Congenital Heart Disease and Genetic Changes in Folate/Methionine Cycles
Abstract
:1. Introduction
2. Influence of Folates on Cardiac Neural Crest Cells
3. Folate Metabolism
4. CHD Candidate Genes in Folate/Methionine Cycles
5. Genes Coding for Folate Influx Transporters
5.1. SLC19A1
Variant ID and Type | Population Allelic Frequency (GnomAD) | ACMG Classification | Associated CHD Phenotypes | References |
---|---|---|---|---|
rs1051266 NM_194255.4: c.80A>C ENST00000311124: p.His27Pro Missense | 0.0004% | Variant of uncertain significance | Conotruncal | [42,43,44] |
CHD in general | [45,48] | |||
AVSD | [49] |
5.2. SLC46A1
5.3. FOLR1, FOLR2, and FOLR3
6. Genes Coding for Folate Efflux Transporters
6.1. ABCB1
Variant ID and Type | Population Allelic Frequency (GnomAD) | ACMG Classification | Associated CHD Phenotypes | References |
---|---|---|---|---|
rs1045642 NM_001348946.2: c.3435T>C NM_001348946.2: p.Ile1145= Silent | 51% | Benign | CHD in general | [54] |
Septal defects (VSD) | [53] |
6.2. ABCC1
6.3. ABCC3
7. Genes Coding for Enzymes Involved in Folate (De)Glutamation
7.1. FPGS
7.2. GGH
7.3. FOLH1
8. Genes Coding for Cytoplasmic and Mitochondrial Enzymes of the Folate Cycle
8.1. DHFR
8.2. MTHFD1, MTHFD2, and MTHFD1L
Variant ID and Type | Population Allelic Frequency (GnomAD) | ACMG Classification | Associated CHD Phenotypes | References |
---|---|---|---|---|
MTHFD1 | ||||
rs2236225 NM_005956.4: c.1958G>A NM_005956.4: p.Arg653Gln Missense | 44% | Likely benign | VSD | [58] |
Conotruncal | [43] | |||
CHD in general | [43,59,60] | |||
TOF | [59] | |||
Aortic stenosis | [59] | |||
rs2236222 NM_005956.4: c.2279+147A>G Non-coding transcript exon variant | 9% | Benign | CHD in general | [58] |
VSD | [58] | |||
rs11849530 NM_005956.4: c.2458-2060A>G Intron | 21% | Benign | CHD in general | [58] |
VSD | [58] | |||
rs11627387 NM_005956.4: c.2719-955G>A Non-coding transcript exon variant | 28% | Benign | Conotruncal | [57] |
MTHFD2 | ||||
rs828858 NM_006636.4: c.-3575T>A Intron, Upstream | 35% | Benign | CHD in general | [63] |
ASD | [63] | |||
VSD | [63] | |||
PDA | [63] |
8.3. MTHFR
Variant ID and Type | Population Allelic Frequency (GnomAD) | ACMG Classification | Associated CHD Phenotypes | References |
---|---|---|---|---|
rs1801133 NM_005957.5: c. 665C>T * NM_005957.5: p. Ala222Val Missense | 31% | Benign | CHD in general | [64,65,66] |
VSD | [69] | |||
PDA | [70] | |||
Conotruncal | [42] | |||
TOF | [61,71] | |||
PVS | [72,73] | |||
HLHS | [72] | |||
CoA | [72,74] | |||
AVS | [72] | |||
PA+IVS | [73] | |||
ASD | [70] | |||
rs1801131 NM_005957.5: c.1286A>C ** NM_005957.5: p.Glu429Ala Missense | 29% | Variant of uncertain significance | CHD in general | [64] |
PDA | [75] | |||
Conotruncal | [76,77,78] | |||
rs2066470 NM_005957.5: c.117C>T NM_005957.5: p.Pro39= Silent | 10% | Benign | CHD in general | [68] |
8.4. MTR and MTRR
Variant ID and Type | Population Allelic Frequency (GnomAD) | ACMG Classification | Associated CHD Phenotypes | References |
---|---|---|---|---|
MTR | ||||
rs1805087 NM_000254.3: c.2756A>G NM_000254.3: p.Asp919Gly Missense | 20% | Variant of uncertain significance | CHD in general | [58] |
rs1770449 NM_000254.3: c.2594+15T>C Intron | 32% | Benign | CHD in general | [80] |
Septal | [80] | |||
Conotruncal | [80] | |||
rs1050993 NM_000254.3: c.*1361A>G 3 prime UTR variant | 73% | Benign | CHD in general | [80] |
Septal | [80] | |||
Conotruncal | [80] | |||
rs2275565 NM_000254.3: c.2775+157G>T Intron | 28% | Benign | CHD in general | [63] |
rs28372871 NM_000254.3: c.-472G>T Promoter, regulatory variant | 47% | Benign | CHD in general | [81] |
rs1131450 NM_000254.3: c.*905G>A 3 prime UTR variant | 28% | Benign | CHD in general | [81] |
MTRR | ||||
rs1801394 NM_002454.3: c.66A>G NM_002454.3: p.Ile22Met Missense | 47% | Variant of uncertain significance | CHD in general | [79,82,83,84,85,86] |
Conotruncal | [43] | |||
TOF | [44,85] | |||
Acyanotic | [87] | |||
ASD | [86] | |||
VSD | [44,86,88,89] | |||
PDA | [86] | |||
rs1532268 NM_002454.3: c.524C>T NM_002454.3: p.Ser175Leu Missense | 31% | Benign | CHD in general | [83,86] |
Acyanotic | [87] | |||
ASD | [86] | |||
VSD | [86,88,89,90] | |||
rs326119 NM_002454.3: c.-26+755C>A Intron | 56% | Benign | CHD in general, conotruncal CHD, septation defects, LVOTO, RVOTO, ASD, VSD, TOF | [91] |
8.5. MTHFS
8.6. SHMT1 and SHMT2
8.7. ALDH1L1 and ALDH1L2
8.8. FTCD
9. Genes Coding for Enzymes of the Methionine Cycle
9.1. BHMT and BHMT2
9.2. GNMT
9.3. DNMT3B
9.4. CBS
9.5. MAT2A
9.6. AHCYL1
10. Ethiopathogenic Patterns between CHD and Extracardiac Anomalies Related to Specific Genes
11. Future Research Perspectives
12. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Van der Linde, D.; Konings, E.E.; Slager, M.A.; Witsenburg, M.; Helbing, W.A.; Takkenberg, J.J.; Roos-Hesselink, J.W. Birth prevalence of congenital heart disease worldwide: A systematic review and meta-analysis. J. Am. Coll. Cardiol. 2011, 58, 2241–2247. [Google Scholar] [CrossRef]
- Botto, L.D.; Lin, A.E.; Riehle-Colarusso, T.; Malik, S.; Correa, A. Seeking causes: Classifying and evaluating congenital heart defects in etiologic studies. Birth Defects Res. A Clin. Mol. Teratol. 2007, 79, 714–727. [Google Scholar] [CrossRef]
- Kalisch-Smith, J.I.; Ved, N.; Sparrow, D.B. Environmental Risk Factors for Congenital Heart Disease. Cold Spring Harb. Perspect. Biol. 2020, 12, a037234. [Google Scholar] [CrossRef]
- Lee, L.M.; Leung, C.Y.; Tang, W.W.; Choi, H.L.; Leung, Y.C.; McCaffery, P.J.; Wang, C.C.; Woolf, A.S.; Shum, A.S. A paradoxical teratogenic mechanism for retinoic acid. Proc. Natl. Acad. Sci. USA 2012, 109, 13668–13673. [Google Scholar] [CrossRef] [PubMed]
- Feng, Y.; Wang, S.; Chen, R.; Tong, X.; Wu, Z.; Mo, X. Maternal folic acid supplementation and the risk of congenital heart defects in offspring: A meta-analysis of epidemiological observational studies. Sci. Rep. 2015, 5, 8506. [Google Scholar] [CrossRef]
- Qu, P.; Li, S.; Liu, D.; Lei, F.; Zeng, L.; Wang, D.; Yan, H.; Shi, W.; Shi, J.; Dang, S. A propensity-matched study of the association between optimal folic acid supplementation and birth defects in Shaanxi province, Northwestern China. Sci. Rep. 2019, 9, 5271. [Google Scholar] [CrossRef]
- Qu, Y.; Lin, S.; Zhuang, J.; Bloom, M.S.; Smith, M.; Nie, Z.; Mai, J.; Ou, Y.; Wu, Y.; Gao, X.; et al. First-Trimester Maternal Folic Acid Supplementation Reduced Risks of Severe and Most Congenital Heart Diseases in Offspring: A Large Case-Control Study. J. Am. Heart Assoc. 2020, 9, e015652. [Google Scholar] [CrossRef]
- van Beynum, I.M.; Kapusta, L.; Bakker, M.K.; den Heijer, M.; Blom, H.J.; de Walle, H.E. Protective effect of periconceptional folic acid supplements on the risk of congenital heart defects: A registry-based case-control study in the northern Netherlands. Eur. Heart J. 2010, 31, 464–471. [Google Scholar] [CrossRef]
- Oyen, N.; Olsen, S.F.; Basit, S.; Leirgul, E.; Strom, M.; Carstensen, L.; Granstrom, C.; Tell, G.S.; Magnus, P.; Vollset, S.E.; et al. Association Between Maternal Folic Acid Supplementation and Congenital Heart Defects in Offspring in Birth Cohorts From Denmark and Norway. J. Am. Heart Assoc. 2019, 8, e011615. [Google Scholar] [CrossRef] [PubMed]
- Sun, M.; Wang, T.; Huang, P.; Diao, J.; Zhang, S.; Li, J.; Luo, L.; Li, Y.; Chen, L.; Liu, Y.; et al. Association analysis of maternal MTHFR gene polymorphisms and the occurrence of congenital heart disease in offspring. BMC Cardiovasc. Disord. 2021, 21, 298. [Google Scholar] [CrossRef] [PubMed]
- Kirby, M.L.; Gale, T.F.; Stewart, D.E. Neural crest cells contribute to normal aorticopulmonary septation. Science 1983, 220, 1059–1061. [Google Scholar] [CrossRef]
- Hutchins, E.J.; Kunttas, E.; Piacentino, M.L.; Howard, A.G.A.t.; Bronner, M.E.; Uribe, R.A. Migration and diversification of the vagal neural crest. Dev. Biol. 2018, 444 (Suppl. S1), S98–S109. [Google Scholar] [CrossRef]
- Kirby, M.L. Cardiac Morphogenesis—Recent Research Advances. Pediatr. Res. 1987, 21, 219–224. [Google Scholar] [CrossRef]
- Kirby, M.L.; Stewart, D.E. Neural crest origin of cardiac ganglion cells in the chick embryo: Identification and extirpation. Dev. Biol. 1983, 97, 433–443. [Google Scholar] [CrossRef] [PubMed]
- Verberne, M.E.; Gittenberger-de Groot, A.C.; van Iperen, L.; Poelmann, R.E. Distribution of different regions of cardiac neural crest in the extrinsic and the intrinsic cardiac nervous system. Dev. Dyn. 2000, 217, 191–204. [Google Scholar] [CrossRef]
- Erhardt, S.; Zheng, M.; Zhao, X.; Le, T.P.; Findley, T.O.; Wang, J. The Cardiac Neural Crest Cells in Heart Development and Congenital Heart Defects. J. Cardiovasc. Dev. Dis. 2021, 8, 89. [Google Scholar] [CrossRef]
- Rosenquist, T.H.; Chaudoin, T.; Finnell, R.H.; Bennett, G.D. High-affinity folate receptor in cardiac neural crest migration: A gene knockdown model using siRNA. Dev. Dyn. 2010, 239, 1136–1144. [Google Scholar] [CrossRef]
- Salbaum, J.M.; Finnell, R.H.; Kappen, C. Regulation of folate receptor 1 gene expression in the visceral endoderm. Birth Defects Res. A Clin. Mol. Teratol. 2009, 85, 303–313. [Google Scholar] [CrossRef]
- Zhu, H.; Wlodarczyk, B.J.; Scott, M.; Yu, W.; Merriweather, M.; Gelineau-van Waes, J.; Schwartz, R.J.; Finnell, R.H. Cardiovascular abnormalities in Folr1 knockout mice and folate rescue. Birth Defects Res. A Clin. Mol. Teratol. 2007, 79, 257–268. [Google Scholar] [CrossRef] [PubMed]
- Obermann-Borst, S.A.; van Driel, L.M.; Helbing, W.A.; de Jonge, R.; Wildhagen, M.F.; Steegers, E.A.; Steegers-Theunissen, R.P. Congenital heart defects and biomarkers of methylation in children: A case-control study. Eur. J. Clin. Investig. 2011, 41, 143–150. [Google Scholar] [CrossRef]
- Caffrey, A.; Irwin, R.E.; McNulty, H.; Strain, J.J.; Lees-Murdock, D.J.; McNulty, B.A.; Ward, M.; Walsh, C.P.; Pentieva, K. Gene-specific DNA methylation in newborns in response to folic acid supplementation during the second and third trimesters of pregnancy: Epigenetic analysis from a randomized controlled trial. Am. J. Clin. Nutr. 2018, 107, 566–575. [Google Scholar] [CrossRef]
- Ondicova, M.; Irwin, R.E.; Thursby, S.J.; Hilman, L.; Caffrey, A.; Cassidy, T.; McLaughlin, M.; Lees-Murdock, D.J.; Ward, M.; Murphy, M.; et al. Folic acid intervention during pregnancy alters DNA methylation, affecting neural target genes through two distinct mechanisms. Clin. Epigenet. 2022, 14, 63. [Google Scholar] [CrossRef]
- Hutter, C.M.; Chang-Claude, J.; Slattery, M.L.; Pflugeisen, B.M.; Lin, Y.; Duggan, D.; Nan, H.; Lemire, M.; Rangrej, J.; Figueiredo, J.C.; et al. Characterization of gene-environment interactions for colorectal cancer susceptibility loci. Cancer Res. 2012, 72, 2036–2044. [Google Scholar] [CrossRef]
- Cabelof, D.C.; Patel, H.V.; Chen, Q.; van Remmen, H.; Matherly, L.H.; Ge, Y.; Taub, J.W. Mutational spectrum at GATA1 provides insights into mutagenesis and leukemogenesis in Down syndrome. Blood 2009, 114, 2753–2763. [Google Scholar] [CrossRef]
- Gray, J.D.; Nakouzi, G.; Slowinska-Castaldo, B.; Dazard, J.E.; Rao, J.S.; Nadeau, J.H.; Ross, M.E. Functional interactions between the LRP6 WNT co-receptor and folate supplementation. Hum. Mol. Genet. 2010, 19, 4560–4572. [Google Scholar] [CrossRef]
- Liu, H.; Huang, G.W.; Zhang, X.M.; Ren, D.L.; John, X.W. Folic Acid supplementation stimulates notch signaling and cell proliferation in embryonic neural stem cells. J. Clin. Biochem. Nutr. 2010, 47, 174–180. [Google Scholar] [CrossRef]
- Oleinik, N.V.; Krupenko, N.I.; Krupenko, S.A. ALDH1L1 inhibits cell motility via dephosphorylation of cofilin by PP1 and PP2A. Oncogene 2010, 29, 6233–6244. [Google Scholar] [CrossRef]
- Ichi, S.; Nakazaki, H.; Boshnjaku, V.; Singh, R.M.; Mania-Farnell, B.; Xi, G.; McLone, D.G.; Tomita, T.; Mayanil, C.S. Fetal neural tube stem cells from Pax3 mutant mice proliferate, differentiate, and form synaptic connections when stimulated with folic acid. Stem Cells Dev. 2012, 21, 321–330. [Google Scholar] [CrossRef]
- Hervouet, E.; Debien, E.; Campion, L.; Charbord, J.; Menanteau, J.; Vallette, F.M.; Cartron, P.F. Folate supplementation limits the aggressiveness of glioma via the remethylation of DNA repeats element and genes governing apoptosis and proliferation. Clin. Cancer Res. 2009, 15, 3519–3529. [Google Scholar] [CrossRef]
- Gelineau-van Waes, J.; Maddox, J.R.; Smith, L.M.; van Waes, M.; Wilberding, J.; Eudy, J.D.; Bauer, L.K.; Finnell, R.H. Microarray analysis of E9.5 reduced folate carrier (RFC1; Slc19a1) knockout embryos reveals altered expression of genes in the cubilin-megalin multiligand endocytic receptor complex. BMC Genom. 2008, 9, 156. [Google Scholar] [CrossRef]
- Crott, J.W.; Liu, Z.; Keyes, M.K.; Choi, S.W.; Jang, H.; Moyer, M.P.; Mason, J.B. Moderate folate depletion modulates the expression of selected genes involved in cell cycle, intracellular signaling and folate uptake in human colonic epithelial cell lines. J. Nutr. Biochem. 2008, 19, 328–335. [Google Scholar] [CrossRef] [PubMed]
- Warner, D.R.; Webb, C.L.; Greene, R.M.; Pisano, M.M. Altered signal transduction in Folr1-/- mouse embryo fibroblasts. Cell Biol. Int. 2011, 35, 1253–1259. [Google Scholar] [CrossRef]
- Lee, I.; Lee, H.; Kim, J.M.; Chae, E.H.; Kim, S.J.; Chang, N. Short-term hyperhomocysteinemia-induced oxidative stress activates retinal glial cells and increases vascular endothelial growth factor expression in rat retina. Biosci. Biotechnol. Biochem. 2007, 71, 1203–1210. [Google Scholar] [CrossRef] [PubMed]
- Serrano, M.; Han, M.; Brinez, P.; Linask, K.K. Fetal alcohol syndrome: Cardiac birth defects in mice and prevention with folate. Am. J. Obstet. Gynecol. 2010, 203, 75.e7–75.e15. [Google Scholar] [CrossRef] [PubMed]
- Hobbs, C.A.; Cleves, M.A.; Zhao, W.; Melnyk, S.; James, S.J. Congenital heart defects and maternal biomarkers of oxidative stress. Am. J. Clin. Nutr. 2005, 82, 598–604. [Google Scholar] [CrossRef]
- Perla-Kajan, J.; Jakubowski, H. Dysregulation of Epigenetic Mechanisms of Gene Expression in the Pathologies of Hyperhomocysteinemia. Int. J. Mol. Sci. 2019, 20, 3140. [Google Scholar] [CrossRef]
- Mei, X.; Qi, D.; Zhang, T.; Zhao, Y.; Jin, L.; Hou, J.; Wang, J.; Lin, Y.; Xue, Y.; Zhu, P.; et al. Inhibiting MARSs reduces hyperhomocysteinemia-associated neural tube and congenital heart defects. EMBO Mol. Med. 2020, 12, e9469. [Google Scholar] [CrossRef]
- Rosenquist, T.H. Folate, homocysteine and the cardiac neural crest. Dev. Dyn. 2013, 242, 201–218. [Google Scholar] [CrossRef]
- Stelzer, G.; Rosen, N.; Plaschkes, I.; Zimmerman, S.; Twik, M.; Fishilevich, S.; Stein, T.I.; Nudel, R.; Lieder, I.; Mazor, Y.; et al. The GeneCards Suite: From Gene Data Mining to Disease Genome Sequence Analyses. Curr. Protoc. Bioinform. 2016, 54, 1.30.1–1.30.33. [Google Scholar] [CrossRef]
- Santoro, S.L.; Steffensen, E.H. Congenital heart disease in Down syndrome—A review of temporal changes. J. Congenit. Cardiol. 2021, 5, 1. [Google Scholar] [CrossRef]
- Richards, S.; Aziz, N.; Bale, S.; Bick, D.; Das, S.; Gastier-Foster, J.; Grody, W.W.; Hegde, M.; Lyon, E.; Spector, E.; et al. Standards and guidelines for the interpretation of sequence variants: A joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology. Genet. Med. 2015, 17, 405–424. [Google Scholar] [CrossRef] [PubMed]
- Gong, D.; Gu, H.; Zhang, Y.; Gong, J.; Nie, Y.; Wang, J.; Zhang, H.; Liu, R.; Hu, S. Methylenetetrahydrofolate reductase C677T and reduced folate carrier 80 G>A polymorphisms are associated with an increased risk of conotruncal heart defects. Clin. Chem. Lab. Med. 2012, 50, 1455–1461. [Google Scholar] [CrossRef]
- Karas Kuzelicki, N.; Smid, A.; Vidmar Golja, M.; Kek, T.; Gersak, B.; Mazic, U.; Mlinaric-Rascan, I.; Gersak, K. A Common Polymorphism in the MTHFD1 Gene Is a Modulator of Risk of Congenital Heart Disease. J. Cardiovasc. Dev. Dis. 2022, 9, 166. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Wei, H.; Tian, Y.; Wu, Y.; Luo, L. Genetic variation in folate metabolism is associated with the risk of conotruncal heart defects in a Chinese population. BMC Pediatr. 2018, 18, 287. [Google Scholar] [CrossRef] [PubMed]
- Yi, K.; Ma, Y.H.; Wang, W.; Zhang, X.; Gao, J.; He, S.E.; Xu, X.M.; Ji, M.; Guo, W.F.; You, T. The Roles of Reduced Folate Carrier-1 (RFC1) A80G (rs1051266) Polymorphism in Congenital Heart Disease: A Meta-Analysis. Med. Sci. Monit. 2021, 27, e929911. [Google Scholar] [CrossRef] [PubMed]
- Christensen, K.E.; Zada, Y.F.; Rohlicek, C.V.; Andelfinger, G.U.; Michaud, J.L.; Bigras, J.L.; Richter, A.; Dube, M.P.; Rozen, R. Risk of congenital heart defects is influenced by genetic variation in folate metabolism. Cardiol. Young 2013, 23, 89–98. [Google Scholar] [CrossRef] [PubMed]
- Wang, B.; Liu, M.; Yan, W.; Mao, J.; Jiang, D.; Li, H.; Chen, Y. Association of SNPs in genes involved in folate metabolism with the risk of congenital heart disease. J. Matern. Fetal Neonatal Med. 2013, 26, 1768–1777. [Google Scholar] [CrossRef] [PubMed]
- Pei, L.; Zhu, H.; Zhu, J.; Ren, A.; Finnell, R.H.; Li, Z. Genetic variation of infant reduced folate carrier (A80G) and risk of orofacial defects and congenital heart defects in China. Ann. Epidemiol. 2006, 16, 352–356. [Google Scholar] [CrossRef]
- Locke, A.E.; Dooley, K.J.; Tinker, S.W.; Cheong, S.Y.; Feingold, E.; Allen, E.G.; Freeman, S.B.; Torfs, C.P.; Cua, C.L.; Epstein, M.P.; et al. Variation in folate pathway genes contributes to risk of congenital heart defects among individuals with Down syndrome. Genet. Epidemiol. 2010, 34, 613–623. [Google Scholar] [CrossRef]
- Song, X.; Wei, J.; Shu, J.; Liu, Y.; Sun, M.; Zhu, P.; Qin, J. Association of polymorphisms of FOLR1 gene and FOLR2 gene and maternal folic acid supplementation with risk of ventricular septal defect: A case-control study. Eur. J. Clin. Nutr. 2022, 76, 1273–1280. [Google Scholar] [CrossRef]
- Wang, D.; Johnson, A.D.; Papp, A.C.; Kroetz, D.L.; Sadee, W. Multidrug resistance polypeptide 1 (MDR1, ABCB1) variant 3435C>T affects mRNA stability. Pharmacogenet. Genom. 2005, 15, 693–704. [Google Scholar] [CrossRef]
- Kimchi-Sarfaty, C.; Oh, J.M.; Kim, I.W.; Sauna, Z.E.; Calcagno, A.M.; Ambudkar, S.V.; Gottesman, M.M. A “silent” polymorphism in the MDR1 gene changes substrate specificity. Science 2007, 315, 525–528. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.; Zhou, K.; Xie, L.; Li, Y.; Zhan, Y.; Qiao, L.; Qin, C.; Liu, R.; Hua, Y. Maternal medication use, fetal 3435 C>T polymorphism of the ABCB1 gene, and risk of isolated septal defects in a Han Chinese population. Pediatr. Cardiol. 2014, 35, 1132–1141. [Google Scholar] [CrossRef] [PubMed]
- Obermann-Borst, S.A.; Isaacs, A.; Younes, Z.; van Schaik, R.H.; van der Heiden, I.P.; van Duyn, C.M.; Steegers, E.A.; Steegers-Theunissen, R.P. General maternal medication use, folic acid, the MDR1 C3435T polymorphism, and the risk of a child with a congenital heart defect. Am. J. Obstet. Gynecol. 2011, 204, 236.e1–236.e8. [Google Scholar] [CrossRef] [PubMed]
- Gong, K.; Xie, T.; Yang, Y.; Luo, Y.; Deng, Y.; Chen, K.; Tan, Z.; Guo, H.; Xie, L. Establishment of a Dihydrofolate Reductase Gene Knock-In Zebrafish Strain to Aid Preliminary Analysis of Congenital Heart Disease Mechanisms. Front. Cardiovasc. Med. 2021, 8, 763851. [Google Scholar] [CrossRef] [PubMed]
- Sun, S.N.; Gui, Y.H.; Wang, Y.X.; Qian, L.X.; Jiang, Q.; Liu, D.; Song, H.Y. Effect of dihydrofolate reductase gene knock-down on the expression of heart and neural crest derivatives expressed transcript 2 in zebrafish cardiac development. Chin. Med. J. 2007, 120, 1166–1171. [Google Scholar] [CrossRef] [PubMed]
- Zhu, H.; Yang, W.; Lu, W.; Etheredge, A.J.; Lammer, E.J.; Finnell, R.H.; Carmichael, S.L.; Shaw, G.M. Gene variants in the folate-mediated one-carbon metabolism (FOCM) pathway as risk factors for conotruncal heart defects. Am. J. Med. Genet. A 2012, 158A, 1124–1134. [Google Scholar] [CrossRef]
- Liu, H.; Ou, J.; Chen, Y.; Chen, Q.; Luo, M.; Wang, T.; Qin, J. Association of Maternal Folate Intake and Offspring MTHFD1 and MTHFD2 Genes with Congenital Heart Disease. Nutrients 2023, 15, 3502. [Google Scholar] [CrossRef] [PubMed]
- Christensen, K.E.; Rohlicek, C.V.; Andelfinger, G.U.; Michaud, J.; Bigras, J.L.; Richter, A.; Mackenzie, R.E.; Rozen, R. The MTHFD1 p.Arg653Gln variant alters enzyme function and increases risk for congenital heart defects. Hum. Mutat. 2009, 30, 212–220. [Google Scholar] [CrossRef]
- Khatami, M.; Ratki, F.M.; Tajfar, S.; Akrami, F. Relationship of the MTHFD1 (rs2236225), eNOS (rs1799983), CBS (rs2850144) and ACE (rs4343) gene polymorphisms in a population of Iranian pediatric patients with congenital heart defects. Kaohsiung J. Med. Sci. 2017, 33, 442–448. [Google Scholar] [CrossRef]
- Huang, J.; Mei, J.; Jiang, L.; Jiang, Z.; Liu, H.; Ding, F. MTHFR rs1801133 C>T polymorphism is associated with an increased risk of tetralogy of Fallot. Biomed. Rep. 2014, 2, 172–176. [Google Scholar] [CrossRef] [PubMed]
- Shaw, G.M.; Lu, W.; Zhu, H.; Yang, W.; Briggs, F.B.; Carmichael, S.L.; Barcellos, L.F.; Lammer, E.J.; Finnell, R.H. 118 SNPs of folate-related genes and risks of spina bifida and conotruncal heart defects. BMC Med. Genet. 2009, 10, 49. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Zhong, T.; Song, X.; Zhang, S.; Sun, M.; Wei, J.; Shu, J.; Yang, T.; Wang, T.; Qin, J. Association of MTR gene polymorphisms with the occurrence of non-syndromic congenital heart disease: A case-control study. Sci. Rep. 2023, 13, 9424. [Google Scholar] [CrossRef] [PubMed]
- Lee, K.S.; Choi, Y.J.; Cho, J.; Lee, H.; Lee, H.; Park, S.J.; Park, J.S.; Hong, Y.C. Environmental and Genetic Risk Factors of Congenital Anomalies: An Umbrella Review of Systematic Reviews and Meta-Analyses. J. Korean Med. Sci. 2021, 36, e183. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Feng, D.; He, S.; Yang, H.; Su, Z.; Ye, H. Association of MTHFR 677C > T gene polymorphism with neonatal defects: A meta-analysis of 81444 subjects. J. Obstet. Gynaecol. 2022, 42, 1811–1822. [Google Scholar] [CrossRef] [PubMed]
- Liu, P.F.; Ding, B.; Zhang, J.Y.; Mei, X.F.; Li, F.; Wu, P.; Mei, C.H.; Zhou, Y.F.; Chen, T. Association Between MTHFR C677T Polymorphism and Congenital Heart Disease. Int. Heart J. 2020, 61, 553–561. [Google Scholar] [CrossRef] [PubMed]
- Calzada-Davila, M.; Calvo-Anguiano, G.; Martinez-de-Villarreal, L.E.; Lugo-Trampe, J.J.; Gonzalez-Pena, S.M.; Ancer-Rodriguez, P.R.; Hernandez-Almaguer, M.D.; Campos-Acevedo, L.D. Congenital Heart Diseases: Genetic Risk Variants and Their Methylation Status. Genes 2022, 13, 2115. [Google Scholar] [CrossRef]
- Zhong, T.; Song, X.; Liu, Y.; Sun, M.; Zhang, S.; Chen, L.; Diao, J.; Li, J.; Li, Y.; Shu, J.; et al. Association of methylenetetrahydrofolate reductase gene polymorphisms and maternal folic acid use with the risk of congenital heart disease. Front. Pediatr. 2022, 10, 939119. [Google Scholar] [CrossRef]
- Sarwar, S.; Shabana; Sajjad, K.; Hasnain, S. Genetic studies in the Pakistani population reveal novel associations with ventricular septal defects (VSDs). BMC Pediatr. 2023, 23, 67. [Google Scholar] [CrossRef]
- Zhu, W.L.; Li, Y.; Yan, L.; Dao, J.; Li, S. Maternal and offspring MTHFR gene C677T polymorphism as predictors of congenital atrial septal defect and patent ductus arteriosus. Mol. Hum. Reprod. 2006, 12, 51–54. [Google Scholar] [CrossRef]
- Marinho, C.; Alho, I.; Guerra, A.; Rego, C.; Areias, J.; Bicho, M. The methylenetetrahydrofolate reductase gene variant (C677T) as a susceptibility gene for tetralogy of Fallot. Rev. Port. Cardiol. 2009, 28, 809–812. [Google Scholar] [PubMed]
- Junker, R.; Kotthoff, S.; Vielhaber, H.; Halimeh, S.; Kosch, A.; Koch, H.G.; Kassenbohmer, R.; Heineking, B.; Nowak-Gottl, U. Infant methylenetetrahydrofolate reductase 677TT genotype is a risk factor for congenital heart disease. Cardiovasc. Res. 2001, 51, 251–254. [Google Scholar] [CrossRef] [PubMed]
- Lee, C.N.; Su, Y.N.; Cheng, W.F.; Lin, M.T.; Wang, J.K.; Wu, M.H.; Hsieh, F.J. Association of the C677T methylenetetrahydrofolate reductase mutation with congenital heart diseases. Acta Obstet. Gynecol. Scand. 2005, 84, 1134–1140. [Google Scholar] [CrossRef] [PubMed]
- Kuehl, K.; Loffredo, C.; Lammer, E.J.; Iovannisci, D.M.; Shaw, G.M. Association of congenital cardiovascular malformations with 33 single nucleotide polymorphisms of selected cardiovascular disease-related genes. Birth Defects Res. A Clin. Mol. Teratol. 2010, 88, 101–110. [Google Scholar] [CrossRef]
- Chao, C.S.; Wei, J.; Huang, H.W.; Yang, S.C. Correlation between methyltetrahydrofolate reductase (MTHFR) polymorphisms and isolated patent ductus arteriosus in Taiwan. Heart Lung Circ. 2014, 23, 655–660. [Google Scholar] [CrossRef]
- Goldmuntz, E.; Woyciechowski, S.; Renstrom, D.; Lupo, P.J.; Mitchell, L.E. Variants of folate metabolism genes and the risk of conotruncal cardiac defects. Circ. Cardiovasc. Genet. 2008, 1, 126–132. [Google Scholar] [CrossRef]
- Sayin Kocakap, B.D.; Sanli, C.; Cabuk, F.; Koc, M.; Kutsal, A. Association of MTHFR A1298C polymorphism with conotruncal heart disease. Cardiol. Young 2015, 25, 1326–1331. [Google Scholar] [CrossRef]
- Koshy, T.; Venkatesan, V.; Perumal, V.; Hegde, S.; Paul, S.F. The A1298C Methylenetetrahydrofolate Reductase Gene Variant as a Susceptibility Gene for Non-Syndromic Conotruncal Heart Defects in an Indian Population. Pediatr. Cardiol. 2015, 36, 1470–1475. [Google Scholar] [CrossRef]
- Cai, B.; Zhang, T.; Zhong, R.; Zou, L.; Zhu, B.; Chen, W.; Shen, N.; Ke, J.; Lou, J.; Wang, Z.; et al. Genetic variant in MTRR, but not MTR, is associated with risk of congenital heart disease: An integrated meta-analysis. PLoS ONE 2014, 9, e89609. [Google Scholar] [CrossRef]
- Deng, C.; Deng, Y.; Xie, L.; Yu, L.; Liu, L.; Liu, H.; Dai, L. Genetic polymorphisms in MTR are associated with non-syndromic congenital heart disease from a family-based case-control study in the Chinese population. Sci. Rep. 2019, 9, 5065. [Google Scholar] [CrossRef]
- Zhao, J.Y.; Qiao, B.; Duan, W.Y.; Gong, X.H.; Peng, Q.Q.; Jiang, S.S.; Lu, C.Q.; Chen, Y.J.; Shen, H.B.; Huang, G.Y.; et al. Genetic variants reducing MTR gene expression increase the risk of congenital heart disease in Han Chinese populations. Eur. Heart J. 2014, 35, 733–742. [Google Scholar] [CrossRef]
- Yu, D.; Yang, L.; Shen, S.; Fan, C.; Zhang, W.; Mo, X. Association between methionine synthase reductase A66G polymorphism and the risk of congenital heart defects: Evidence from eight case-control studies. Pediatr. Cardiol. 2014, 35, 1091–1098. [Google Scholar] [CrossRef]
- Xu, A.; Wang, W.; Jiang, X. The roles of MTRR and MTHFR gene polymorphisms in congenital heart diseases: A meta-analysis. Biosci. Rep. 2018, 38, BSR20181160. [Google Scholar] [CrossRef]
- Elizabeth, K.E.; Praveen, S.L.; Preethi, N.R.; Jissa, V.T.; Pillai, M.R. Folate, vitamin B12, homocysteine and polymorphisms in folate metabolizing genes in children with congenital heart disease and their mothers. Eur. J. Clin. Nutr. 2017, 71, 1437–1441. [Google Scholar] [CrossRef]
- Noori, N.; Miri-Moghaddam, E.; Dejkam, A.; Garmie, Y.; Bazi, A. Are polymorphisms in MTRR A66G and MTHFR C677T genes associated with congenital heart diseases in Iranian population? Casp. J. Intern. Med. 2017, 8, 83–90. [Google Scholar] [CrossRef]
- Zeng, W.; Liu, L.; Tong, Y.; Liu, H.M.; Dai, L.; Mao, M. A66G and C524T polymorphisms of the methionine synthase reductase gene are associated with congenital heart defects in the Chinese Han population. Genet. Mol. Res. 2011, 10, 2597–2605. [Google Scholar] [CrossRef]
- Hassan, F.M.; Khattab, A.A.; Abo El Fotoh, W.M.M.; Zidan, R.S. A66G and C524T polymorphisms of methionine synthase reductase gene are linked to the development of acyanotic congenital heart diseases in Egyptian children. Gene 2017, 629, 59–63. [Google Scholar] [CrossRef] [PubMed]
- Su, J.; Li, Z. Analysis of MTR and MTRR Gene Polymorphisms in Chinese Patients With Ventricular Septal Defect. Appl. Immunohistochem. Mol. Morphol. 2018, 26, 769–774. [Google Scholar] [CrossRef] [PubMed]
- Pishva, S.R.; Vasudevan, R.; Etemad, A.; Heidari, F.; Komara, M.; Ismail, P.; Othman, F.; Karimi, A.; Sabri, M.R. Analysis of MTHFR and MTRR Gene Polymorphisms in Iranian Ventricular Septal Defect Subjects. Int. J. Mol. Sci. 2013, 14, 2739–2752. [Google Scholar] [CrossRef]
- Sarwar, S.; Ehsan, F.; Shabana; Tahir, A.; Jamil, M.; Shahid, S.U.; Khan, A.; Hasnain, S. First report of polymorphisms in MTRR, GATA4, VEGF, and ISL1 genes in Pakistani children with isolated ventricular septal defects (VSD). Ital. J. Pediatr. 2021, 47, 70. [Google Scholar] [CrossRef]
- Zhao, J.Y.; Yang, X.Y.; Gong, X.H.; Gu, Z.Y.; Duan, W.Y.; Wang, J.; Ye, Z.Z.; Shen, H.B.; Shi, K.H.; Hou, J.; et al. Functional variant in methionine synthase reductase intron-1 significantly increases the risk of congenital heart disease in the Han Chinese population. Circulation 2012, 125, 482–490. [Google Scholar] [CrossRef] [PubMed]
- Mitchell, L.E.; Long, J.; Garbarini, J.; Paluru, P.; Goldmuntz, E. Variants of folate metabolism genes and risk of left-sided cardiac defects. Birth Defects Res. A Clin. Mol. Teratol. 2010, 88, 48–53. [Google Scholar] [CrossRef] [PubMed]
- Cheng, H.; Li, H.; Bu, Z.; Zhang, Q.; Bai, B.; Zhao, H.; Li, R.K.; Zhang, T.; Xie, J. Functional variant in methionine synthase reductase intron-1 is associated with pleiotropic congenital malformations. Mol. Cell. Biochem. 2015, 407, 51–56. [Google Scholar] [CrossRef]
- Nembhard, W.N.; Tang, X.; Hu, Z.; MacLeod, S.; Stowe, Z.; Webber, D.; National Birth Defects Prevention, S. Maternal and infant genetic variants, maternal periconceptional use of selective serotonin reuptake inhibitors, and risk of congenital heart defects in offspring: Population based study. BMJ 2017, 356, j832. [Google Scholar] [CrossRef]
- Webber, D.M.; Li, M.; MacLeod, S.L.; Tang, X.; Levy, J.W.; Karim, M.A.; Erickson, S.W.; Hobbs, C.A.; The National Birth Defects Prevention Study. Gene-Folic Acid Interactions and Risk of Conotruncal Heart Defects: Results from the National Birth Defects Prevention Study. Genes 2023, 14, 180. [Google Scholar] [CrossRef]
- Jiang, Y.C.; Kuang, L.L.; Sun, S.N.; Duan, W.Y.; Qiao, B.; Wang, H.Y. Association of genetic polymorphisms of de novo nucleotide biosynthesis with increased CHD susceptibility in the northern Chinese population. Clin. Genet. 2017, 91, 748–755. [Google Scholar] [CrossRef] [PubMed]
- Li, P.; Huang, L.; Zheng, Y.; Pan, X.; Peng, R.; Jiang, Y.; Finnell, R.H.; Li, H.; Qiao, B.; Wang, H.Y. A missense mutation in TCN2 is associated with decreased risk for congenital heart defects and may increase cellular uptake of vitamin B12 via Megalin. Oncotarget 2017, 8, 55216–55229. [Google Scholar] [CrossRef]
- Chen, C.P.; Chen, C.Y.; Chern, S.R.; Wu, P.S.; Chen, S.W.; Chuang, T.Y.; Wang, W. Detection of a familial 21q22.3 microduplication in a fetus associated with congenital heart defects. Taiwan. J. Obstet. Gynecol. 2019, 58, 869–871. [Google Scholar] [CrossRef]
- Tang, X.; Cleves, M.A.; Nick, T.G.; Li, M.; MacLeod, S.L.; Erickson, S.W.; Li, J.; Shaw, G.M.; Mosley, B.S.; Hobbs, C.A.; et al. Obstructive heart defects associated with candidate genes, maternal obesity, and folic acid supplementation. Am. J. Med. Genet. A 2015, 167, 1231–1242. [Google Scholar] [CrossRef]
- Joshi, R.O.; Kukshal, P.; Chellappan, S.; Guhathakurta, S. The study of expression levels of DNA methylation regulators in patients affected with congenital heart defects (CHDs). Birth Defects Res. 2022, 114, 228–237. [Google Scholar] [CrossRef]
- Majstorovic, D.; Barisic, A.; Bozovic, I.B.; Cace, I.B.; Cace, N.; Stifanic, M.; Vranekovic, J. DNMT3B rs2424913 as a Risk Factor for Congenital Heart Defects in Down Syndrome. Genes 2023, 14, 576. [Google Scholar] [CrossRef] [PubMed]
- Zhao, J.Y.; Yang, X.Y.; Shi, K.H.; Sun, S.N.; Hou, J.; Ye, Z.Z.; Wang, J.; Duan, W.Y.; Qiao, B.; Chen, Y.J.; et al. A functional variant in the cystathionine beta-synthase gene promoter significantly reduces congenital heart disease susceptibility in a Han Chinese population. Cell Res. 2013, 23, 242–253. [Google Scholar] [CrossRef] [PubMed]
- Chowdhury, S.; Hobbs, C.A.; MacLeod, S.L.; Cleves, M.A.; Melnyk, S.; James, S.J.; Hu, P.; Erickson, S.W. Associations between maternal genotypes and metabolites implicated in congenital heart defects. Mol. Genet. Metab. 2012, 107, 596–604. [Google Scholar] [CrossRef] [PubMed]
- Gilbert, S.F. Developmental Biology, 6th ed.; Sinauer Associates: Sunderland, MA, USA, 2000. [Google Scholar]
- Isern, J.; Garcia-Garcia, A.; Martin, A.M.; Arranz, L.; Martin-Perez, D.; Torroja, C.; Sanchez-Cabo, F.; Mendez-Ferrer, S. The neural crest is a source of mesenchymal stem cells with specialized hematopoietic stem cell niche function. eLife 2014, 3, e03696. [Google Scholar] [CrossRef]
- Whirl-Carrillo, M.; Huddart, R.; Gong, L.; Sangkuhl, K.; Thorn, C.F.; Whaley, R.; Klein, T.E. An Evidence-Based Framework for Evaluating Pharmacogenomics Knowledge for Personalized Medicine. Clin. Pharmacol. Ther. 2021, 110, 563–572. [Google Scholar] [CrossRef]
Location | Influx Folate Transporters | Efflux Folate Transporters | Enzymes Involved in Folate (De)Glutamation | Cytosolic Enzymes of the Folate Cycle | Enzymes of the Methionine Cycle | Mitochondrial Enzymes of the Folate Cycle |
---|---|---|---|---|---|---|
Chr. 1 | MTHFR MTR | AHCYL1 | ||||
Chr. 2 | MAT2A | MTHFD2 | ||||
Chr. 3 | ALDH1L1 | |||||
Chr. 5 | MTRR DHFR | BHMT BHMT2 | ||||
Chr. 6 | GNMT | MTHFD1L | ||||
Chr. 7 | ABCB1 | |||||
Chr. 8 | GGH | |||||
Chr. 9 | FPGS | |||||
Chr. 11 | FOLR1 FOLR2 FOLR3 | FOLH1 | ||||
Chr. 12 | ALDH1L2 SHMT2 | |||||
Chr. 14 | MTHFD1 | |||||
Chr. 15 | MTHFS | |||||
Chr. 16 | ABCC1 | |||||
Chr. 17 | SLC46A1 | ABCC3 | SHMT1 | |||
Chr. 20 | DNMT3B | |||||
Chr. 21 | SLC19A1 | FTCD | CBS |
Variant ID and Type | Population Allelic Frequency (GnomAD) | ACMG Classification | Associated CHD Phenotypes | References |
---|---|---|---|---|
rs1544105 NM_004957.6: c.-2479C>T Intron | 48% | Benign | LVOTO | [43] |
Variant ID and Type | Population Allelic Frequency (GnomAD) | ACMG Classification | Associated CHD Phenotypes | References |
---|---|---|---|---|
rs11951910 NM_000791.4: c.243-5643A>G Intron | 12% | Benign | Conotruncal | [57] |
rs70991108 NM_000791.4: c.86+59_86+60insACCTGGGCGGGACGCGCCA Intron indel | 51% | Benign | CHD in general | [47] |
Variant ID and Type | Population Allelic Frequency (GnomAD) | ACMG Classification | Associated CHD Phenotypes | References |
---|---|---|---|---|
rs12438477 NM_006441.4: c.379+3152G>T Intron | 43% | Benign | CHD in general | [94] |
Conotruncal | [95] |
Variant ID and Type | Population Allelic Frequency (GnomAD) | ACMG Classification | Associated CHD Phenotypes | References |
---|---|---|---|---|
BHMT | ||||
rs7700970 NM_001713.3: c.34-266C>T Intron | 32% | Benign | Obstructive CHD | [99] |
rs506500 NM_001713.3: c.167-745T>C Intron | 72% | Benign | Obstructive CHD | [99] |
BHMT2 | ||||
rs1422086 NM_017614.5: c.167-327C>A Intron | 53% | Benign | Obstructive CHD | [99] |
rs557302 NM_017614.5: c.450+633A>G Intron | 44% | Benign | Obstructive CHD | [99] |
rs625879 NM_017614.5: c.1010+2010A>C Intron | 53% | Benign | Obstructive CHD | [99] |
rs526264 NM_017614.5: c.451-222A>T Non-coding transcript exon | 53% | Benign | Obstructive CHD | [99] |
rs575425 NM_017614.5: c.*5515A>G 3 prime UTR variant | 62% | Benign | Obstructive CHD | [99] |
Variant ID and Type | Population Allelic Frequency (GnomAD) | ACMG Classification | Associated CHD Phenotypes | References |
---|---|---|---|---|
rs11752813 NM_018960.6: c.-489C>G Regulatory, promoter | 40% | Benign | CHD in general | [94] |
Variant ID and Type | Population Allelic Frequency (GnomAD) | ACMG Classification | Associated CHD Phenotypes | References |
---|---|---|---|---|
rs2424913 NM_006892.4: c.307-49C>T Intron | 56% | Benign | CHD in general | [101] |
ASD | [101] | |||
rs6058893 NM_006892.4 Intron | 52% | Benign | Obstructive CHD | [99] |
rs910084 NM_006892.4: c.921+151C>T Intron | 39% | Benign | Obstructive CHD | [99] |
rs1883729 NM_006892.4: c.-6-4931G>A Intron | 56% | Benign | Obstructive CHD | [99] |
rs6088008 NM_006892.4: c.1127-355A>G Intron | 39% | Benign | Obstructive CHD | [99] |
rs910085 NM_006892.4: c.1252+13T>G Intron | 49% | Benign | Obstructive CHD | [99] |
rs4911108 NM_006892.4: c.654+54A>G Intron | 41% | Benign | Obstructive CHD | [99] |
rs4911257 NM_006892.4: c.-6-8550T>C Intron | 43% | Benign | Obstructive CHD | [99] |
rs1040555 NM_006892.4: c.922-231A>T Intron | 50% | Benign | Obstructive CHD | [99] |
rs992472 NM_006892.4: c.1490+164G>T Intron | 49% | Benign | Obstructive CHD | [99] |
rs4911107 NM_006892.4: c.433-45G>A Intron | 51% | Benign | Obstructive CHD | [99] |
rs2889703 NM_006892.4: c.814-223C>A Intron | 49% | Benign | Obstructive CHD | [99] |
Variant ID and Type | Population Allelic Frequency (GnomAD) | ACMG Classification | Associated CHD Phenotypes | References |
---|---|---|---|---|
rs2850144 NM_000071.3: c.-1181G>C 5 prime UTR variant, promoter | 68% | Benign | CHD in general | [102] |
Septation defects | [102] | |||
Conotruncal | [102] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Karas Kuželički, N.; Doljak, B. Congenital Heart Disease and Genetic Changes in Folate/Methionine Cycles. Genes 2024, 15, 872. https://doi.org/10.3390/genes15070872
Karas Kuželički N, Doljak B. Congenital Heart Disease and Genetic Changes in Folate/Methionine Cycles. Genes. 2024; 15(7):872. https://doi.org/10.3390/genes15070872
Chicago/Turabian StyleKaras Kuželički, Nataša, and Bojan Doljak. 2024. "Congenital Heart Disease and Genetic Changes in Folate/Methionine Cycles" Genes 15, no. 7: 872. https://doi.org/10.3390/genes15070872
APA StyleKaras Kuželički, N., & Doljak, B. (2024). Congenital Heart Disease and Genetic Changes in Folate/Methionine Cycles. Genes, 15(7), 872. https://doi.org/10.3390/genes15070872