Xenopus Sox11 Partner Proteins and Functional Domains in Neurogenesis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plasmids
2.2. Identifying Cells Using Xenopus Time Series Database
2.3. Xenopus Animal Usage and Embryo Manipulation
2.4. Whole-Mount In Situ Hybridization
2.5. Frog Microinjection
2.6. In Vitro Translation (IVT) and Co-Immunoprecipitation (co-IP)
2.7. Western Blotting
3. Results and Discussion
3.1. Sox11, Neurog, and Pou3f2 Are Co-Expressed in Distinct Cell Types of the Neural Plate
3.2. Sox11 Partners with Neurog2 and Pou3f2 but Not Neurog1
3.3. Sox11 N-Terminus and HMG Domain Are Necessary for Protein–Protein Interactions
3.4. Sox11 C-Terminus Is Required for Neuron Formation
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sarkar, A.; Hochedlinger, K. The Sox family of transcription factors: Versatile regulators of stem and progenitor cell fate. Cell Stem Cell 2013, 12, 15–30. [Google Scholar] [CrossRef] [PubMed]
- Phochanukul, N.; Russell, S. No backbone but lots of Sox: Invertebrate Sox genes. Int. J. Biochem. Cell Biol. 2010, 42, 453–464. [Google Scholar] [CrossRef]
- Kondoh, H.; Kamachi, Y. SOX-partner code for cell specification: Regulatory target selection and underlying molecular mechanisms. Int. J. Biochem. Cell Biol. 2010, 42, 391–399. [Google Scholar] [CrossRef]
- Kiefer, J.C. Back to basics: Sox genes. Dev. Dyn. 2007, 236, 2356–2366. [Google Scholar] [CrossRef]
- Bergsland, M.; Ramsköld, D.; Zaouter, C.; Klum, S.; Sandberg, R.; Muhr, J.; Ramskold, D.; Zaouter, C.; Klum, S.; Sandberg, R.; et al. Sequentially acting Sox transcription factors in neural lineage development. Genes Dev. 2011, 25, 2453–2464. [Google Scholar] [CrossRef]
- Reiprich, S.; Wegner, M. From CNS stem cells to neurons and glia: Sox for everyone. Cell Tissue Res. 2014, 359, 111–124. [Google Scholar] [CrossRef]
- Hyodo-Miura, J.; Urushiyama, S.; Nagai, S.; Nishita, M.; Ueno, N.; Shibuya, H. Involvement of NLK and Sox11 in neural induction in Xenopus development. Genes Cells 2002, 7, 487–496. [Google Scholar] [CrossRef]
- Whittington, N.; Cunningham, D.; Le, T.K.; De Maria, D.; Silva, E.M. Sox21 regulates the progression of neuronal differentiation in a dose-dependent manner. Dev. Biol. 2015, 397, 237–247. [Google Scholar] [CrossRef]
- Kopp, J.L.; Ormsbee, B.D.; Desler, M.; Rizzino, A. Small Increases in the Level of Sox2 Trigger the Differentiation of Mouse Embryonic Stem Cells. Stem Cells 2008, 26, 903–911. [Google Scholar] [CrossRef] [PubMed]
- Taranova, O.V.; Magness, S.T.; Fagan, B.M.; Wu, Y.; Surzenko, N.; Hutton, S.R.; Pevny, L.H. SOX2 is a dose-dependent regulator of retinal neural progenitor competence. Genes Dev. 2006, 20, 1187–1202. [Google Scholar] [CrossRef] [PubMed]
- Ferri, A.L.; Cavallaro, M.; Braida, D.; Di Cristofano, A.; Canta, A.; Vezzani, A.; Ottolenghi, S.; Pandolfi, P.P.; Sala, M.; DeBiasi, S.; et al. Sox2 deficiency causes neurodegeneration and impaired neurogenesis in the adult mouse brain. Development 2004, 131, 3805–3819. [Google Scholar] [CrossRef]
- Wegner, M. From head to toes: The multiple facets of Sox proteins. Nucleic Acids Res. 1999, 27, 1409–1420. [Google Scholar] [CrossRef]
- Kuhlbrodt, K.; Herbarth, B.; Sock, E.; Enderich, J.; Hermans-Borgmeyer, I.; Wegner, M. Cooperative function of POU proteins and SOX proteins in glial cells. J. Biol. Chem. 1998, 273, 16050–16057. [Google Scholar] [CrossRef]
- Kamachi, Y.; Uchikawa, M.; Kondoh, H. Pairing SOX off: With partners in the regulation of embryonic development. Trends Genet. 2000, 16, 182–187. [Google Scholar] [CrossRef]
- Wilson, M.; Koopman, P. Matching SOX: Partner proteins and co-factors of the SOX family of transcriptional regulators. Curr. Opin. Genet. Dev. 2002, 12, 441–446. [Google Scholar] [CrossRef]
- Chew, J.-L.; Loh, Y.-H.; Zhang, W.; Chen, X.; Tam, W.-L.; Yeap, L.-S.; Li, P.; Ang, Y.-S.; Lim, B.; Robson, P.; et al. Reciprocal Transcriptional Regulation of Pou5f1 and Sox2 via the Oct4/Sox2 Complex in Embryonic Stem Cells. Mol. Cell. Biol. 2005, 25, 6031–6046. [Google Scholar] [CrossRef]
- Mallanna, S.K.; Ormsbee, B.D.; Iacovino, M.; Gilmore, J.M.; Cox, J.L.; Kyba, M.; Washburn, M.P.; Rizzino, A. Proteomic analysis of Sox2-associated proteins during early stages of mouse embryonic stem cell differentiation identifies Sox21 as a novel regulator of stem cell fate. Stem Cells 2010, 28, 1715–1727. [Google Scholar] [CrossRef]
- Wegner, M.; Stolt, C.C. From stem cells to neurons and glia: A Soxist’s view of neural development. Trends Neurosci. 2005, 28, 583–588. [Google Scholar] [CrossRef] [PubMed]
- Chew, L.J.; Gallo, V. The Yin and Yang of Sox proteins: Activation and repression in development and disease. J. Neurosci. Res. 2009, 87, 3277–3287. [Google Scholar] [CrossRef] [PubMed]
- Yuan, H.; Corbi, N.; Basilico, C.; Dailey, L. Developmental-specific activity of the FGF-4 enhancer requires the synergistic action of Sox2 and Oct-3. Genes Dev. 1995, 9, 2635–2645. [Google Scholar] [CrossRef] [PubMed]
- Tanaka, S.; Kamachi, Y.; Tanouchi, A.; Hamada, H.; Jing, N.; Kondoh, H. Interplay of SOX and POU factors in regulation of the Nestin gene in neural primordial cells. Mol. Cell. Biol. 2004, 24, 8834–8846. [Google Scholar] [CrossRef] [PubMed]
- Zhao, P.; Zhu, T.; Lu, X.; Zhu, J.; Li, L. Neurogenin 2 enhances the generation of patient-specific induced neuronal cells. Brain Res. 2015, 1615, 51–60. [Google Scholar] [CrossRef] [PubMed]
- Wissmüller, S.; Kosian, T.; Wolf, M.; Finzsch, M.; Wegner, M.; Wißmü, S.; Kosian, T.; Wolf, M.; Finzsch, M.; Wegner, M. The high-mobility-group domain of Sox proteins interacts with DNA-binding domains of many transcription factors. Nucleic Acids Res. 2006, 34, 1735–1744. [Google Scholar] [CrossRef] [PubMed]
- Yuan, X.; Lu, M.L.; Li, T.; Balk, S.P. SRY Interacts with and Negatively Regulates Androgen Receptor Transcriptional Activity. J. Biol. Chem. 2001, 276, 46647–46654. [Google Scholar] [CrossRef] [PubMed]
- De Santa Barbara, P.; Bonneaud, N.; Boizet, B.; Desclozeaux, M.; Moniot, B.; Sudbeck, P.; Scherer, G.; Poulat, F.; Berta, P. Direct Interaction of SRY-Related Protein SOX9 and Steroidogenic Factor 1 Regulates Transcription of the Human Anti-Müllerian Hormone Gene. Mol. Cell. Biol. 1998, 18, 6653–6665. [Google Scholar] [CrossRef] [PubMed]
- Botquin, V.; Hess, H.; Fuhrmann, G.; Anastassiadis, C.; Gross, M.K.; Vriend, G.; Schöler, H.R. New POU dimer configuration mediates antagonistic control of an osteopontin preimplantation enhancer by Oct-4 and Sox-2. Genes Dev. 1998, 12, 2073–2090. [Google Scholar] [CrossRef]
- Cox, J.L.; Mallanna, S.K.; Luo, X.; Rizzino, A. Sox2 uses multiple domains to associate with proteins present in Sox2-protein complexes. PLoS ONE 2010, 5, e15486. [Google Scholar] [CrossRef]
- Bowles, J.; Schepers, G.; Koopman, P. Phylogeny of the SOX family of developmental transcription factors based on sequence and structural indicators. Dev. Biol. 2000, 227, 239–255. [Google Scholar] [CrossRef]
- Uy, B.R.; Simoes-Costa, M.; Koo, D.E.S.; Sauka-Spengler, T.; Bronner, M.E. Evolutionarily conserved role for SoxC genes in neural crest specification and neuronal differentiation. Dev. Biol. 2015, 397, 282–292. [Google Scholar] [CrossRef]
- Chen, C.; Lee, G.A.; Pourmorady, A.; Sock, E.; Donoghue, M.J. Orchestration of Neuronal Differentiation and Progenitor Pool Expansion in the Developing Cortex by SoxC Genes. J. Neurosci. 2015, 35, 10629–10642. [Google Scholar] [CrossRef]
- Bergsland, M.; Werme, M.; Malewicz, M.; Perlmann, T.; Muhr, J. The establishment of neuronal properties is controlled by Sox4 and Sox11. Genes Dev. 2006, 20, 3475–3486. [Google Scholar] [CrossRef] [PubMed]
- Jankowski, M.P.; Cornuet, P.K.; McIlwrath, S.; Koerber, H.R.; Albers, K.M. SRY-box containing gene 11 (Sox11) transcription factor is required for neuron survival and neurite growth. Neuroscience 2006, 143, 501–514. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.; Jin, J.; Lee, G.A.; Silva, E.; Donoghue, M. Cross-species functional analyses reveal shared and separate roles for Sox11 in frog primary neurogenesis and mouse cortical neuronal differentiation. Biol. Open 2016, 5, 409–417. [Google Scholar] [CrossRef] [PubMed]
- Carl, S.H.; Russell, S. Common binding by redundant group B Sox proteins is evolutionarily conserved in Drosophila. BMC Genom. 2015, 16, 292. [Google Scholar] [CrossRef] [PubMed]
- Sive, H.L.; Grainger, R.M.; Harland, R.M. Baskets for In Situ Hybridization and Immunohistochemistry. Cold Spring Harb. Protoc. 2007, 2007, pdb.prot4777. [Google Scholar] [CrossRef] [PubMed]
- Sive, H.L.; Grainger, R.M.; Harland, R.M. Early Development of Xenopus laevis: A Laboratory Manual; Cold Spring Harbor Laboratory Press: Long Island, NY, USA, 2000; ISBN 9780879695040. [Google Scholar]
- Harland, R.M. In situ hybridization: An improved whole-mount method for Xenopus embryos. Methods Cell Biol. 1991, 36, 685–695. [Google Scholar]
- Hemmati-Brivanlou, A.; Frank, D.; Bolce, M.E.; Brown, B.D.; Sive, H.L.; Harland, R.M. Localization of specific mRNAs in Xenopus embryos by whole-mount in situ hybridization. Development 1990, 110, 325–330. [Google Scholar] [CrossRef]
- Gassmann, M.; Grenacher, B.; Rohde, B.; Vogel, J. Quantifying Western blots: Pitfalls of densitometry. Electrophoresis 2009, 30, 1845–1855. [Google Scholar] [CrossRef]
- Tan, H.Y.; Ng, T.W. Accurate step wedge calibration for densitometry of electrophoresis gels. Opt. Commun. 2008, 281, 3013–3017. [Google Scholar] [CrossRef]
- Bowes, J.B.; Snyder, K.A.; Segerdell, E.; Jarabek, C.J.; Azam, K.; Zorn, A.M.; Vize, P.D. Xenbase: Gene expression and improved integration. Nucleic Acids Res. 2010, 38, D607–D612. [Google Scholar] [CrossRef]
- Cosse-Etchepare, C.; Gervi, I.; Buisson, I.; Formery, L.; Schubert, M.; Riou, J.F.; Umbhauer, M.; Le Bouffant, R. Pou3f transcription factor expression during embryonic development highlights distinct pou3f3 and pou3f4 localization in the Xenopus laevis kidney. Int. J. Dev. Biol. 2018, 62, 325–334. [Google Scholar] [CrossRef] [PubMed]
- Briggs, J.A.; Weinreb, C.; Wagner, D.E.; Megason, S.; Peshkin, L.; Kirschner, M.W.; Klein, A.M. The dynamics of gene expression in vertebrate embryogenesis at single-cell resolution. Science 2018, 360, eaar5780. [Google Scholar] [CrossRef] [PubMed]
- Balta, E.A.; Wittmann, M.T.; Jung, M.; Sock, E.; Haeberle, B.M.; Heim, B.; von Zweydorf, F.; Heppt, J.; von Wittgenstein, J.; Gloeckner, C.J.; et al. Phosphorylation modulates the subcellular localization of SOX11. Front. Mol. Neurosci. 2018, 11, 211. [Google Scholar] [CrossRef] [PubMed]
- Chang, K.-C.C.; Hertz, J.; Zhang, X.; Jin, X.-L.L.; Shaw, P.; Derosa, B.A.; Li, J.Y.; Venugopalan, P.; Valenzuela, D.A.; Patel, R.D.; et al. Novel Regulatory Mechanisms for the SoxC Transcriptional Network Required for Visual Pathway Development. J. Neurosci. 2017, 37, 4967–4981. [Google Scholar] [CrossRef] [PubMed]
- Sun, Y.; Nadal-Vicens, M.; Misono, S.; Lin, M.Z.; Zubiaga, A.; Hua, X.; Fan, G.; Greenberg, M.E. Neurogenin promotes neurogenesis and inhibits glial differentiation by independent mechanisms. Cell 2001, 104, 365–376. [Google Scholar] [CrossRef]
- Marshall, O.J.; Harley, V.R. Identification of an interaction between SOX9 and HSP70. FEBS Lett. 2001, 496, 75–80. [Google Scholar] [CrossRef]
- Hosking, B.M.; Wang, S.C.M.; Chen, S.L.; Penning, S.; Koopman, P.; Muscat, G.E.O. SOX18 directly interacts with MEF2C in endothelial cells. Biochem. Biophys. Res. Commun. 2001, 287, 493–500. [Google Scholar] [CrossRef]
- Bernard, P.; Harley, V.R. Acquisition of SOX transcription factor specificity through protein-protein interaction, modulation of Wnt signalling and post-translational modification. Int. J. Biochem. Cell Biol. 2010, 42, 400–410. [Google Scholar] [CrossRef]
- Weiss, M.A. Floppy SOX: Mutual induced fit in hmg (high-mobility group) box-DNA recognition. Mol. Endocrinol. 2001, 15, 353–362. [Google Scholar] [CrossRef]
- Dy, P.; Penzo-Méndez, A.; Wang, H.; Pedraza, C.E.; Macklin, W.B.; Lefebvre, V.; Penzo-Mendez, A.; Wang, H.; Pedraza, C.E.; Macklin, W.B.; et al. The three SoxC proteins–Sox4, Sox11 and Sox12–exhibit overlapping expression patterns and molecular properties. Nucleic Acids Res. 2008, 36, 3101–3117. [Google Scholar] [CrossRef]
- Wiebe, M.S.; Nowling, T.K.; Rizzino, A. Identification of novel domains within Sox-2 and Sox-11 involved in autoinhibition of DNA binding and partnership specificity. J. Biol. Chem. 2003, 278, 17901–17911. [Google Scholar] [CrossRef] [PubMed]
- Moody, S.A.; Lamantia, A.-S. Transcriptional regulation of cranial sensory placode development HHS Public Access. Curr. Top. Dev. Biol. 2015, 111, 301–350. [Google Scholar] [PubMed]
- Saint-Jeannet, J.P.; Moody, S.A. Establishing the pre-placodal region and breaking it into placodes with distinct identities. Dev. Biol. 2014, 389, 13–27. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Singleton, K.S.; Silva-Rodriguez, P.; Cunningham, D.D.; Silva, E.M. Xenopus Sox11 Partner Proteins and Functional Domains in Neurogenesis. Genes 2024, 15, 243. https://doi.org/10.3390/genes15020243
Singleton KS, Silva-Rodriguez P, Cunningham DD, Silva EM. Xenopus Sox11 Partner Proteins and Functional Domains in Neurogenesis. Genes. 2024; 15(2):243. https://doi.org/10.3390/genes15020243
Chicago/Turabian StyleSingleton, Kaela S., Pablo Silva-Rodriguez, Doreen D. Cunningham, and Elena M. Silva. 2024. "Xenopus Sox11 Partner Proteins and Functional Domains in Neurogenesis" Genes 15, no. 2: 243. https://doi.org/10.3390/genes15020243
APA StyleSingleton, K. S., Silva-Rodriguez, P., Cunningham, D. D., & Silva, E. M. (2024). Xenopus Sox11 Partner Proteins and Functional Domains in Neurogenesis. Genes, 15(2), 243. https://doi.org/10.3390/genes15020243