Effects of Fat and Carnitine on the Expression of Carnitine Acetyltransferase and Enoyl-CoA Hydratase Short-Chain 1 in the Liver of Juvenile GIFT (Oreochromis niloticus)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Fish
2.2. Sample Collection
2.3. Determination of Serum Biochemical Indexes and Metabolic Enzymes
2.4. RNA Isolation and cDNA Cloning
2.5. Sequence and Phylogenetic Analyses of CAT and ECHS1
2.6. Real-Time Fluorescent Quantitative PCR (qRT-PCR)
2.7. Statistical Analysis
3. Results
3.1. Analysis of CAT and ECHS1 Gene Sequence and Deduced Protein
3.2. Multiple-Sequence Alignment and Phylogenetic Analysis of CAT and ECHS1 Gene
3.3. Expression Level of CAT Gene in Juvenile GIFT Liver within Different Fat and Carnitine Diets
3.4. Expression Level of ECHS1 in Juvenile GIFT Liver within Different Fat and Carnitine Diets
3.5. Effects of Dietary Fat and Carnitine Levels on Blood Biochemical Indicators and Metabolic Enzyme Activities of GIFT
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Tao, Y.-F.; Qiang, J.; Yin, G.-J.; Xu, P.; Shi, Q.; Bao, J.-W. Identification and characterization of lipid metabolism-related microRNAs in the liver of genetically improved farmed tilapia (GIFT, O.niloticus) by deep sequencing. Fish Shellfish Immunol. 2017, 69, 227–235. [Google Scholar] [CrossRef]
- Huang, L.; Cheng, Y.; Huang, K.; Zhou, Y.; Ma, Y.; Zhang, M. Ameliorative effect of Sedum sarmentosum Bunge extract on Tilapia fatty liver via the PPAR and P53 signaling pathway. Sci. Rep. 2018, 8, 8456. [Google Scholar] [CrossRef] [PubMed]
- Qiang, J.; Tao, Y.F.; He, J.; Sun, Y.L.; Xu, P. miR-29a modulates SCD expression and is regulated in response to a saturated fatty acid diet in juvenile genetically improved farmed tilapia (O. niloticus). J. Exp. Biol. 2017, 220, 1481–1489. [Google Scholar] [CrossRef] [PubMed]
- Dan, L.I.; Liu, L.T. Introduction to Diagnosis and Treatment of Fish Fatty Liver Disease. Prog. Vet. Med. 2016, 37, 114–117. [Google Scholar]
- Li, C.P.; Li, J.H.; He, S.Y.; Li, P.; Zhong, X.L. Roles of Fas/Fasl, Bcl-2/Bax, and Caspase-8 in rat nonalcoholic fatty liver disease pathogenesis. Genet. Mol. Res. 2014, 13, 3991–3999. [Google Scholar] [CrossRef]
- Yan, J.; Liao, K.; Wang, T.; Mai, K.; Xu, W.; Ai, Q. Dietary Lipid Levels Influence Lipid Deposition in the Liver of Large Yellow Croaker (L. crocea) by Regulating Lipoprotein Receptors, Fatty Acid Uptake and Triacylglycerol Synthesis and Catabolism at the Transcriptional Level. PLoS ONE 2015, 10, e0129937. [Google Scholar] [CrossRef] [PubMed]
- Qiang, J.; Yang, H.; Wang, H.; Kpundeh, M.D.; Xu, P. Interacting effects of water temperature and dietary protein level on hematological parameters in Nile tilapia juveniles, O. niloticus (L.) and mortality under Streptococcus iniae infection. Fish Shellfish Immunol. 2013, 34, 8–16. [Google Scholar] [CrossRef] [PubMed]
- Qiang, J.; Yang, H.; Wang, H.; Kpundeh, M.D.; Xu, P. Interactive effects of temperature-dietary protein level on somatotropic gene expression and its interrelationship with growth in juvenile GIFT tilapia O. niloticus. Aquaculture 2012, 364–365, 263–271. [Google Scholar] [CrossRef]
- Boren, J.; Taskinen, M.R.; Olofsson, S.O.; Levin, M. Ectopic lipid storage and insulin resistance: A harmful relationship. J. Intern. Med. 2013, 274, 25–40. [Google Scholar] [CrossRef]
- Tan, Q.S.; Wang, F.; Xie, S.Q.; Zhu, X.M.; Lei, W.; Shen, J.Z. Effect of high dietary starch levels on the growth performance, blood chemistry and body composition of gibel carp (Carassius auratus var. gibelio). Aquac. Res. 2009, 40, 1011–1018. [Google Scholar] [CrossRef]
- Liu, Y.; Xu, W.; Zhai, T.; You, J.; Chen, Y. Silibinin ameliorates hepatic lipid accumulation and oxidative stress in mice with non-alcoholic steatohepatitis by regulating CFLAR-JNK pathway. Acta Pharm. Sin. B 2019, 9, 745–757. [Google Scholar] [CrossRef] [PubMed]
- Gimeno-Mallench, L.; Mas-Bargues, C.; Ingles, M.; Olaso, G.; Borras, C.; Gambini, J.; Vina, J. Resveratrol shifts energy metabolism to increase lipid oxidation in healthy old mice. Biomed. Pharmacother. 2019, 118, 109130. [Google Scholar] [CrossRef] [PubMed]
- Govindasamy, L.; Kukar, T.; Lian, W.; Pedersen, B.; Gu, Y.; Agbandje-McKenna, M.; Jin, S.; McKenna, R.; Wu, D. Structural and mutational characterization of L-carnitine binding to human carnitine acetyltransferase. J. Struct. Biol. 2004, 146, 416–424. [Google Scholar] [CrossRef] [PubMed]
- Alberdi, G.; Rodriguez, V.M.; Macarulla, M.T.; Miranda, J.; Churruca, I.; Portillo, M.P. Hepatic lipid metabolic pathways modified by resveratrol in rats fed an obesogenic diet. Nutrition 2013, 29, 562–567. [Google Scholar] [CrossRef] [PubMed]
- Price, N.L.; Gomes, A.P.; Ling, A.J.; Duarte, F.V.; Martin-Montalvo, A.; North, B.J.; Agarwal, B.; Ye, L.; Ramadori, G.; Teodoro, J.S.; et al. SIRT1 is required for AMPK activation and the beneficial effects of resveratrol on mitochondrial function. Cell Metab. 2012, 15, 675–690. [Google Scholar] [CrossRef] [PubMed]
- Park, S.H.; Gammon, S.R.; Knippers, J.D.; Paulsen, S.R.; Rubink, D.S.; Winder, W.W. Phosphorylation-activity relationships of AMPK and acetyl-CoA carboxylase in muscle. J. Appl. Physiol. 2002, 92, 2475–2482. [Google Scholar] [CrossRef]
- Ramsay, R.R.; Gandour, R.D.; van der Leij, F.R. Molecular enzymology of carnitine transfer and transport. Biochim. Biophys. Acta 2001, 1546, 21–43. [Google Scholar] [CrossRef]
- Wang, C.C.; Si, L.F.; Li, W.Y.; Zheng, J.L. A functional gene encoding carnitine palmitoyltransferase 1 and its transcriptional and kinetic regulation during fasting in large yellow croaker. Comp. Biochem. Physiol. Part B Biochem. Mol. Biol. 2019, 231, 26–33. [Google Scholar] [CrossRef]
- Zheng, J.L.; Luo, Z.; Zhu, Q.L.; Chen, Q.L.; Gong, Y. Molecular characterization, tissue distribution and kinetic analysis of carnitine palmitoyltransferase I in juvenile yellow catfish Pelteobagrus fulvidraco. Genomics 2013, 101, 195–203. [Google Scholar] [CrossRef]
- Lu, K.L.; Zhang, D.D.; Wang, L.N.; Xu, W.N.; Liu, W.B. Molecular characterization of carnitine palmitoyltransferase IA in Megalobrama amblycephala and effects on its expression of feeding status and dietary lipid and berberine. Comp. Biochem. Physiol. Part B Biochem. Mol. Biol. 2016, 191, 20–25. [Google Scholar] [CrossRef]
- Sharpe, A.J.; McKenzie, M. Mitochondrial Fatty Acid Oxidation Disorders Associated with Short-Chain Enoyl-CoA Hydratase (ECHS1) Deficiency. Cells 2018, 7, 46. [Google Scholar] [CrossRef]
- Balasubramaniam, S.; Riley, L.G.; Bratkovic, D.; Ketteridge, D.; Manton, N.; Cowley, M.J.; Gayevskiy, V.; Roscioli, T.; Mohamed, M.; Gardeitchik, T.; et al. Unique presentation of cutis laxa with Leigh-like syndrome due to ECHS1 deficiency. J. Inherit. Metab. Dis. 2017, 40, 745–747. [Google Scholar] [CrossRef]
- Lin, B.Y.; Xiao, C.X.; Zhao, W.X.; Xiao, L.; Chen, X.; Li, P.; Wang, X.M. Enoyl-coenzyme A hydratase short chain 1 silencing attenuates the proliferation of hepatocellular carcinoma by inhibiting epidermal growth factor signaling in vitro and in vivo. Mol. Med. Rep. 2015, 12, 1421–1428. [Google Scholar] [CrossRef] [PubMed]
- Al Mutairi, F.; Shamseldin, H.E.; Alfadhel, M.; Rodenburg, R.J.; Alkuraya, F.S. A lethal neonatal phenotype of mitochondrial short-chain enoyl-CoA hydratase-1 deficiency. Clin. Genet. 2017, 91, 629–633. [Google Scholar] [CrossRef] [PubMed]
- Engel, C.K.; Kiema, T.R.; Hiltunen, J.K.; Wierenga, R.K. The Crystal Structure of Enoyl-CoA Hydratase Complexed with Octanoyl-CoA Reveals the Structural Adaptations Required for Binding of a Long Chain Fatty Acid-CoA Molecule. J. Mol. Biol. 1998, 275, 847–859. [Google Scholar] [CrossRef] [PubMed]
- Peters, H.; Buck, N.; Wanders, R.; Ruiter, J.; Waterham, H.; Koster, J.; Yaplito-Lee, J.; Ferdinandusse, S.; Pitt, J. ECHS1 mutations in Leigh disease: A new inborn error of metabolism affecting valine metabolism. Brain A J. Neurol. 2014, 137, 2903–2908. [Google Scholar] [CrossRef] [PubMed]
- Haack, T.B.; Jackson, C.B.; Murayama, K.; Kremer, L.S.; Schaller, A.; Kotzaeridou, U.; de Vries, M.C.; Schottmann, G.; Santra, S.; Buchner, B.; et al. Deficiency of ECHS1 causes mitochondrial encephalopathy with cardiac involvement. Ann. Clin. Transl. Neurol. 2015, 2, 492–509. [Google Scholar] [CrossRef] [PubMed]
- Strand, E.; Lysne, V.; Grinna, M.L.; Bohov, P.; Svardal, A.; Nygard, O.; Berge, R.K.; Bjorndal, B. Short-Term Activation of Peroxisome Proliferator-Activated Receptors alpha and gamma Induces Tissue-Specific Effects on Lipid Metabolism and Fatty Acid Composition in Male Wistar Rats. PPAR Res. 2019, 2019, 8047627. [Google Scholar] [CrossRef] [PubMed]
- Konstantynowicz-Nowicka, K.; Berk, K.; Chabowski, A.; Kasacka, I.; Bielawiec, P.; Lukaszuk, B.; Harasim-Symbor, E. High-Fat Feeding in Time-Dependent Manner Affects Metabolic Routes Leading to Nervonic Acid Synthesis in NAFLD. Int. J. Mol. Sci. 2019, 20, 3829. [Google Scholar] [CrossRef]
- Cronin, C.N. cDNA cloning, recombinant expression, and site-directed mutagenesis of bovine liver carnitine octanoyltransferase--Arg505 binds the carboxylate group of carnitine. Eur. J. Biochem. 1997, 247, 1029–1037. [Google Scholar] [CrossRef]
- Melegh, B.; Seress, L.; Bedekovics, T.; Kispal, G.; Sumegi, B.; Trombitas, K.; Mehes, K. Muscle carnitine acetyltransferase and carnitine deficiency in a case of mitochondrial encephalomyopathy. J. Inherit. Metab. Dis. 1999, 22, 827–838. [Google Scholar] [CrossRef]
- Holden, H.M.; Benning, M.M.; Haller, T.; Gerlt, J.A. The crotonase superfamily: Divergently related enzymes that catalyze different reactions involving acyl coenzyme a thioesters. Acc. Chem. Res. 2001, 34, 145–157. [Google Scholar] [CrossRef] [PubMed]
- Agnihotri, G.; Liu, H.W. Enoyl-CoA hydratase. reaction, mechanism, and inhibition. Bioorganic Med. Chem. 2003, 11, 9–20. [Google Scholar] [CrossRef] [PubMed]
- He, X.Y.; Yang, S.Y. Glutamate-119 of the large alpha-subunit is the catalytic base in the hydration of 2-trans-enoyl-coenzyme A catalyzed by the multienzyme complex of fatty acid oxidation from E. coli. Biochemistry 1997, 36, 11044–11049. [Google Scholar] [CrossRef] [PubMed]
- Zhang, D.; Lu, K.; Dong, Z.; Jiang, G.; Xu, W.; Liu, W. The effect of exposure to a high-fat diet on microRNA expression in the liver of blunt snout bream (Megalobrama amblycephala). PLoS ONE 2014, 9, e96132. [Google Scholar] [CrossRef]
- Berlanga, A.; Guiu-Jurado, E.; Porras, J.A.; Auguet, T. Molecular pathways in non-alcoholic fatty liver disease. Clin. Exp. Gastroenterol. 2014, 7, 221–239. [Google Scholar] [CrossRef]
- Zhou, J.C.; Han, D.; Jin, J.Y.; Xie, S.Q.; Yang, Y.X.; Zhu, X.M. Compared to fish oil alone, a corn and fish oil mixture decreases the lipid requirement of a freshwater fish species, C. auratus gibelio. Aquaculture 2014, 428–429, 272–279. [Google Scholar] [CrossRef]
- Dong, G.; Zhu, X.; Ren, H.; Nie, B.; Lu, C.; Hui, L.; Bo, Y. Effects of oxidized fish oil intake on tissue lipid metabolism and fatty acid composition of channel catfish (I. punctatus). Aquac. Res. 2015, 45, 1867–1880. [Google Scholar] [CrossRef]
- Altamimi, T.R.; Thomas, P.D.; Darwesh, A.M.; Fillmore, N.; Mahmoud, M.U.; Zhang, L.; Gupta, A.; Al Batran, R.; Seubert, J.M.; Lopaschuk, G.D. Cytosolic carnitine acetyltransferase as a source of cytosolic acetyl-CoA: A possible mechanism for regulation of cardiac energy metabolism. Biochem. J. 2018, 475, 959–976. [Google Scholar] [CrossRef]
- Zou, W.; Noh, S.K.; Owen, K.Q.; Koo, S.I. Dietary L-carnitine enhances the lymphatic absorption of fat and alpha-tocopherol in ovariectomized rats. J. Nutr. 2005, 135, 753–756. [Google Scholar] [CrossRef]
- Dias, J.; Arzel, J.; Corraze, G.; Kaushik, J. Effects of dietary L-carnitine supplementation on growth and lipid metabolism in European seabass (Dicentrarchus labrax). Aquac. Res. 2015, 32, 206–215. [Google Scholar] [CrossRef]
- Karlic, H.; Lohninger, S.; Koeck, T.; Lohninger, A. Dietary l-carnitine stimulates carnitine acyltransferases in the liver of aged rats. J. Histochem. Cytochem. Off. J. Histochem. Soc. 2002, 50, 205–212. [Google Scholar] [CrossRef] [PubMed]
- Liang, Y.; Huang, L.; Kai, H.; Yu, Z.; Wu, L. Effects of fat, choline and feeding regime on catalase gene expression in the liver of GIFT (O. niloticus). Aquac. Res. 2018, 49, 1250–1261. [Google Scholar] [CrossRef]
- Hale, D.E.; Bennett, M.J. Fatty acid oxidation disorders: A new class of metabolic diseases. J. Pediatr. 1992, 121, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Adeva-Andany, M.M.; Carneiro-Freire, N.; Seco-Filgueira, M.; Fernandez-Fernandez, C.; Mourino-Bayolo, D. Mitochondrial beta-oxidation of saturated fatty acids in humans. Mitochondrion 2019, 46, 73–90. [Google Scholar] [CrossRef] [PubMed]
- Ferdinandusse, S.; Mulders, J.; Ijlst, L.; Denis, S.; Wanders, R.J.B.; Communications, B.R. Molecular Cloning and Expression of Human Carnitine Octanoyltransferase: Evidence for Its Role in the Peroxisomal β-Oxidation of Branched-Chain Fatty Acids. Biochem. Biophys. Res. Commun. 1999; 263, 213–218. [Google Scholar]
- Baragi, V.; Lovell, R.T. Digestive Enzyme Activities in Striped Bass from First Feeding through Larva Development. Trans. Am. Fish. Soc. 1986, 115, 478–484. [Google Scholar] [CrossRef]
- Pedersen, B.H.; Nilssen, E.M.; Hjelmeland, K.J. Variations in the content of trypsin and trysinogen in larval herring (Clupea harengus) digesting copepod nauplii. Mar. Biol. 1987, 94, 171–181. [Google Scholar] [CrossRef]
- Hiraoka, Y.; Nakagawa, H.; Murachi, S. Blood properties of rainbow trout in acute hepatotoxity by carbon tetrachloride. Bull. Jpn. Soc. Sci. Fish. 1979, 45, 527–532. [Google Scholar] [CrossRef]
- Lin, D.; Mao, Y.; Cai, F. Nutritional lipid liver disease of grass carp Ctenopharyngodon idullus (C. et V.). Chin. J. Oceanol. Limnol. 1990, 8, 363–373. [Google Scholar]
Material | Group | ||||||||
---|---|---|---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | |
Fish meal | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 5 |
Soybean meal | 43 | 43 | 43 | 43 | 43 | 43 | 43 | 43 | 43 |
Corn | 15 | 15 | 15 | 15 | 15 | 15 | 15 | 15 | 15 |
Soybean | 9 | 9 | 9 | 9 | 9 | 9 | 9 | 9 | 9 |
Rape meal | 12 | 12 | 12 | 12 | 12 | 12 | 12 | 12 | 12 |
Calcium phosphate | 1.5 | 1.5 | 1.5 | 1.5 | 1.5 | 1.5 | 1.5 | 1.5 | 1.5 |
NaCl | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 |
Choline Chloride | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
Vitamins premix | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 |
Mineral premix | 0.25 | 0.25 | 0.25 | 0.25 | 0.25 | 0.25 | 0.25 | 0.25 | 0.25 |
Soybean oil | 2 | 2 | 2 | 6 | 6 | 6 | 10 | 10 | 10 |
Carnitine | 0.01 | 0.05 | 0.1 | 0.01 | 0.05 | 0.1 | 0.01 | 0.05 | 0.1 |
Carboxymethyl cellulose | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 |
Microcrystalline cellulose | 8.24 | 8.2 | 8.15 | 4.24 | 4.2 | 4.15 | 0.24 | 0.2 | 0.15 |
Total | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 |
Main nutrients | |||||||||
Crude protein | 35.61 | 35.54 | 36.17 | 35.59 | 35.39 | 35.43 | 35.58 | 34.96 | 35.50 |
Crude fat | 5.16 | 5.42 | 5.23 | 9.07 | 8.93 | 9.34 | 12.98 | 12.47 | 12.76 |
Moisture | 7.00 | 7.25 | 7.02 | 7.15 | 7.17 | 7.43 | 7.22 | 7.39 | 7.45 |
Primer | Sequences | Product Expected Length/bp | Tm/°C |
---|---|---|---|
CAT1-F | CTGATAGCAGCCGTTCTGGACTT | 751 | 62.7 |
CAT1-R | CCTCTTGATTTCTCGGTCTATGTGA | 61.9 | |
CAT2-F | GGACATAGAGCACGCCAAGC | 1297 | 60.6 |
CAT2-R | TGCAGAACAAGATCCTCCAAATA | 59.3 | |
ECHS1-F | CCAACAAATAAGAACCGACAGGA | 863 | 61.1 |
ECHS1-R | TTTCCAAGCGATTTCCCTCA | 60.6 |
Primer | Sequences | Product Expected Length/bp |
---|---|---|
5′RACE Outer Primer | CATGGCTACATGCTGACAGCCTA | 23 |
5′RACE Inner Primer | CGCGGATCCACAGCCTACTGATGATCAGTCGATG | 34 |
5′CAT-GSP1 | CCCCAAACACGACTACATTGCTCAT | 25 |
5′CAT-GSP2 | ACACGACTACATTGCTCATTACGGC | 25 |
5′ECHS1-GSP1 | AGCCCATCGCACAGAGCATTGAG | 23 |
5′ECHS1-GSP2 | TCCCACCTCCTTCATCAGCCCAT | 23 |
3′RACE Outer Primer | TACCGTCGTTCCACTAGTGATTT | 23 |
3′RACE Inner Primer | CGCGGATCCTCCACTAGTGATTTCACTATAGG | 32 |
3′CAT-GSP1 | AGGTGAAAAAGGGGTTTGAATGG | 23 |
3′CAT-GSP2 | AGGGTGATGTGGTGTTTTTGTGT | 23 |
3′ECHS1-GSP1 | CAAATCCCTGGCGATGGAAATGG | 23 |
3′ECHS1-GSP2 | GGTGTCTGAAGCCGTAAAATGTGG | 24 |
Primer | Sequences | Tm/°C |
---|---|---|
QT-CAT-F | CGCCTGCTGAGAGATAAACTGAA | 63.05 |
QT-CAT-R | CGCCCACCACAAACTGAA | 61.72 |
QT-ECHS1-F | AGGGGACAGGATTGGTGCT | 61.87 |
QT-ECHS1-R | TTCTCTCCACATTTTACGGCTTC | 61.77 |
Fat Level (%BW/d) | Carnitine Level (mg·kg−1) | CACT (U/L) | ACC (U/L) | FAS (nmol/L) | HL (μmol/L) | LPL (U/L) |
---|---|---|---|---|---|---|
2% | 100 | 74.27 ± 0.93 c | 185.83 ± 8.77 ab | 6.64 ± 0.17 f | 89.81 ± 1.97 c | 56.50 ± 1.26 d |
2% | 500 | 77.03 ± 3.18 c | 218.74 ± 8.56 c | 5.28 ± 0.20 bcd | 61.97 ± 4.50 a | 47.31 ± 2.00 bc |
2% | 1000 | 63.21 ± 0.93 b | 198.28 ± 6.08 b | 4.38 ± 0.10 a | 85.73 ± 4.74 c | 40.87 ± 1.99 a |
6% | 100 | 98.54 ± 1.62 e | 180.56 ± 13.19 a | 6.50 ± 0.10 f | 106.24 ± 2.70 de | 55.13 ± 1.62 de |
6% | 500 | 48.57 ± 1.69 a | 260.29 ± 6.24 d | 4.99 ± 0.26 c | 104.75 ± 1.28 d | 43.61 ± 1.66 ab |
6% | 1000 | 65.38 ± 1.57 b | 308.59 ± 1.67 e | 5.66 ± 0.27 e | 76.17 ± 2.09 b | 48.57 ± 2.49 c |
10% | 100 | 91.37 ± 2.54 d | 304.79 ± 4.56 e | 5.40 ± 0.12 de | 61.23 ± 2.75 a | 46.78 ± 2.56 bc |
10% | 500 | 100.18 ± 3.60 e | 175.08 ± 8.30 a | 4.80 ± 0.14 b | 111.90 ± 2.70 f | 41.90 ± 2.84 a |
10% | 1000 | 91.14 ± 3.18 d | 326.72 ± 4.31 f | 5.02 ± 0.23 bc | 110.60 ± 3.42 ef | 44.07 ± 4.24 abc |
p-values | ||||||
Fat level | 0.000 | 0.000 | 0.000 | 0.000 | 0.002 | |
Carnitine level | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | |
Fat level × Carnitine level | 0.000 | 0.000 | 0.000 | 0.000 | 0.001 |
Fat Level (%BW/d) | Carnitine Level (mg·kg−1) | ALT (U/L) | AST (U/L) | LDH (U/L) | CHOL (mmol/L) | TG (mmol/L) | HDL-C (mmol/L) | LDL-C (mmol/L) |
---|---|---|---|---|---|---|---|---|
2% | 100 | 23.33 ± 3.06 ab | 189 ± 11.27 e | 1102.33 ± 70.00 d | 2.09 ± 0.49 b | 0.51 ± 0.20 a | 1.58 ± 0.27 c | 0.31 ± 0.13 bc |
2% | 500 | 16.33 ± 3.06 a | 98.33 ± 13.61 a | 488.67 ± 8.74 a | 1.08 ± 0.09 a | 0.31 ± 0.08 a | 0.98 ± 0.09 a | 0.11 ± 0.01 a |
2% | 1000 | 21.67 ± 7.02 ab | 105.33 ± 17.03 ab | 533 ± 31.10 a | 1.30 ± 0.50 a | 0.52 ± 0.20 a | 1.11 ± 0.34 ab | 0.15 ± 0.06 ab |
6% | 100 | 53.67 ± 9.07 d | 283.33 ± 28.68 f | 2142.33 ± 165.67 e | 2.29 ± 0.44 b | 0.55 ± 0.09 a | 1.56 ± 0.29 c | 0.26 ± 0.09 abc |
6% | 500 | 15.67 ± 3.79 a | 116.67 ± 10.07 abc | 871 ± 89.37 bc | 1.24 ± 0.27 a | 0.31 ± 0.02 a | 1.07 ± 0.22 ab | 0.15 ± 0.03 ab |
6% | 1000 | 18.67 ± 3.79 ab | 135.67 ± 27.10 abcd | 939.67 ± 54.41 cd | 1.66 ± 0.57 ab | 0.38 ± 0.08 a | 1.35 ± 0.36 abc | 0.23 ± 0.13 abc |
10% | 100 | 28.33 ± 7.37 b | 165.67 ± 29.00 de | 792.67 ± 196.29 bc | 1.73 ± 0.15 ab | 0.45 ± 0.03 a | 1.41 ± 0.08 bc | 0.2 ± 0.02 abc |
10% | 500 | 23.67 ± 6.80 ab | 144.33 ± 21.73 bcd | 665.67 ± 114.41 ab | 1.64 ± 0.10 ab | 0.38 ± 0.08 a | 1.33 ± 0.04 abc | 0.18 ± 0.03 ab |
10% | 1000 | 30.0 ± 7.21 b | 154 ± 28.35 cde | 854.67 ± 137.57 bc | 2.20 ± 0.46 b | 0.90 ± 0.25 b | 1.47 ± 0.15 bc | 0.35 ± 0.15 c |
p-values | ||||||||
Fat level | 0.015 | 0.001 | 0 | 0.152 | 0.051 | 0.291 | 0.435 | |
Carnitine level | 0 | 0 | 0 | 0.004 | 0.002 | 0.008 | 0.034 | |
Fat level × Carnitine level | 0 | 0 | 0 | 0.065 | 0.013 | 0.266 | 0.095 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Guo, R.; Huang, K.; Yu, K.; Li, J.; Huang, J.; Wang, D.; Li, Y. Effects of Fat and Carnitine on the Expression of Carnitine Acetyltransferase and Enoyl-CoA Hydratase Short-Chain 1 in the Liver of Juvenile GIFT (Oreochromis niloticus). Genes 2024, 15, 480. https://doi.org/10.3390/genes15040480
Guo R, Huang K, Yu K, Li J, Huang J, Wang D, Li Y. Effects of Fat and Carnitine on the Expression of Carnitine Acetyltransferase and Enoyl-CoA Hydratase Short-Chain 1 in the Liver of Juvenile GIFT (Oreochromis niloticus). Genes. 2024; 15(4):480. https://doi.org/10.3390/genes15040480
Chicago/Turabian StyleGuo, Ruijie, Kai Huang, Kai Yu, Jinghua Li, Jiao Huang, Dandan Wang, and Yuda Li. 2024. "Effects of Fat and Carnitine on the Expression of Carnitine Acetyltransferase and Enoyl-CoA Hydratase Short-Chain 1 in the Liver of Juvenile GIFT (Oreochromis niloticus)" Genes 15, no. 4: 480. https://doi.org/10.3390/genes15040480
APA StyleGuo, R., Huang, K., Yu, K., Li, J., Huang, J., Wang, D., & Li, Y. (2024). Effects of Fat and Carnitine on the Expression of Carnitine Acetyltransferase and Enoyl-CoA Hydratase Short-Chain 1 in the Liver of Juvenile GIFT (Oreochromis niloticus). Genes, 15(4), 480. https://doi.org/10.3390/genes15040480