Genetic Variants of the Receptor Activator Nuclear of κB Ligand Gene Increase the Risk of Rheumatoid Arthritis in a Mexican Mestizo Population: A Case–Control Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Clinical Assessments
2.2. Laboratory Assessments
2.3. Genotype Analysis of the RANKL Gene
3. Statistical Analyses
4. Results
5. Discussion
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Lin, Y.-J.; Anzaghe, M.; Schülke, S. Update on the Pathomechanism, Diagnosis, and Treatment Options for Rheumatoid Arthritis. Cells 2020, 9, 880. [Google Scholar] [CrossRef] [PubMed]
- Radu, A.-F.; Bungau, S.G. Management of Rheumatoid Arthritis: An Overview. Cells 2021, 10, 2857. [Google Scholar] [CrossRef] [PubMed]
- Padyukov, L. Genetics of rheumatoid arthritis. Semin. Immunopathol. 2022, 44, 47–62. [Google Scholar] [CrossRef] [PubMed]
- Benucci, M.; Damiani, A.; Gobbi, F.L.; Bandinelli, F.; Infantino, M.; Grossi, V.; Manfredi, M.; Noguier, G.; Meacci, F. Correlation between HLA haplotypes and the development of antidrug antibodies in a cohort of patients with rheumatic diseases. Biol. Targets Ther. 2018, 12, 37–41. [Google Scholar] [CrossRef] [PubMed]
- Bandinelli, F.; Benucci, M.; Salaffi, F.; Manetti, M.; Infantino, M.; Damiani, A.; Manfredi, M.; Grossi, V.; Matucci, A.; Gobbi, F.L.; et al. Do new and old biomarkers of early undifferentiated arthritis correlate with Arthritis Impact Measurement Scales? Clin. Exp. Rheumatol. 2021, 39, 79–83. [Google Scholar] [CrossRef] [PubMed]
- Huang, J.; Fu, X.; Chen, X.; Li, Z.; Huang, Y.; Liang, C. Promising Therapeutic Targets for Treatment of Rheumatoid Arthritis. Front. Immunol. 2021, 12, 686155. [Google Scholar] [CrossRef]
- Ono, T.; Hayashi, M.; Sasaki, F.; Nakashima, T. RANKL biology: Bone metabolism, the immune system, and beyond. Inflamm. Regen. 2020, 40, 2. [Google Scholar] [CrossRef] [PubMed]
- Okamoto, K.; Nakashima, T.; Shinohara, M.; Negishi-Koga, T.; Komatsu, N.; Terashima, A.; Sawa, S.; Nitta, T.; Takayanagi, H. Osteoimmunology: The Conceptual Framework Unifying the Immune and Skeletal Systems. Physiol. Rev. 2017, 97, 1295–1349. [Google Scholar] [CrossRef] [PubMed]
- Takegahara, N.; Kim, H.; Choi, Y. RANKL biology. Bone 2022, 159, 116353. [Google Scholar] [CrossRef] [PubMed]
- Yasuda, H. Discovery of the RANKL/RANK/OPG system. J. Bone Miner. Metab. 2021, 39, 2–11. [Google Scholar] [CrossRef]
- Udagawa, N.; Koide, M.; Nakamura, M.; Nakamichi, Y.; Yamashita, T.; Uehara, S.; Kobayashi, Y.; Furuya, Y.; Yasuda, H.; Fukuda, C.; et al. Osteoclast differentiation by RANKL and OPG signaling pathways. J. Bone Miner. Metab. 2020, 39, 19–26. [Google Scholar] [CrossRef] [PubMed]
- Wright, H.L.; McCarthy, H.S.; Middleton, J.; Marshall, M.J. RANK, RANKL and osteoprotegerin in bone biology and disease. Curr. Rev. Musculoskelet. Med. 2009, 2, 56–64. [Google Scholar] [CrossRef] [PubMed]
- Akiyama, T. RANKL-RANK interaction in immune regulatory systems. World J. Orthop. 2012, 3, 142–150. [Google Scholar] [CrossRef] [PubMed]
- Chino, T.; Draves, K.E.; Clark, E.A. Regulation of dendritic cell survival and cytokine production by osteoprotegerin. J. Leukoc. Biol. 2009, 86, 933–940. [Google Scholar] [CrossRef] [PubMed]
- Dostert, C.; Grusdat, M.; Letellier, E.; Brenner, D. The TNF Family of Ligands and Receptors: Communication Modules in the Immune System and Beyond. Physiol. Rev. 2019, 99, 115–160. [Google Scholar] [CrossRef] [PubMed]
- Sobacchi, C.; Menale, C.; Villa, A. The RANKL-RANK Axis: A Bone to Thymus Round Trip. Front. Immunol. 2019, 10, 629. [Google Scholar] [CrossRef]
- Irla, M. RANK Signaling in the Differentiation and Regeneration of Thymic Epithelial Cells. Front. Immunol. 2021, 11, 623265. [Google Scholar] [CrossRef] [PubMed]
- Geusens, P. The role of RANK ligand/osteoprotegerin in rheumatoid arthritis. Ther. Adv. Musculoskelet. Dis. 2012, 4, 225–233. [Google Scholar] [CrossRef] [PubMed]
- Wu, H.; Khanna, D.; Park, G.; Gersuk, V.; Nepom, G.T.; Wong, W.K.; Paulus, H.E.; Tsao, B.P. Interaction between RANKL and HLA–DRB1 genotypes may contribute to younger age at onset of seropositive rheumatoid arthritis in an inception cohort. Arthritis Rheum. 2004, 50, 3093–3103. [Google Scholar] [CrossRef] [PubMed]
- Assmann, G.; Koenig, J.; Pfreundschuh, M.; Epplen, J.T.; Kekow, J.; Roemer, K.; Wieczorek, S. Genetic variations in genes encoding RANK, RANKL, and OPG in rheumatoid arthritis: A case-control study. J. Rheumatol. 2010, 37, 900–904. [Google Scholar] [CrossRef] [PubMed]
- Tan, W.; Wu, H.; Zhao, J.; Derber, L.A.; Lee, D.M.; Shadick, N.A.; Conn, D.L.; Smith, E.A.; Gersuk, V.H.; Nepom, G.T.; et al. A functional RANKL polymorphism associated with younger age at onset of rheumatoid arthritis. Arthritis Rheum. 2010, 62, 2864–2875. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Zhang, H.; Zhuang, C.; Liu, R.; Wei, J. MSRA polymorphism is associated with the risk of rheumatoid arthritis in a Chinese population. Scand. J. Rheumatol. 2013, 42, 91–96. [Google Scholar] [CrossRef] [PubMed]
- Ruyssen-Witrand, A.; Degboé, Y.; Cantagrel, A.; Nigon, D.; Lukas, C.; Scaramuzzino, S.; Allanore, Y.; Vittecoq, O.; Schaeverbeke, T.; Morel, J.; et al. Association between RANK, RANKL and OPG polymorphisms with ACPA and erosions in rheumatoid arthritis: Results from a meta-analysis involving three French cohorts. RMD Open 2016, 2, e000226. [Google Scholar] [CrossRef] [PubMed]
- Wielińska, J.; Kolossa, K.; Świerkot, J.; Dratwa, M.; Iwaszko, M.; Bugaj, B.; Wysoczańska, B.; Chaszczewska-Markowska, M.; Jeka, S.; Bogunia-Kubik, K. Polymorphisms within the RANK and RANKL Encoding Genes in Patients with Rheumatoid Arthritis: Association with Disease Progression and Effectiveness of the Biological Treatment. Arch. Immunol. Ther. Exp. 2020, 68, 24. [Google Scholar] [CrossRef] [PubMed]
- Yang, H.; Liu, W.; Zhou, X.; Rui, H.; Zhang, H.; Liu, R. The association between RANK, RANKL and OPG gene polymorphisms and the risk of rheumatoid arthritis: A case-controlled study and meta-analysis. Biosci. Rep. 2019, 39, BSR20182356. [Google Scholar] [CrossRef] [PubMed]
- Sánchez-Serrano, C. Mestizaje e historia de la población en México (con un esbozo antropológico de los lacandones de Chiapas). In Polimorfismo Génico (HLA) en Poblaciones Hispanoamericanas; Real Academia de Ciencias Exactas, Físicas y Naturales: Madrid, Spain, 1996; pp. 173–193. [Google Scholar]
- Arnett, F.C.; Edworthy, S.M.; Bloch, D.A.; Mcshane, D.J.; Fries, J.F.; Cooper, N.S.; Healey, L.A.; Kaplan, S.R.; Liang, M.H.; Luthra, H.S.; et al. The American Rheumatism Association 1987 revised criteria for the classification of rheumatoid arthritis. Arthritis Rheum. 1988, 31, 315–324. [Google Scholar] [CrossRef] [PubMed]
- Prevoo, M.L.L.; van’t Hof, M.A.; Kuper, H.H.; Van Leeuwen, M.A.; Van De Putte, L.B.A.; Van Riel, P.L.C.M. Modified disease activity scores that include twenty-eight-joint counts development and validation in a prospective longitudinal study of patients with rheumatoid arthritis. Arthritis Rheum. 1995, 38, 44–48. [Google Scholar] [CrossRef] [PubMed]
- Fleischmann, R.M.; van der Heijde, D.; Gardiner, P.V.; Szumski, A.; Marshall, L.; Bananis, E. DAS28-CRP and DAS28-ESR cut-offs for high disease activity in rheumatoid arthritis are not interchangeable. RMD Open 2017, 3, e000382. [Google Scholar] [CrossRef] [PubMed]
- Cardiel, M.H.; Abello-Banfi, M.; Ruiz-Mercado, R.; Alarcon-Segovia, D. How to measure health status in rheumatoid arthritis in non-English speaking patients: Validation of a Spanish version of the Health Assessment Questionnaire Disability Index (Spanish HAQ-DI). Clin. Exp. Rheumatol. 1993, 11, 117–121. [Google Scholar] [PubMed]
- Díaz-Toscano, M.L.; Olivas-Flores, E.M.; Zavaleta-Muñiz, S.A.; Gamez-Nava, J.I.; Cardona-Muñoz, E.G.; Ponce-Guarneros, M.; Castro-Contreras, U.; Nava, A.; Salazar-Paramo, M.; Celis, A.; et al. Comparison of two assays to determine anti-citrullinated peptide antibodies in rheumatoid arthritis in relation to other chronic inflammatory rheumatic diseases: Assaying anti-modified citrullinated vimentin antibodies adds value to second-generation anti-citrullinated cyclic peptides testing. BioMed Res. Int. 2014, 2014, 198198. [Google Scholar] [CrossRef]
- Miller, S.A.; Dykes, D.D.; Polesky, H.F. A simple salting out procedure for extracting DNA from human nucleated cells. Nucleic Acids Res. 1988, 16, 1215. [Google Scholar] [CrossRef]
- Livak, K.J. Allelic discrimination using fluorogenic probes and the 5′ nuclease assay. Genet. Anal. Biomol. Eng. 1999, 14, 143–149. [Google Scholar] [CrossRef] [PubMed]
- Mencej, S.; Albagha, O.M.E.; Preželj, J.; Kocjan, T.; Marc, J. Tumour necrosis factor superfamily member 11 gene promoter polymorphisms modulate promoter activity and influence bone mineral density in postmenopausal women with osteoporosis. J. Mol. Endocrinol. 2008, 40, 273–279. [Google Scholar] [CrossRef] [PubMed]
- Leibbrandt, A.; Penninger, J.M. RANK/RANKL: Regulators of immune responses and bone physiology. Ann. N. Y. Acad. Sci. 2008, 1143, 123–150. [Google Scholar] [CrossRef] [PubMed]
- Choi, Y.; Arron, J.R.; Townsend, M.J. Promising bone-related therapeutic targets for rheumatoid arthritis. Nat. Rev. Rheumatol. 2009, 5, 543–548. [Google Scholar] [CrossRef] [PubMed]
- Danks, L.; Komatsu, N.; Guerrini, M.M.; Sawa, S.; Armaka, M.; Kollias, G.; Nakashima, T.; Takayanagi, H. RANKL expressed on synovial fibroblasts is primarily responsible for bone erosions during joint inflammation. Ann. Rheum. Dis. 2016, 75, 1187–1195. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.-M.; Tsai, S.-C.; Lin, J.-C.; Wu, Y.-J.J.; Wu, J.; Chen, J.-Y. Association of Genetic Variants of RANK, RANKL, and OPG with Ankylosing Spondylitis Clinical Features in Taiwanese. Mediat. Inflamm. 2019, 2019, 8029863. [Google Scholar] [CrossRef] [PubMed]
- Shastry, B.S. SNPs: Impact on gene function and phenotype. Methods Mol. Biol. 2009, 578, 3–22. [Google Scholar] [CrossRef] [PubMed]
- Tanaka, S.; Tanaka, Y. RANKL as a therapeutic target of rheumatoid arthritis. J. Bone Miner. Metab. 2021, 39, 106–112. [Google Scholar] [CrossRef] [PubMed]
- Li, J.-Y.; Yu, M.; Tyagi, A.M.; Vaccaro, C.; Hsu, E.; Adams, J.; Bellido, T.; Weitzmann, M.N.; Pacifici, R. IL-17 Receptor Signaling in Osteoblasts/Osteocytes Mediates PTH-Induced Bone Loss and Enhances Osteocytic RANKL Production. J. Bone Miner. Res. 2018, 34, 349–360. [Google Scholar] [CrossRef]
- Luo, G.; Li, F.; Li, X.; Wang, Z.-G.; Zhang, B. TNF-α and RANKL promote osteoclastogenesis by upregulating RANK via the NF-κB pathway. Mol. Med. Rep. 2018, 17, 6605–6611. [Google Scholar] [CrossRef]
Variable | n = 94 |
---|---|
Age (years), median (ranges) | 64 (55–68) |
Alcoholism, n (%) | 2 (2.1) |
Smoking, n (%) | 7 (7.4) |
Sedentary lifestyle, n (%) | 61 (64.9) |
Disease duration (years), median (ranges) | 12 (1–45) |
DAS28-ESR score, median (ranges) | 2.9 (2.3–4.1) |
HAQ-DI score, median (ranges) | 0.11 (0.00–0.67) |
Treatment | |
Synthetic Disease Modifying Anti-Rheumatic Drugs (cs-DMARDs, n (%) | 71 (75.5) |
Monotherapy with 1 cs-DMARD, n (%) | 28 (29.8) |
Combined therapy with ≥2cs-DMARDs, n (%) | 43 (45.7) |
Biologics, n (%) | 2 (2.1) |
Glucocorticoid, n (%) | 69 (73.4) |
Laboratory assessment | |
Erythrocyte Sedimentation Rate (mm/h), median (ranges) | 18 (18–32) |
Rheumatoid Factor titers (UI/mL), median (ranges) | 5 (0–18) |
Anti-CCP2 (RU/mL), median (ranges) | 20 (2–179) |
Anti-CCP2 positive, n (%) | 54 (57.4) |
Anti-MCV (U/mL), median (ranges) | 42 (8–334) |
Anti-MCV positive, n (%) | 55 (58.5) |
Serum Tumor Necrosis Factor-α (pg/mL), median (ranges) | 11 (4–22) |
Serum sRANKL levels (pmol/L), median (ranges) | 393 (200–861) |
Rheumatoid Arthritis n = 94 | Control Group n = 134 | OR | 95% CI | p | HWE p Value | |
---|---|---|---|---|---|---|
Genotype rs9533155 (C>G) | ||||||
CC, n (%) | 44 (46.8) | 44 (32.8) | - | - | X2 = 3.07 p = 0.079 | |
CG, n (%) | 29 (30.9) | 33 (24.6) | - | - | 0.006 | |
GG, n (%) | 21 (22.3) | 57 (42.6) | - | - | ||
Genetic models | ||||||
Dominant model (CC vs. CG + GG) | 44 vs. 50 | 44 vs. 90 | 1.80 | 1.04 to 3.10 | 0.03 | |
Recessive model (CC + CG vs. GG) | 31 vs. 63 | 34 vs. 100 | 1.45 | 0.81 to 2.59 | 0.2 | |
Allele, 2n | ||||||
C, n (%) | 117 (62.2) | 121 (45.1) | ||||
G, n (%) | 71 (37.7) | 147 (54.9) | ||||
Genotype rs9533156 (T > C) | ||||||
TT, n (%) | 42 (44.7) | 46 (34.3) | - | - | X2 = 0.127 p = 0.721 | |
TC, n (%) | 39 (41.5) | 66 (49.3) | - | - | 0.3 | |
CC, n (%) | 13 (13.8) | 22 (16.4) | - | - | ||
Genetic models | ||||||
Dominant model (TT vs. TC + CC) | 42 vs. 52 | 46 vs. 88 | 1.54 | 0.89 to 2.66 | 0.06 | |
Recessive model (CC vs. TT + TC) | 13 vs. 81 | 22 vs. 112 | 0.82 | 0.38 to 1.71 | 0.7 | |
Allele | ||||||
T, n (%) | 123 (65.4) | 158 (58.9) | ||||
C, n (%) | 65 (34.5) | 110 (41.1) | ||||
Haplotypes | ||||||
Haplotype 1 CT | 46 (48.9) | 60 (44.8) | 1.17 | 0.62 to 2.19 | 0.6 | |
Haplotype 2 GC | 25 (26.6) | 38 (28.4) | 1.00 | - | - | |
Haplotype 3 GT | 14 (14.9) | 21 (15.7) | 1.01 | 0.44 to 2.36 | 0.9 | |
Haplotype 4 CC | 9 (9.6) | 15 (11.1) | 0.91 | 0.35 to 2.40 | 0.8 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Arturo, N.-V.C.; Ivan, G.-N.J.; Betsabe, C.-H.; Emilio, P.-G.E.; Yussef, E.-G.; Alejandra, R.-J.N.; Tonatiuh, G.-H.; Alejandra, V.-V.; Ismael, N.-A.; Elena, T.-S.S.; et al. Genetic Variants of the Receptor Activator Nuclear of κB Ligand Gene Increase the Risk of Rheumatoid Arthritis in a Mexican Mestizo Population: A Case–Control Study. Genes 2024, 15, 907. https://doi.org/10.3390/genes15070907
Arturo N-VC, Ivan G-NJ, Betsabe C-H, Emilio P-GE, Yussef E-G, Alejandra R-JN, Tonatiuh G-H, Alejandra V-V, Ismael N-A, Elena T-SS, et al. Genetic Variants of the Receptor Activator Nuclear of κB Ligand Gene Increase the Risk of Rheumatoid Arthritis in a Mexican Mestizo Population: A Case–Control Study. Genes. 2024; 15(7):907. https://doi.org/10.3390/genes15070907
Chicago/Turabian StyleArturo, Nava-Valdivia Cesar, Gamez-Nava Jorge Ivan, Contreras-Haro Betsabe, Perez-Guerrero Edsaul Emilio, Esparza-Guerrero Yussef, Rodriguez-Jimenez Norma Alejandra, Gonzalez-Heredia Tonatiuh, Villagomez-Vega Alejandra, Nuño-Arana Ismael, Totsuka-Sutto Sylvia Elena, and et al. 2024. "Genetic Variants of the Receptor Activator Nuclear of κB Ligand Gene Increase the Risk of Rheumatoid Arthritis in a Mexican Mestizo Population: A Case–Control Study" Genes 15, no. 7: 907. https://doi.org/10.3390/genes15070907
APA StyleArturo, N.-V. C., Ivan, G.-N. J., Betsabe, C.-H., Emilio, P.-G. E., Yussef, E.-G., Alejandra, R.-J. N., Tonatiuh, G.-H., Alejandra, V.-V., Ismael, N.-A., Elena, T.-S. S., Manuel, P.-G. J., Heriberto, J.-C., Gerardo, A.-A. E., Laura, G.-L., & Miriam, S.-C. A. (2024). Genetic Variants of the Receptor Activator Nuclear of κB Ligand Gene Increase the Risk of Rheumatoid Arthritis in a Mexican Mestizo Population: A Case–Control Study. Genes, 15(7), 907. https://doi.org/10.3390/genes15070907