Unraveling the Genetic Foundations of Broiler Meat Quality: Advancements in Research and Their Impact
Abstract
:1. Introduction
2. Genetic Factors Influencing Meat Quality Traits in Chicken
2.1. Meat Color
2.2. Water-Holding Capacity
2.3. pH Value
2.4. Tenderness
2.5. Muscle Fiber Diameter
2.6. Crude Protein Content
2.7. Shear Force
2.8. Intramuscular Fat Content
3. Future Perspectives
4. Summary
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
References
- Berri, C.; Wacrenier, N.; Millet, N.; Le Bihan-Duval, E. Effect of Selection for Improved Body Composition on Muscle and Meat Characteristics of Broilers from Experimental and Commercial Lines. Poult. Sci. 2001, 80, 833–838. [Google Scholar] [CrossRef] [PubMed]
- Jaturasitha, S.; Srikanchai, T.; Kreuzer, M.; Wicke, M. Differences in Carcass and Meat Characteristics between Chicken Indigenous to Northern Thailand (Black-Boned and Thai Native) and Imported Extensive Breeds (Bresse and Rhode Island Red). Poult. Sci. 2008, 87, 160–169. [Google Scholar] [CrossRef]
- da Silva, D.C.F.; de Arruda, A.M.V.; Gonçalves, A.A. Quality Characteristics of Broiler Chicken Meat from Free-Range and Industrial Poultry System for the Consumers. J. Food Sci. Technol. 2017, 54, 1818–1826. [Google Scholar] [CrossRef]
- Abdalla, B.A.; Chen, J.; Nie, Q.; Zhang, X. Genomic Insights Into the Multiple Factors Controlling Abdominal Fat Deposition in a Chicken Model. Front. Genet. 2018, 9, 262. [Google Scholar] [CrossRef] [PubMed]
- Marchewka, J.; Sztandarski, P.; Solka, M.; Louton, H.; Rath, K.; Vogt, L.; Rauch, E.; Ruijter, D.; de Jong, I.C.; Horbańczuk, J.O. Linking Key Husbandry Factors to the Intrinsic Quality of Broiler Meat. Poult. Sci. 2023, 102, 102384. [Google Scholar] [CrossRef] [PubMed]
- Xiong, X.; Liu, X.; Zhu, X.; Tan, Y.; Wang, Z.; Xu, J.; Tu, X.; Rao, Y.; Duan, J.; Zhao, W.; et al. A Mutation in PHKG1 Causes High Drip Loss and Low Meat Quality in Chinese Ningdu Yellow Chickens. Poult. Sci. 2022, 101, 101556. [Google Scholar] [CrossRef]
- Sun, J.; Tan, X.; Yang, X.; Bai, L.; Kong, F.; Zhao, G.; Wen, J.; Liu, R. Identification of Candidate Genes for Meat Color of Chicken by Combing Selection Signature Analyses and Differentially Expressed Genes. Genes 2022, 13, 307. [Google Scholar] [CrossRef]
- Guo, X.; Zhang, H.; Wang, H.; He, X.-X.; Wang, J.-X.; Wei, W.; Liu, M.; Xu, J.-M.; Liu, Y.-N.; Jiang, R.-S. Identification of Key Modules and Hub Genes Involved in Regulating the Color of Chicken Breast Meat Using WGCNA. Animals 2023, 13, 2356. [Google Scholar] [CrossRef]
- Xiao, L.; Qi, L.; Fu, R.; Nie, Q.; Zhang, X.; Luo, W. A Large-Scale Comparison of the Meat Quality Characteristics of Different Chicken Breeds in South China. Poult. Sci. 2024, 103, 103740. [Google Scholar] [CrossRef]
- Nadaf, J.; Berri, C.; Dunn, I.; Godet, E.; Le Bihan-Duval, E.; De Koning, D.J. An Expression QTL of Closely Linked Candidate Genes Affects pH of Meat in Chickens. Genetics 2014, 196, 867–874. [Google Scholar] [CrossRef]
- Beauclercq, S.; Hennequet-Antier, C.; Praud, C.; Godet, E.; Collin, A.; Tesseraud, S.; Métayer-Coustard, S.; Bourin, M.; Moroldo, M.; Martins, F.; et al. Muscle Transcriptome Analysis Reveals Molecular Pathways and Biomarkers Involved in Extreme Ultimate pH and Meat Defect Occurrence in Chicken. Sci. Rep. 2017, 7, 6447. [Google Scholar] [CrossRef] [PubMed]
- Jiang, H.; Yang, D.; Ma, Z. Genome-Wide Association Study of Meat Color Traits in Danzhou Chickens. Chin. J. Anim. Sci. 2022, 58, 117–122. [Google Scholar]
- Cao, H.; Zhou, W.; Tan, Y.; Xu, X.; Mao, H.; Dong, X.; Xu, N.; Yin, Z. Chronological Expression of PITX2 and SIX1 Genes and the Association between Their Polymorphisms and Chicken Meat Quality Traits. Animals 2021, 11, 445. [Google Scholar] [CrossRef] [PubMed]
- Sun, Y.; Zhao, G.; Liu, R.; Zheng, M.; Hu, Y.; Wu, D.; Zhang, L.; Li, P.; Wen, J. The Identification of 14 New Genes for Meat Quality Traits in Chicken Using a Genome-Wide Association Study. BMC Genom. 2013, 14, 458. [Google Scholar] [CrossRef] [PubMed]
- Le Bihan-Duval, E.; Nadaf, J.; Berri, C.; Pitel, F.; Graulet, B.; Godet, E.; Leroux, S.Y.; Demeure, O.; Lagarrigue, S.; Duby, C.; et al. Detection of a Cis [Corrected] eQTL Controlling BCMO1 Gene Expression Leads to the Identification of a QTG for Chicken Breast Meat Color. PLoS ONE 2011, 6, e14825. [Google Scholar] [CrossRef] [PubMed]
- Bihan-Duval, E.L.; Hennequet-Antier, C.; Berri, C.; Beauclercq, S.A.; Bourin, M.C.; Boulay, M.; Demeure, O.; Boitard, S. Identification of Genomic Regions and Candidate Genes for Chicken Meat Ultimate pH by Combined Detection of Selection Signatures and QTL. BMC Genom. 2018, 19, 294. [Google Scholar] [CrossRef]
- Li, X.; Liu, X.; Nadaf, J.; Le Bihan-Duval, E.; Berri, C.; Dunn, I.; Talbot, R.; De Koning, D.-J. Using Targeted Resequencing for Identification of Candidate Genes and SNPs for a QTL Affecting the pH Value of Chicken Meat. G3 Genes Genomes Genet. 2015, 5, 2085–2089. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Y.-G.; Xiong, Y.; Yang, C.-W.; Jiang, X.-S.; Ran, J.-S.; Jin, J.; Wang, Y.; Lan, D.; Ren, P.; Hu, Y.-D.; et al. Experimental Verification of CAPN1 and CAST Gene Polymorphisms in Different Generations of Da-Heng Broilers. Biomed. Res. Int. 2017, 2017, 7968450. [Google Scholar] [CrossRef]
- Shu, J.T.; Zhang, M.; Shan, Y.J.; Xu, W.J.; Chen, K.W.; Li, H.F. Analysis of the Genetic Effects of CAPN1 Gene Polymorphisms on Chicken Meat Tenderness. Genet. Mol. Res. 2015, 14, 1393–1403. [Google Scholar] [CrossRef]
- Gai, K.; Ge, Y.; Liu, D.; Zhang, H.; Cong, B.; Guo, S.; Liu, Y.; Xing, K.; Qi, X.; Wang, X.; et al. Identification of Key Genes Related to Intramuscular Fat Deposition in Beijing-You Chicken by mRNA and miRNA Transcriptome Analysis. Poult. Sci. 2023, 102, 103035. [Google Scholar] [CrossRef]
- Luo, N.; Shu, J.; Yuan, X.; Jin, Y.; Cui, H.; Zhao, G.; Wen, J. Differential Regulation of Intramuscular Fat and Abdominal Fat Deposition in Chickens. BMC Genom. 2022, 23, 308. [Google Scholar] [CrossRef]
- Lin, Z.; Tang, Y.; Li, Z.; Li, J.; Yu, C.; Yang, C.; Liu, L.; Wang, Y.; Liu, Y. miR-24-3p Dominates the Proliferation and Differentiation of Chicken Intramuscular Preadipocytes by Blocking ANXA6 Expression. Genes 2022, 13, 635. [Google Scholar] [CrossRef]
- Sun, G.; Li, F.; Ma, X.; Sun, J.; Jiang, R.; Tian, Y.; Han, R.; Li, G.; Wang, Y.; Li, Z.; et al. Gga-miRNA-18b-3p Inhibits Intramuscular Adipocytes Differentiation in Chicken by Targeting the ACOT13 Gene. Cells 2019, 8, 556. [Google Scholar] [CrossRef]
- Liu, R.; Wang, H.; Liu, J.; Wang, J.; Zheng, M.; Tan, X.; Xing, S.; Cui, H.; Li, Q.; Zhao, G.; et al. Uncovering the Embryonic Development-Related Proteome and Metabolome Signatures in Breast Muscle and Intramuscular Fat of Fast-and Slow-Growing Chickens. BMC Genom. 2017, 18, 816. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Xiong, D.; Yao, L.; Zhao, C. An SNP in Exon 11 of Chicken 5′-AMP-Activated Protein Kinase Gamma 3 Subunit Gene Was Associated with Meat Water Holding Capacity. Anim. Biotechnol. 2016, 27, 13–16. [Google Scholar] [CrossRef]
- Boonlaos, A.; Uddin, M.J.; Temyord, K.; Jattawa, D.; Kayan, A. Muscle Fiber Characteristics and Expression Level of Troponin T3, Toll-like Receptor 2, and Toll-like Receptor 4 Genes in Chicken Meat with White Striping. Vet. World 2023, 16, 1415–1420. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Yuan, P.; Fan, S.; Zhai, B.; Jin, W.; Li, D.; Li, H.; Sun, G.; Han, R.; Liu, X.; et al. Weighted Gene Co-Expression Network Indicates That the DYNLL2 Is an Important Regulator of Chicken Breast Muscle Development and Is Regulated by miR-148a-3p. BMC Genom. 2022, 23, 258. [Google Scholar] [CrossRef]
- Zhu, M.; Wang, M.; Shao, Y.; Nan, Y.; Blair, H.T.; Morris, S.T.; Zhao, Z.; Zhang, H. Characterization of Muscle Development and Gene Expression in Early Embryos of Chicken, Quail, and Their Hybrids. Gene 2021, 768, 145319. [Google Scholar] [CrossRef]
- Li, Z.; Cai, B.; Abdalla, B.A.; Zhu, X.; Zheng, M.; Han, P.; Nie, Q.; Zhang, X. LncIRS1 Controls Muscle Atrophy via Sponging miR-15 Family to Activate IGF1-PI3K/AKT Pathway. J. Cachexia Sarcopenia Muscle 2019, 10, 391–410. [Google Scholar] [CrossRef]
- Luo, W.; Li, E.; Nie, Q.; Zhang, X. Myomaker, Regulated by MYOD, MYOG and miR-140-3p, Promotes Chicken Myoblast Fusion. Int. J. Mol. Sci. 2015, 16, 26186–26201. [Google Scholar] [CrossRef]
- Amthor, H.; Huang, R.; McKinnell, I.; Christ, B.; Kambadur, R.; Sharma, M.; Patel, K. The Regulation and Action of Myostatin as a Negative Regulator of Muscle Development during Avian Embryogenesis. Dev. Biol. 2002, 251, 241–257. [Google Scholar] [CrossRef]
- Bordini, M.; Soglia, F.; Davoli, R.; Zappaterra, M.; Petracci, M.; Meluzzi, A. Molecular Pathways and Key Genes Associated With Breast Width and Protein Content in White Striping and Wooden Breast Chicken Pectoral Muscle. Front. Physiol. 2022, 13, 936768. [Google Scholar] [CrossRef]
- Nie, Q.-H.; Fang, M.-X.; Xie, L.; Shen, X.; Liu, J.; Luo, Z.-P.; Shi, J.-J.; Zhang, X.-Q. Associations of ATGL Gene Polymorphisms with Chicken Growth and Fat Traits. J. Appl. Genet. 2010, 51, 185–191. [Google Scholar] [CrossRef] [PubMed]
- Harford, I.D.; Pavlidis, H.O.; Anthony, N.B. Divergent Selection for Muscle Color in Broilers. Poult. Sci. 2014, 93, 1059–1066. [Google Scholar] [CrossRef] [PubMed]
- Han, J.C.; Yang, X.D.; Zhang, T.; Li, H.; Li, W.L.; Zhang, Z.Y.; Yao, J.H. Effects of 1alpha-Hydroxycholecalciferol on Growth Performance, Parameters of Tibia and Plasma, Meat Quality, and Type IIb Sodium Phosphate Cotransporter Gene Expression of One- to Twenty-One-Day-Old Broilers. Poult. Sci. 2009, 88, 323–329. [Google Scholar] [CrossRef] [PubMed]
- Zhang, M.; Yan, F.-B.; Li, F.; Jiang, K.-R.; Li, D.-H.; Han, R.-L.; Li, Z.-J.; Jiang, R.-R.; Liu, X.-J.; Kang, X.-T.; et al. Genome-Wide DNA Methylation Profiles Reveal Novel Candidate Genes Associated with Meat Quality at Different Age Stages in Hens. Sci. Rep. 2017, 7, 45564. [Google Scholar] [CrossRef]
- Zhang, Y.; Wang, P.; Xu, X.; Xia, T.; Li, Z.; Zhao, T. Effect of Wooden Breast Myopathy on Water-Holding Capacity and Rheological and Gelling Properties of Chicken Broiler Breast Batters. Poult. Sci. 2020, 99, 3742–3751. [Google Scholar] [CrossRef]
- Devatkal, S.K.; Naveena, B.M.; Kotaiah, T. Quality, Composition, and Consumer Evaluation of Meat from Slow-Growing Broilers Relative to Commercial Broilers. Poult. Sci. 2019, 98, 6177–6186. [Google Scholar] [CrossRef] [PubMed]
- Dransfield, E.; Sosnicki, A.A. Relationship between Muscle Growth and Poultry Meat Quality. Poult. Sci. 1999, 78, 743–746. [Google Scholar] [CrossRef]
- Verdiglione, R.; Cassandro, M. Characterization of Muscle Fiber Type in the Pectoralis Major Muscle of Slow-Growing Local and Commercial Chicken Strains. Poult. Sci. 2013, 92, 2433–2437. [Google Scholar] [CrossRef]
- Du, Y.F.; Ding, Q.L.; Li, Y.M.; Fang, W.R. Identification of Differentially Expressed Genes and Pathways for Myofiber Characteristics in Soleus Muscles between Chicken Breeds Differing in Meat Quality. Anim. Biotechnol. 2017, 28, 83–93. [Google Scholar] [CrossRef] [PubMed]
- Choi, Y.M.; Ryu, Y.C.; Kim, B.C. Influence of Myosin Heavy- and Light Chain Isoforms on Early Postmortem Glycolytic Rate and Pork Quality. Meat Sci. 2007, 76, 281–288. [Google Scholar] [CrossRef] [PubMed]
- Joo, S.T.; Kim, G.D.; Hwang, Y.H.; Ryu, Y.C. Control of Fresh Meat Quality through Manipulation of Muscle Fiber Characteristics. Meat Sci. 2013, 95, 828–836. [Google Scholar] [CrossRef] [PubMed]
- Yu, M.; Wang, H.; Xu, Y.; Yu, D.; Li, D.; Liu, X.; Du, W. Insulin-like Growth Factor-1 (IGF-1) Promotes Myoblast Proliferation and Skeletal Muscle Growth of Embryonic Chickens via the PI3K/Akt Signalling Pathway. Cell Biol. Int. 2015, 39, 910–922. [Google Scholar] [CrossRef] [PubMed]
- Khosinklang, W.; Kubota, S.; Riou, C.; Kaewsatuan, P.; Molee, A.; Molee, W. Omega-3 Meat Enrichment and L-FABP, PPARA, and LPL Genes Expression Are Modified by the Level and Period of Tuna Oil Supplementation in Slow-Growing Chickens. J. Anim. Sci. 2023, 101, skad267. [Google Scholar] [CrossRef] [PubMed]
- Zhou, H.; Mitchell, A.D.; McMurtry, J.P.; Ashwell, C.M.; Lamont, S.J. Insulin-like Growth Factor-I Gene Polymorphism Associations with Growth, Body Composition, Skeleton Integrity, and Metabolic Traits in Chickens. Poult. Sci. 2005, 84, 212–219. [Google Scholar] [CrossRef] [PubMed]
- Petracci, M.; Cavani, C. Muscle Growth and Poultry Meat Quality Issues. Nutrients 2012, 4, 1. [Google Scholar] [CrossRef] [PubMed]
- Piórkowska, K.; Żukowski, K.; Nowak, J.; Połtowicz, K.; Ropka-Molik, K.; Gurgul, A. Genome-Wide RNA-Seq Analysis of Breast Muscles of Two Broiler Chicken Groups Differing in Shear Force. Anim. Genet. 2016, 47, 68–80. [Google Scholar] [CrossRef]
- Zhang, Z.-R.; Jiang, X.-S.; Du, H.-R.; Zhu, Q.; Li, X.-C.; Yang, C.-W.; Liu, Y.-P. Characterization of the Expression Profiles of Calpastatin (CAST) Gene in Chicken. Mol. Biol. Rep. 2012, 39, 1839–1843. [Google Scholar] [CrossRef]
- Xu, T.S.; Gu, L.H.; Zhang, X.H.; Ye, B.G.; Liu, X.L.; Hou, S.S. Characterization of Myostatin Gene (MSTN) of Pekin Duck and the Association of Its Polymorphism with Breast Muscle Traits. Genet. Mol. Res. 2013, 12, 3166–3177. [Google Scholar] [CrossRef]
- Jingting, S.; Qin, X.; Yanju, S.; Ming, Z.; Yunjie, T.; Gaige, J.; Zhongwei, S.; Jianmin, Z. Oxidative and Glycolytic Skeletal Muscles Show Marked Differences in Gene Expression Profile in Chinese Qingyuan Partridge Chickens. PLoS ONE 2017, 12, e0183118. [Google Scholar] [CrossRef]
- Hocquette, J.F.; Gondret, F.; Baéza, E.; Médale, F.; Jurie, C.; Pethick, D.W. Intramuscular Fat Content in Meat-Producing Animals: Development, Genetic and Nutritional Control, and Identification of Putative Markers. Animal 2010, 4, 303–319. [Google Scholar] [CrossRef] [PubMed]
- Peña-Saldarriaga, L.M.; Fernández-López, J.; Pérez-Alvarez, J.A. Quality of Chicken Fat By-Products: Lipid Profile and Colour Properties. Foods 2020, 9, 1046. [Google Scholar] [CrossRef]
- Liu, L.; Cui, H.; Xing, S.; Zhao, G.; Wen, J. Effect of Divergent Selection for Intramuscular Fat Content on Muscle Lipid Metabolism in Chickens. Animals 2019, 10, 4. [Google Scholar] [CrossRef]
- Cui, H.; Liu, L.; Liu, X.; Wang, Y.; Luo, N.; Tan, X.; Zhu, Y.; Liu, R.; Zhao, G.; Wen, J. A Selected Population Study Reveals the Biochemical Mechanism of Intramuscular Fat Deposition in Chicken Meat. J. Anim. Sci. Biotechnol. 2022, 13, 54. [Google Scholar] [CrossRef]
- Tizard, M.L.; Jenkins, K.A.; Cooper, C.A.; Woodcock, M.E.; Challagulla, A.; Doran, T.J. Potential Benefits of Gene Editing for the Future of Poultry Farming. Transgenic Res. 2019, 28, 87–92. [Google Scholar] [CrossRef]
- Xu, K.; Han, C.X.; Zhou, H.; Ding, J.M.; Xu, Z.; Yang, L.Y.; He, C.; Akinyemi, F.; Zheng, Y.M.; Qin, C.; et al. Effective MSTN Gene Knockout by AdV-Delivered CRISPR/Cas9 in Postnatal Chick Leg Muscle. Int. J. Mol. Sci. 2020, 21, 2584. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Zhang, D.; Yin, L.; Li, Z.; Yu, C.; Du, H.; Jiang, X.; Yang, C.; Liu, Y. Integration Analysis of Metabolome and Transcriptome Profiles Revealed the Age-Dependent Dynamic Change in Chicken Meat. Food Res. Int. 2022, 156, 111171. [Google Scholar] [CrossRef]
Attributes | Gene Symbol | Function | Study Model or Breeds | Technology Used for Identification | Refs. |
---|---|---|---|---|---|
Meat color | ATP5L, UQCR10, COX7C | Positively affects breast meat lightness and yellowness | Yellow-feather chickens (Huainan and Wannan chickens) | RNA-Seq/WGCNA | [8] |
CAV3, RBP4A and APOH | Negatively affects breast meat lightness and yellowness | ||||
TBXAS1 | Regulates breast muscle redness | White-feathered chickens (Arbor Acres and Line B) and yellow-feathered chickens (Beijing-You and Jingxing Yellow) exhibit notable variations in meat color | mRNA sequencing/Selection signature analysis/qPCR | [7] | |
SLC2A6, MMP27 and COL1A2 | Regulates breast muscle lightness | ||||
GDPD5 | Positively affects breast muscle yellowness | ||||
PHKG1 | Associated with breast muscle lightness | Ningdu yellow chickens | Association analysis of SNPs using DNA resequencing | [6] | |
ACAA2 | Regulates breast muscle lightness | Danzhou chickens | GWAS | [12] | |
ACSS3 | Regulates breast muscle redness | ||||
PITX2 | CT genotype associated with highest breast muscle lightness | Wuliang Mountain Black-bone chickens | Association analysis of SNPs by DNA direct sequencing | [13] | |
COL1A2 | Associated with breast muscle lightness | F2 cross population between Beijing-You chickens and Cobb-Vantress | GWAS | [14] | |
BCMO1 | Associated with breast muscle yellowness | F2 cross population between high-growth and low-growth chicken lines | Expression QTL analysis | [15] | |
pH value | SIX1 | GG genotype associated with the highest breast muscle pH | Wuliang Mountain Black-bone chickens | Association analysis of SNPs by DNA direct sequencing | [13] |
PITX2 | CT genotype associated with highest breast muscle pH. | ||||
PPP1R3A and SLC37A4 | Associated with muscle pH, potentially reduces pH | Two broiler lines with muscle high pH or low pH values | QTL and selection signature | [16] | |
MAPKAPK3, SLC25A30, RGCC | Regulates breast muscle pH | Two broiler lines with muscle high pH (~6.34) or low pH (~5.55) values | Microarray | [11] | |
PRDX4, EIF2S3, PCYT1B, E1BTD2 | Associated with muscle pH, potentially reduces pH | F2 cross population between high-growth and low-growth chicken lines | Target enrichment analyses for a QTL and next-generation sequencing | [17] | |
PRDX4 | Associated with muscle pH and its expression downregulated | F2 cross population between high-growth and low-growth chicken lines | Expression QTL | [10] | |
ACOT9 | |||||
KLH15, APOO | Associated with muscle pH and its expression upregulated | ||||
Tenderness | CAPN1 | Associated with breast meat tenderness | Da-Heng Broiler | Association analysis of SNPs by DNA direct sequencing | [18] |
CAPN1 | Associated with breast meat tenderness | Qingyuan partridge chicken and Recessive White chicken | Warner–Bratzler shear force/SNP by DNA direct sequencing | [19] | |
Intramuscular fat content | miR-29c-3p-PIK3R1, miR-363-3p-PTEN, miR-6701-3p-PTEN, miR-449c/d-5p-TRAF6, miR-6701-3p-BMPR1B, and miR-1563-WWP1 | Regulates breast muscle IMF deposition | Beijing-You chicken | mRNA-Seq/small RNA-seq/WGCNA | [20] |
LDHA, GPX1, GBE1 | Upregulated in high IMF | High and low IMF chickens from breast muscle | RNA-seq/network analysis | [21] | |
miR-24-3p | Promotes intramuscular preadipocyte proliferation while inhibiting its differentiation by targeting ANXA6 | In vitro | Overexpression and knockdown | [22] | |
ANXA6 | Inhibits intramuscular preadipocyte proliferation and promotes its differentiation | In vitro | Overexpression and knockdown | [22] | |
miR-18b-3p | Inhibits intramuscular preadipocyte differentiation | In vitro | miRNA-Seq/miR-qPCR | [23] | |
ACOT13 | Enhances intramuscular preadipocyte differentiation | In vitro | miRNA-Seq/Luciferase assay/qPCR | [23] | |
ACADL, ACAD9, HADHA and HADHB | Regulates IMF deposition. Upregulated before day 1 and downregulated from day 1 to day 14 after hatch | Beijing-You (slow-growing) and Cobb (fast-growing) chicken | Mass spectrometry-based approaches | [24] | |
Water Holding Capacity | PHKG1 | Causes high drip loss | Ningdu yellow chickens | Association analysis of SNP by DNA direct sequencing | [6] |
PRKAG3 | Associated with water-holding capacity | White Plymouth Rock | Association analysis of SNP by DNA direct sequencing | [25] | |
Muscle fiber diameter | TLR2 and TLR4 | mRNA expression correlates with muscle fiber diameter | Commercial poultry processing plant | Muscle cross-sectional area/qPCR | [26] |
miR-148a-3p | miR-148a-3p upregulates MYHC expression by targeting DYNLL2, promotes myoblast differentiation | In vitro | mRNA and miRNA analysis/overexpression/inhibition | [27] | |
DYNLL2 | Reduces MYHC expression, inhibits myoblast differentiation | In vitro | mRNA and miRNA analysis/overexpression/inhibition | [27] | |
Myostatin, IGF-1, and PDK4 | Expression correlates with muscle fiber diameter during embryogenesis | In vitro | Electron microscopy/qPCR | [28] | |
LncIRS1 | Increases muscle mass and mean muscle fiber | In vivo | Bioinformatic analysis/overexpression/shRNA/fiber cross-sectional area | [29] | |
miR-140-3p | Inhibits myoblast fusion by targeting myomaker | In vitro | miRNA mimic and inhibitor/luciferase assay | [30] | |
Myomaker | Promotes myoblast fusion | In vitro | Overexpression/siRNA | [30] | |
Myostatin | Myostatin downregulates Myf5, Pax3, and MyoD, resulting in a deficiency in limb muscle size | In vivo | Overexpression/wholemount in situ hybridization | [31] | |
Crude protein content | COL5A2, COL6A3, SPARC and MMP2 | mRNA levels covaried with crude protein content in normal and White Striping/Wooden Breasts | Ross 708 broiler | Microarray data collection/Co-expression network analysis; cytoHubba | [32] |
ATGL | Associated with crude protein content of breast muscle | F2 cross population between White Recessive Rock and Xinghua chickens | Association analysis of SNP by DNA direct sequencing | [33] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lu, T.; Abdalla Gibril, B.A.; Xu, J.; Xiong, X. Unraveling the Genetic Foundations of Broiler Meat Quality: Advancements in Research and Their Impact. Genes 2024, 15, 746. https://doi.org/10.3390/genes15060746
Lu T, Abdalla Gibril BA, Xu J, Xiong X. Unraveling the Genetic Foundations of Broiler Meat Quality: Advancements in Research and Their Impact. Genes. 2024; 15(6):746. https://doi.org/10.3390/genes15060746
Chicago/Turabian StyleLu, Tian, Bahareldin Ali Abdalla Gibril, Jiguo Xu, and Xinwei Xiong. 2024. "Unraveling the Genetic Foundations of Broiler Meat Quality: Advancements in Research and Their Impact" Genes 15, no. 6: 746. https://doi.org/10.3390/genes15060746
APA StyleLu, T., Abdalla Gibril, B. A., Xu, J., & Xiong, X. (2024). Unraveling the Genetic Foundations of Broiler Meat Quality: Advancements in Research and Their Impact. Genes, 15(6), 746. https://doi.org/10.3390/genes15060746