. Other Putative Melanin Genes from Two Bacidia Species
3.8. YWA1: Alternative Precursor for the Melanin Biosynthesis
3.9. An Ecological Perspective of Multiple Copies of Putative Melanin Genes in the Crustose Ramalinaceae
3.10. Putative ‘Menisporopsin A’ Biosynthetic Gene Cluster
3.11. Fungal RiPP-Like Proteins
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Honegger, R. 15 The Symbiotic Phenotype of Lichen-Forming Ascomycetes and Their Endo- and Epibionts. In Fungal Associations; Hock, B., Ed.; Springer: Berlin/Heidelberg, Germany, 2012; pp. 287–339. ISBN 978-3-642-30826-0. [Google Scholar]
- Schwendener, S. Ueber Die Wahre Natur Der Flechten. Verh. Schweiz. Naturf. Ges. 1867, 1867, 88–90. [Google Scholar]
- Farrar, J.F. The Lichen as Ecosystem: Observation and Experiment. In Lichenology: Progress and Problems; Brown, D.H., Hawksworth, D.L., Bailey, R.H., Eds.; Academic Press: London, UK; New York, NY, USA, 1976; pp. 385–406. [Google Scholar]
- Hawksworth, D.L.; Grube, M. Reflections on Lichens as Ecosystems. New Phytol. 2024, 241, 972–973. [Google Scholar] [CrossRef] [PubMed]
- Sanders, W.B. The Disadvantages of Current Proposals to Redefine Lichens. New Phytol. 2024, 241, 969–971. [Google Scholar] [CrossRef] [PubMed]
- Büdel, B.; Scheidegger, C. Thallus Morphology and Anatomy. In Lichen Biology; Nash, I., Thomas, H., Eds.; Cambridge University Press: Cambridge, UK, 2008; pp. 40–68. ISBN 978-0-521-87162-4. [Google Scholar]
- Meiser, A.; Otte, J.; Schmitt, I.; Grande, F.D. Sequencing Genomes from Mixed DNA Samples-Evaluating the Metagenome Skimming Approach in Lichenized Fungi. Sci. Rep. 2017, 7, 14881. [Google Scholar] [CrossRef] [PubMed]
- Armaleo, D.; Müller, O.; Lutzoni, F.; Andrésson, Ó.S.; Blanc, G.; Bode, H.B.; Collart, F.R.; Dal Grande, F.; Dietrich, F.; Grigoriev, I.V.; et al. The Lichen Symbiosis Re-Viewed through the Genomes of Cladonia grayi and Its Algal Partner Asterochloris glomerata. BMC Genom. 2019, 20, 605. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Wei, X.; Bian, Z.; Wei, J.; Xu, J.-R. Coregulation of Dimorphism and Symbiosis by Cyclic AMP Signaling in the Lichenized Fungus Umbilicaria muhlenbergii. Proc. Natl. Acad. Sci. USA 2020, 117, 23847–23858. [Google Scholar] [CrossRef] [PubMed]
- Tagirdzhanova, G.; Saary, P.; Tingley, J.P.; Díaz-Escandón, D.; Abbott, D.W.; Finn, R.D.; Spribille, T. Predicted Input of Uncultured Fungal Symbionts to a Lichen Symbiosis from Metagenome-Assembled Genomes. Genome Biol. Evol. 2021, 13, evab047. [Google Scholar] [CrossRef]
- Gerasimova, J.V.; Beck, A.; Werth, S.; Resl, P. High Diversity of Type I Polyketide Genes in Bacidia rubella as Revealed by the Comparative Analysis of 23 Lichen Genomes. J. Fungi 2022, 8, 449. [Google Scholar] [CrossRef] [PubMed]
- Resl, P.; Bujold, A.R.; Tagirdzhanova, G.; Meidl, P.; Freire Rallo, S.; Kono, M.; Fernández-Brime, S.; Guðmundsson, H.; Andrésson, Ó.S.; Muggia, L.; et al. Large Differences in Carbohydrate Degradation and Transport Potential among Lichen Fungal Symbionts. Nat. Commun. 2022, 13, 2634. [Google Scholar] [CrossRef]
- Song, H.; Kim, K.-T.; Park, S.-Y.; Lee, G.-W.; Choi, J.; Jeon, J.; Cheong, K.; Choi, G.; Hur, J.-S.; Lee, Y.-H. A Comparative Genomic Analysis of Lichen-Forming Fungi Reveals New Insights into Fungal Lifestyles. Sci. Rep. 2022, 12, 10724. [Google Scholar] [CrossRef]
- Llewellyn, T.; Nowell, R.W.; Aptroot, A.; Temina, M.; Prescott, T.A.; Barraclough, T.G.; Gaya, E. Metagenomics Shines Light on the Evolution of “Sunscreen” Pigment Metabolism in the Teloschistales (Lichen-Forming Ascomycota). Genome Biol. Evol. 2023, 15, evad002. [Google Scholar] [CrossRef] [PubMed]
- Pfeffer, B.; Lymbery, C.; Booth, B.; Allen, J.L. Chromosomal Genome Sequence Assembly and Mating-Type (MAT) Locus Characterization of the Leprose Asexual Lichenized Fungus Lepraria neglecta (Nyl.) Erichsen. Lichenologist 2023, 55, 41–50. [Google Scholar] [CrossRef]
- Scharnagl, K.; Tagirdzhanova, G.; Talbot, N.J. The Coming Golden Age for Lichen Biology. Curr. Biol. 2023, 33, R512–R518. [Google Scholar] [CrossRef] [PubMed]
- Gerasimova, J.V.; Urbanavichene, I.N.; Urbanavichus, G.P.; Beck, A. Morphological and Phylogenetic Analyses of Toniniopsis subincompta s. Lat. (Ramalinaceae, Lecanorales) in Eurasia. Lichenologist 2021, 53, 171–183. [Google Scholar] [CrossRef]
- Kistenich, S.; Timdal, E.; Bendiksby, M.; Ekman, S. Molecular Systematics and Character Evolution in the Lichen Family Ramalinaceae (Ascomycota: Lecanorales). Taxon 2018, 67, 871–904. [Google Scholar] [CrossRef]
- Duong, T.A.; Aylward, J.; Ametrano, C.G.; Poudel, B.; Santana, Q.C.; Wilken, P.M.; Martin, A.; Arun-Chinnappa, K.S.; de Vos, L.; DiStefano, I.; et al. IMA Genome-F15. IMA Fungus 2021, 12, 30. [Google Scholar] [CrossRef] [PubMed]
- Llewellyn, T.; Mian, S.; Hill, R.; Leitch, I.J.; Gaya, E. First Whole-Genome Sequence and Flow Cytometry Genome Size Data for the Lichen-Forming Fungus Ramalina farinacea (Ascomycota). Genome Biol. Evol. 2023, 15, evad074. [Google Scholar] [CrossRef]
- Allen, J.L.; Jones, S.J.; McMullin, R.T. Draft Genome Sequence of the Lichenized Fungus Bacidia gigantensis. Microbiol. Resour. Announc. 2021, 10, 10-1128. [Google Scholar] [CrossRef]
- Mafole, T.C.; Solhaug, K.A.; Minibayeva, F.V.; Beckett, R.P. Occurrence and Possible Roles of Melanic Pigments in Lichenized Ascomycetes. Fungal Biol. Rev. 2019, 33, 159–165. [Google Scholar] [CrossRef]
- Lanfear, R.; Schalamun, M.; Kainer, D.; Wang, W.; Schwessinger, B. MinIONQC: Fast and Simple Quality Control for MinION Sequencing Data. Bioinformatics 2019, 35, 523–525. [Google Scholar] [CrossRef]
- Ewels, P.; Magnusson, M.; Lundin, S.; Käller, M. MultiQC: Summarize Analysis Results for Multiple Tools and Samples in a Single Report. Bioinformatics 2016, 32, 3047–3048. [Google Scholar] [CrossRef] [PubMed]
- De Coster, W.; D’hert, S.; Schultz, D.T.; Cruts, M.; Van Broeckhoven, C. NanoPack: Visualizing and Processing Long-Read Sequencing Data. Bioinformatics 2018, 34, 2666–2669. [Google Scholar] [CrossRef] [PubMed]
- Kolmogorov, M.; Bickhart, D.M.; Behsaz, B.; Gurevich, A.; Rayko, M.; Shin, S.B.; Kuhn, K.; Yuan, J.; Polevikov, E.; Smith, T.P. metaFlye: Scalable Long-Read Metagenome Assembly Using Repeat Graphs. Nat. Methods 2020, 17, 1103–1110. [Google Scholar] [CrossRef] [PubMed]
- Laetsch, D.R.; Blaxter, M.L. BlobTools: Interrogation of Genome Assemblies. F1000Research 2017, 6, 1287. [Google Scholar] [CrossRef]
- Camacho, C.; Coulouris, G.; Avagyan, V.; Ma, N.; Papadopoulos, J.; Bealer, K.; Madden, T.L. BLAST+: Architecture and Applications. BMC Bioinform. 2009, 10, 421. [Google Scholar] [CrossRef] [PubMed]
- Buchfink, B.; Xie, C.; Huson, D.H. Fast and Sensitive Protein Alignment Using DIAMOND. Nat. Methods 2015, 12, 59–60. [Google Scholar] [CrossRef] [PubMed]
- Wick, R.R.; Holt, K.E. Polypolish: Short-Read Polishing of Long-Read Bacterial Genome Assemblies. PLoS Comput. Biol. 2022, 18, e1009802. [Google Scholar] [CrossRef] [PubMed]
- Zimin, A.V.; Salzberg, S.L. The Genome Polishing Tool POLCA Makes Fast and Accurate Corrections in Genome Assemblies. PLoS Comput. Biol. 2020, 16, e1007981. [Google Scholar] [CrossRef] [PubMed]
- Mikheenko, A.; Prjibelski, A.; Saveliev, V.; Antipov, D.; Gurevich, A. Versatile Genome Assembly Evaluation with QUAST-LG. Bioinformatics 2018, 34, i142–i150. [Google Scholar] [CrossRef]
- Manni, M.; Berkeley, M.R.; Seppey, M.; Simão, F.A.; Zdobnov, E.M. BUSCO Update: Novel and Streamlined Workflows along with Broader and Deeper Phylogenetic Coverage for Scoring of Eukaryotic, Prokaryotic, and Viral Genomes. Mol. Biol. Evol. 2021, 38, 4647–4654. [Google Scholar] [CrossRef]
- Blin, K.; Shaw, S.; Augustijn, H.E.; Reitz, Z.L.; Biermann, F.; Alanjary, M.; Fetter, A.; Terlouw, B.R.; Metcalf, W.W.; Helfrich, E.J. antiSMASH 7.0: New and Improved Predictions for Detection, Regulation, Chemical Structures and Visualisation. Nucleic Acids Res. 2023, 51, W46–W50. [Google Scholar] [CrossRef] [PubMed]
- Kroken, S.; Glass, N.L.; Taylor, J.W.; Yoder, O.; Turgeon, B.G. Phylogenomic Analysis of Type I Polyketide Synthase Genes in Pathogenic and Saprobic Ascomycetes. Proc. Natl. Acad. Sci. USA 2003, 100, 15670–15675. [Google Scholar] [CrossRef] [PubMed]
- Katoh, K.; Standley, D.M. MAFFT Multiple Sequence Alignment Software Version 7: Improvements in Performance and Usability. Mol. Biol. Evol. 2013, 30, 772–780. [Google Scholar] [CrossRef] [PubMed]
- Capella-Gutiérrez, S.; Silla-Martínez, J.M.; Gabaldón, T. trimAl: A Tool for Automated Alignment Trimming in Large-Scale Phylogenetic Analyses. Bioinformatics 2009, 25, 1972–1973. [Google Scholar] [CrossRef] [PubMed]
- Kalyaanamoorthy, S.; Minh, B.Q.; Wong, T.K.; Von Haeseler, A.; Jermiin, L.S. ModelFinder: Fast Model Selection for Accurate Phylogenetic Estimates. Nat. Methods 2017, 14, 587–589. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, L.-T.; Schmidt, H.A.; Von Haeseler, A.; Minh, B.Q. IQ-TREE: A Fast and Effective Stochastic Algorithm for Estimating Maximum-Likelihood Phylogenies. Mol. Biol. Evol. 2015, 32, 268–274. [Google Scholar] [CrossRef] [PubMed]
- Minh, B.Q.; Nguyen, M.A.T.; Von Haeseler, A. Ultrafast Approximation for Phylogenetic Bootstrap. Mol. Biol. Evol. 2013, 30, 1188–1195. [Google Scholar] [CrossRef] [PubMed]
- Emms, D.M.; Kelly, S. OrthoFinder: Phylogenetic Orthology Inference for Comparative Genomics. Genome Biol. 2019, 20, 1–14. [Google Scholar] [CrossRef] [PubMed]
- Price, M.N.; Dehal, P.S.; Arkin, A.P. FastTree 2–Approximately Maximum-Likelihood Trees for Large Alignments. PLoS ONE 2010, 5, e9490. [Google Scholar] [CrossRef]
- Zhu, S.; Yan, Y.; Qu, Y.; Wang, J.; Feng, X.; Liu, X.; Lin, F.; Lu, J. Role Refinement of Melanin Synthesis Genes by Gene Knockout Reveals Their Functional Diversity in Pyricularia oryzae Strains. Microbiol. Res. 2021, 242, 126620. [Google Scholar] [CrossRef]
- Wheeler, M.H.; Abramczyk, D.; Puckhaber, L.S.; Naruse, M.; Ebizuka, Y.; Fujii, I.; Szaniszlo, P.J. New Biosynthetic Step in the Melanin Pathway of Wangiella (Exophiala) dermatitidis: Evidence for 2-Acetyl-1,3,6,8-Tetrahydroxynaphthalene as a Novel Precursor. Eukaryot. Cell 2008, 7, 1699–1711. [Google Scholar] [CrossRef] [PubMed]
- Urquhart, A.S.; Hu, J.; Chooi, Y.-H.; Idnurm, A. The Fungal Gene Cluster for Biosynthesis of the Antibacterial Agent Viriditoxin. Fungal Biol. Biotechnol. 2019, 6, 1–13. [Google Scholar]
- Langfelder, K.; Streibel, M.; Jahn, B.; Haase, G.; Brakhage, A.A. Biosynthesis of Fungal Melanins and Their Importance for Human Pathogenic Fungi. Fungal Genet. Biol. 2003, 38, 143–158. [Google Scholar] [CrossRef] [PubMed]
- Dixon, D.M.; Szaniszlo, P.J.; Polak, A. Dihydroxynaphthalene (DHN) Melanin and Its Relationship with Virulence in the Early Stages of Phaeohyphomycosis. In The Fungal Spore and Disease Initiation in Plants and Animals; Springer: Berlin/Heidelberg, Germany, 1991; pp. 297–318. [Google Scholar]
- Henson, J.M.; Butler, M.J.; Day, A.W. The Dark Side of the Mycelium: Melanins of Phytopathogenic Fungi. Annu. Rev. Phytopathol. 1999, 37, 447–471. [Google Scholar] [CrossRef] [PubMed]
- Fujii, I.; Mori, Y.; Watanabe, A.; Kubo, Y.; Tsuji, G.; Ebizuka, Y. Enzymatic Synthesis of 1, 3, 6, 8-Tetrahydroxynaphthalene Solely from Malonyl Coenzyme A by a Fungal Iterative Type I Polyketide Synthase PKS1. Biochemistry 2000, 39, 8853–8858. [Google Scholar] [CrossRef] [PubMed]
- Bell, A.A.; Wheeler, M.H. Biosynthesis and Functions of Fungal Melanins. Annu. Rev. Phytopathol. 1986, 24, 411–451. [Google Scholar] [CrossRef]
- Butler, M.J.; Day, A.W. Fungal Melanins: A Review. Can. J. Microbiol. 1998, 44, 1115–1136. [Google Scholar] [CrossRef]
- Toledo, A.V.; Franco, M.E.E.; Lopez, S.M.Y.; Troncozo, M.I.; Saparrat, M.C.N.; Balatti, P.A. Melanins in Fungi: Types, Localization and Putative Biological Roles. Physiol. Mol. Plant Pathol. 2017, 99, 2–6. [Google Scholar] [CrossRef]
- Fujii, I. Functional Analysis of Fungal Polyketide Biosynthesis Genes. J. Antibiot. 2010, 63, 207–218. [Google Scholar] [CrossRef]
- Rassabina, A.; Gurjanov, O.; Beckett, R.; Minibayeva, F. Melanin from the Lichens Cetraria islandica and Pseudevernia furfuracea: Structural Features and Physicochemical Properties. Biochemistry 2020, 85, 623–628. [Google Scholar] [CrossRef]
- Bunnak, W.; Wonnapinij, P.; Sriboonlert, A.; Lazarus, C.M.; Wattana-Amorn, P. Heterologous Biosynthesis of a Fungal Macrocyclic Polylactone Requires Only Two Iterative Polyketide Synthases. Org. Biomol. Chem. 2019, 17, 374–379. [Google Scholar] [CrossRef] [PubMed]
- Ford, R.; Foster, G.D.; Bailey, A.M. Exploring Fungal RiPPs from the Perspective of Chemical Ecology. Fungal Biol. Biotechnol. 2022, 9, 12. [Google Scholar] [CrossRef] [PubMed]
- Ryan, B.D.; Lumbsch, H.T.; Messuti, M.I.; Printzen, C.; Sliwa, L.; Nash, T.H. Lichen Flora of the Greater Sonoran Desert Region; Nash, T.H., Ryan, B.D., Diederich, P., Gries, C., Bungartz, F., Eds.; Lichens Unlimited, Arizona State University: Tempe, AZ, USA, 2004; Volume 2, pp. 1–357. [Google Scholar]
- Moya, P.; Chiva, S.; Pazos, T.; Barreno, E.; Carrasco, P.; Muggia, L.; Garrido-Benavent, I. Myco–Phycobiont Interactions within the “Ramalina farinacea Group”: A Geographical Survey over Europe and Macaronesia. J. Fungi 2024, 10, 206. [Google Scholar] [CrossRef] [PubMed]
- Aptroot, A.; Bungartz, F. The Lichen Genus Ramalina on the Galapagos. Lichenologist 2007, 39, 519–542. [Google Scholar] [CrossRef]
- Arnison, P.G.; Bibb, M.J.; Bierbaum, G.; Bowers, A.A.; Bugni, T.S.; Bulaj, G.; Camarero, J.A.; Campopiano, D.J.; Challis, G.L.; Clardy, J.; et al. Ribosomally Synthesized and Posttranslationally Modified Peptide Natural Products: Overview and Recommendations for a Universal Nomenclature. Nat. Prod. Rep. 2012, 30, 108–160. [Google Scholar] [CrossRef] [PubMed]
- Cao, L.; Do, T.; Link, A.J. Mechanisms of Action of Ribosomally Synthesized and Posttranslationally Modified Peptides (RiPPs). J. Ind. Microbiol. Biotechnol. 2021, 48, kuab005. [Google Scholar] [CrossRef]
- Cho, M.; Lee, S.J.; Choi, E.; Kim, J.; Choi, S.; Lee, J.H.; Park, H. An Antarctic Lichen Isolate (Cladonia borealis) Genome Reveals Potential Adaptation to Extreme Environments. Sci. Rep. 2024, 14, 1342. [Google Scholar] [CrossRef]
Gene Tag/ antiSMASH Region | MIBiG Accession | % Similarity Score | MIBiG Compound Reference | UniProtKB/ Swiss-Prot Closest Reference | Putative Function (MIBiG) |
---|---|---|---|---|---|
tondispred_002824 (tondis_288) | BGC0002161 | 71 | 1,3,6,8-tetrahydroxynaphthalene | Melanin biosynthesis | |
tondispred_001459 (tondis_191) | BGC0000107 | 100 | Naphthopyrone | Melanin biosynthesis | |
R-PKS:
tondispred_004967 NR-PKS: tondispred_004968 (tondis_787) | BGC0000041 | 65 | Oronofacic acid | A0A6F9DXA0.1 | Menisporopsin A |
tondispred_004406 (tondis_774) | BGC0002175, BGC0000107 | 100 | YWA1 (yellow pigment), Naphthopyrone | Melanin biosynthesis | |
tondispred_004340 (tondis_683) | BGC0001258 | 69 | 1,3,6,8-tetrahydroxynaphthalene | A7UMW1.1 Elsinochromes BGC, PKS1 | Melanin biosynthesis |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gerasimova, J.V.; Beck, A.; Scheunert, A.; Kulkarni, O. De Novo Genome Assembly of Toniniopsis dissimilis (Ramalinaceae, Lecanoromycetes) from Long Reads Shows a Comparatively High Composition of Biosynthetic Genes Putatively Involved in Melanin Synthesis. Genes 2024, 15, 1029. https://doi.org/10.3390/genes15081029
Gerasimova JV, Beck A, Scheunert A, Kulkarni O. De Novo Genome Assembly of Toniniopsis dissimilis (Ramalinaceae, Lecanoromycetes) from Long Reads Shows a Comparatively High Composition of Biosynthetic Genes Putatively Involved in Melanin Synthesis. Genes. 2024; 15(8):1029. https://doi.org/10.3390/genes15081029
Chicago/Turabian StyleGerasimova, Julia V., Andreas Beck, Agnes Scheunert, and Om Kulkarni. 2024. "De Novo Genome Assembly of Toniniopsis dissimilis (Ramalinaceae, Lecanoromycetes) from Long Reads Shows a Comparatively High Composition of Biosynthetic Genes Putatively Involved in Melanin Synthesis" Genes 15, no. 8: 1029. https://doi.org/10.3390/genes15081029
APA StyleGerasimova, J. V., Beck, A., Scheunert, A., & Kulkarni, O. (2024). De Novo Genome Assembly of Toniniopsis dissimilis (Ramalinaceae, Lecanoromycetes) from Long Reads Shows a Comparatively High Composition of Biosynthetic Genes Putatively Involved in Melanin Synthesis. Genes, 15(8), 1029. https://doi.org/10.3390/genes15081029