Bioinformatic Analysis of Actin-Binding Proteins in the Nucleolus During Heat Shock
Abstract
1. Introduction
2. Materials and Methods
2.1. Cell Culture and Materials
2.2. Plasmid and Transfection
2.3. Retrovirus Infection
2.4. Immunofluorescence and Live-Imaging
2.5. Bioinformatic Analysis
3. Results
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Fan, Y.L.; Zhao, H.C.; Li, B.; Zhao, Z.L.; Feng, X.Q. Mechanical Roles of F-Actin in the Differentiation of Stem Cells: A Review. ACS Biomater. Sci. Eng. 2019, 5, 3788–3801. [Google Scholar] [CrossRef] [PubMed]
- Kelpsch, D.J.; Tootle, T.L. Nuclear Actin: From Discovery to Function. Anat. Rec. 2018, 301, 1999–2013. [Google Scholar] [CrossRef] [PubMed]
- Huang, Y.; Zhang, S.; Park, J.I. Nuclear Actin Dynamics in Gene Expression, DNA Repair, and Cancer. In Nuclear, Chromosomal, and Genomic Architecture in Biology and Medicine. Results and Problems in Cell Differentiation; Springer: Cham, Switzerland, 2022; Volume 70, pp. 625–663. [Google Scholar] [CrossRef]
- Hurst, V.; Shimada, K.; Gasser, S.M. Nuclear Actin and Actin-Binding Proteins in DNA Repair. Trends Cell Biol. 2019, 29, 462–476. [Google Scholar] [CrossRef] [PubMed]
- Goley, E.D.; Welch, M.D. The ARP2/3 complex: An actin nucleator comes of age. Nat. Rev. Mol. Cell Biol. 2006, 7, 713–726. [Google Scholar] [CrossRef] [PubMed]
- Nobes, C.D.; Hall, A. Rho, rac, and cdc42 GTPases regulate the assembly of multimolecular focal complexes associated with actin stress fibers, lamellipodia, and filopodia. Cell 1995, 81, 53–62. [Google Scholar] [CrossRef]
- Southwick, F.S. Gelsolin and ADF/cofilin enhance the actin dynamics of motile cells. Proc. Natl. Acad. Sci. USA 2000, 97, 6936–6938. [Google Scholar] [CrossRef]
- Izdebska, M.; Zielińska, W.; Grzanka, D.; Gagat, M. The Role of Actin Dynamics and Actin-Binding Proteins Expression in Epithelial-to-Mesenchymal Transition and Its Association with Cancer Progression and Evaluation of Possible Therapeutic Targets. Biomed. Res. Int. 2018, 2018, 4578373. [Google Scholar] [CrossRef]
- Serebryannyy, L.A.; Yuen, M.; Parilla, M.; Cooper, S.T.; de Lanerolle, P. The Effects of Disease Models of Nuclear Actin Polymerization on the Nucleus. Front. Physiol. 2016, 7, 454. [Google Scholar] [CrossRef]
- Melak, M.; Plessner, M.; Grosse, R. Actin visualization at a glance. J. Cell Sci. 2017, 130, 525–530. [Google Scholar] [CrossRef]
- Nishida, E.; Iida, K.; Yonezawa, N.; Koyasu, S.; Yahara, I.; Sakai, H. Cofilin is a component of intranuclear and cytoplasmic actin rods induced in cultured cells. Proc. Natl. Acad. Sci. USA 1987, 84, 5262–5266. [Google Scholar] [CrossRef]
- Belin, B.J.; Lee, T.; Mullins, R.D. DNA damage induces nuclear actin filament assembly by Formin-2 and Spire-½ that promotes efficient DNA repair. Elife 2015, 4, e07735. [Google Scholar] [CrossRef] [PubMed]
- Horníková, L.; Bruštíková, K.; Huérfano, S.; Forstová, J. Nuclear Cytoskeleton in Virus Infection. Int. J. Mol. Sci. 2022, 23, 578. [Google Scholar] [CrossRef]
- Samstag, Y.; John, I.; Wabnitz, G.H. Cofilin: A redox sensitive mediator of actin dynamics during T-cell activation and migration. Immunol. Rev. 2013, 256, 30–47. [Google Scholar] [CrossRef] [PubMed]
- Torii, T.; Sugimoto, W.; Itoh, K.; Kinoshita, N.; Gessho, M.; Goto, T.; Uehara, I.; Nakajima, W.; Budirahardja, Y.; Miyoshi, D.; et al. Loss of p53 function promotes DNA damage-induced formation of nuclear actin filaments. Cell Death Dis. 2023, 14, 766. [Google Scholar] [CrossRef] [PubMed]
- Lafontaine, D.L.J.; Riback, J.A.; Bascetin, R.; Brangwynne, C.P. The nucleolus as a multiphase liquid condensate. Nat. Rev. Mol. Cell Biol. 2021, 22, 165–182. [Google Scholar] [CrossRef] [PubMed]
- Weibezahn, J.; Schlieker, C.; Tessarz, P.; Mogk, A.; Bukau, B. Novel insights into the mechanism of chaperone-assisted protein disaggregation. Biol. Chem. 2005, 386, 739–744. [Google Scholar] [CrossRef]
- Zhao, Z.; Dammert, M.A.; Hoppe, S.; Bierhoff, H.; Grummt, I. Heat shock represses rRNA synthesis by inactivation of TIF-IA and lncRNA-dependent changes in nucleosome positioning. Nucleic Acids Res. 2016, 44, 8144–8152. [Google Scholar] [CrossRef]
- Azkanaz, M.; Rodríguez López, A.; de Boer, B.; Huiting, W.; Angrand, P.O.; Vellenga, E.; Kampinga, H.H.; Bergink, S.; Martens, J.H.; Schuringa, J.J.; et al. Protein quality control in the nucleolus safeguards recovery of epigenetic regulators after heat shock. Elife 2019, 8, e45205. [Google Scholar] [CrossRef]
- Audas, T.E.; Audas, D.E.; Jacob, M.D.; Ho, J.J.; Khacho, M.; Wang, M.; Perera, J.K.; Gardiner, C.; Bennett, C.A.; Head, T.; et al. Adaptation to Stressors by Systemic Protein Amyloidogenesis. Dev. Cell 2016, 39, 155–168. [Google Scholar] [CrossRef]
- Frottin, F.; Schueder, F.; Tiwary, S.; Gupta, R.; Körner, R.; Schlichthaerle, T.; Cox, J.; Jungmann, R.; Hartl, F.U.; Hipp, M.S. The nucleolus functions as a phase-separated protein quality control compartment. Science 2019, 365, 342–347. [Google Scholar] [CrossRef]
- Marijan, D.; Tse, R.; Elliott, K.; Chandhok, S.; Luo, M.; Lacroix, E.; Audas, T.E. Stress-specific aggregation of proteins in the amyloid bodies. FEBS Lett. 2019, 593, 3162–3172. [Google Scholar] [CrossRef] [PubMed]
- Mediani, L.; Guillén-Boixet, J.; Vinet, J.; Franzmann, T.M.; Bigi, I.; Mateju, D.; Carrà, A.D.; Morelli, F.F.; Tiago, T.; Poser, I.; et al. Defective ribosomal products challenge nuclear function by impairing nuclear condensate dynamics and immobilizing ubiquitin. Embo J. 2019, 38, e101341. [Google Scholar] [CrossRef] [PubMed]
- Itoh, K.; Ebata, T.; Hirata, H.; Torii, T.; Sugimoto, W.; Onodera, K.; Nakajima, W.; Uehara, I.; Okuzaki, D.; Yamauchi, S.; et al. DMPK is a New Candidate Mediator of Tumor Suppressor p53-Dependent Cell Death. Molecules 2019, 24, 3175. [Google Scholar] [CrossRef] [PubMed]
- Rouillard, A.D.; Gundersen, G.W.; Fernandez, N.F.; Wang, Z.; Monteiro, C.D.; McDermott, M.G.; Ma’ayan, A. The harmonizome: A collection of processed datasets gathered to serve and mine knowledge about genes and proteins. Database 2016, 2016, baw100. [Google Scholar] [CrossRef]
- Miao, W.; Yang, Y.Y.; Wang, Y. Quantitative Proteomic Analysis Revealed Broad Roles of N(6)-Methyladenosine in Heat Shock Response. J. Proteome Res. 2021, 20, 3611–3620. [Google Scholar] [CrossRef]
- Jumper, J.; Evans, R.; Pritzel, A.; Green, T.; Figurnov, M.; Ronneberger, O.; Tunyasuvunakool, K.; Bates, R.; Žídek, A.; Potapenko, A.; et al. Highly accurate protein structure prediction with AlphaFold. Nature 2021, 596, 583–589. [Google Scholar] [CrossRef]
- Richard, E.; Michael, O.N.; Alexander, P.; Natasha, A.; Andrew, S.; Tim, G.; Augustin, Ž.; Russ, B.; Sam, B.; Jason, Y.; et al. Protein complex prediction with AlphaFold-Multimer. bioRxiv 2021. [Google Scholar] [CrossRef]
- Lakin, N.D.; Jackson, S.P. Regulation of p53 in response to DNA damage. Oncogene 1999, 18, 7644–7655. [Google Scholar] [CrossRef]
- Chen, Y.; Yu, T. Involvement of p53 in the Responses of Cardiac Muscle Cells to Heat Shock Exposure and Heat Acclimation. J. Cardiovasc. Transl. Res. 2020, 13, 928–937. [Google Scholar] [CrossRef]
- He, X.; Brakebusch, C. Regulation of Precise DNA Repair by Nuclear Actin Polymerization: A Chance for Improving Gene Therapy? Cells 2024, 13, 1093. [Google Scholar] [CrossRef]
- Goodwin, E.C.; DiMaio, D. Repression of human papillomavirus oncogenes in HeLa cervical carcinoma cells causes the orderly reactivation of dormant tumor suppressor pathways. Proc. Natl. Acad. Sci. USA 2000, 97, 12513–12518. [Google Scholar] [CrossRef] [PubMed]
- Iida, K.; Iida, H.; Yahara, I. Heat shock induction of intranuclear actin rods in cultured mammalian cells. Exp. Cell Res. 1986, 165, 207–215. [Google Scholar] [CrossRef] [PubMed]
- Iida, K.; Matsumoto, S.; Yahara, I. The KKRKK sequence is involved in heat shock-induced nuclear translocation of the 18-kDa actin-binding protein, cofilin. Cell Struct. Funct. 1992, 17, 39–46. [Google Scholar] [CrossRef] [PubMed]
- Wang, M.; Tao, X.; Jacob, M.D.; Bennett, C.A.; Ho, J.J.D.; Gonzalgo, M.L.; Audas, T.E.; Lee, S. Stress-Induced Low Complexity RNA Activates Physiological Amyloidogenesis. Cell Rep. 2018, 24, 1713–1721.e1714. [Google Scholar] [CrossRef]
- Figard, L.; Zheng, L.; Biel, N.; Xue, Z.; Seede, H.; Coleman, S.; Golding, I.; Sokac, A.M. Cofilin-Mediated Actin Stress Response Is Maladaptive in Heat-Stressed Embryos. Cell Rep. 2019, 26, 3493–3501.e3494. [Google Scholar] [CrossRef]
- Welch, W.J.; Suhan, J.P. Morphological study of the mammalian stress response: Characterization of changes in cytoplasmic organelles, cytoskeleton, and nucleoli, and appearance of intranuclear actin filaments in rat fibroblasts after heat-shock treatment. J. Cell Biol. 1985, 101, 1198–1211. [Google Scholar] [CrossRef]
- Zaharija, B.; Samardžija, B.; Bradshaw, N.J. The TRIOBP Isoforms and Their Distinct Roles in Actin Stabilization, Deafness, Mental Illness, and Cancer. Molecules 2020, 25, 4967. [Google Scholar] [CrossRef]
- Feric, M.; Vaidya, N.; Harmon, T.S.; Mitrea, D.M.; Zhu, L.; Richardson, T.M.; Kriwacki, R.W.; Pappu, R.V.; Brangwynne, C.P. Coexisting Liquid Phases Underlie Nucleolar Subcompartments. Cell 2016, 165, 1686–1697. [Google Scholar] [CrossRef]
- Healy, M.D.; Collins, B.M. The PDLIM family of actin-associated proteins and their emerging role in membrane trafficking. Biochem. Soc. Trans. 2023, 51, 2005–2016. [Google Scholar] [CrossRef]
- Stürner, E.; Behl, C. The Role of the Multifunctional BAG3 Protein in Cellular Protein Quality Control and in Disease. Front. Mol. Neurosci. 2017, 10, 177. [Google Scholar] [CrossRef]
- Kirk, J.A.; Cheung, J.Y.; Feldman, A.M. Therapeutic targeting of BAG3: Considering its complexity in cancer and heart disease. J. Clin. Investig. 2021, 131, e149415. [Google Scholar] [CrossRef]
- Meriin, A.B.; Narayanan, A.; Meng, L.; Alexandrov, I.; Varelas, X.; Cissé, I.I.; Sherman, M.Y. Hsp70-Bag3 complex is a hub for proteotoxicity-induced signaling that controls protein aggregation. Proc. Natl. Acad. Sci. USA 2018, 115, e7043–e7052. [Google Scholar] [CrossRef] [PubMed]
- Jin, Y.H.; Ahn, S.G.; Kim, S.A. BAG3 affects the nucleocytoplasmic shuttling of HSF1 upon heat stress. Biochem. Biophys. Res. Commun. 2015, 464, 561–567. [Google Scholar] [CrossRef] [PubMed]
- Bao, J.; Bielski, E.; Bachhawat, A.; Taha, D.; Gunther, L.K.; Thirumurugan, K.; Kitajiri, S.; Sakamoto, T. R1 motif is the major actin-binding domain of TRIOBP-4. Biochemistry 2013, 52, 5256–5264. [Google Scholar] [CrossRef] [PubMed]
- Park, S.; Lee, H.; Kim, M.; Park, J.; Kim, S.H.; Park, J. Emerging roles of TRIO and F-actin-binding protein in human diseases. Cell Commun. Signal. 2018, 16, 29. [Google Scholar] [CrossRef]
- Mokin, Y.I.; Povarova, O.I.; Antifeeva, I.A.; Turoverov, K.K.; Kuznetsova, I.M.; Fonin, A.V. Bioinformatics Analysis of the Actin Interactome. Proceedings 2024, 103, 58. [Google Scholar] [CrossRef]
- Povarova, O.I.; Antifeeva, I.A.; Fonin, A.V.; Turoverov, K.K.; Kuznetsova, I.M. The Role of Liquid-Liquid Phase Separation in Actin Polymerization. Int. J. Mol. Sci. 2023, 24, 3281. [Google Scholar] [CrossRef]
- Wang, B.; Zhang, L.; Dai, T.; Qin, Z.; Lu, H.; Zhang, L.; Zhou, F. Liquid-liquid phase separation in human health and diseases. Signal Transduct. Target. Ther. 2021, 6, 290. [Google Scholar] [CrossRef]
- Chen, Z.; Huai, Y.; Mao, W.; Wang, X.; Ru, K.; Qian, A.; Yang, H. Liquid-Liquid Phase Separation of Biomacromolecules and Its Roles in Metabolic Diseases. Cells 2022, 11, 3023. [Google Scholar] [CrossRef]
- Yue, T.; Zhang, F.; Wei, Y.; Wang, Z. Liquid-liquid phase separation in human diseases: Functions, mechanisms and treatments. Nano Today 2024, 59, 102521. [Google Scholar] [CrossRef]
Protein Symbol | PROTEIN NAME | Primary Accession ID | Amino Acids | % of Residues with Disorder Score ≥ 0.5 | Ratio (HS/NHS) |
---|---|---|---|---|---|
MYH9 | Myosin Heavy Chain 9 | P35579 | 1960 | 40.2 | 1.24 |
PDLIM7 | PDZ And LIM Domain 7 | Q9NR12 | 457 | 44.2 | 169.23 |
ANLN | Anillin, Actin Binding Protein | Q9NQW6 | 1124 | 50.6 | N.D. |
EP400 | E1A Binding Protein P400 | Q96L91 | 3159 | 53.8 | N.D. |
SMARCA4 | SWI/SNF Related, Matrix Associated, Actin Dependent Regulator of Chromatin, Subfamily A, Member 4 | P51532 | 1647 | 54.2 | N.D. |
SMN1 | Survival of Motor Neuron 1, Telomeric | Q16637 | 294 | 56.1 | N.D. |
RPGR | Retinitis Pigmentosa GTPase Regulator | Q92834 | 1020 | 56.5 | N.D. |
TULP1 | TUB Like Protein 1 | O00294 | 542 | 60.9 | N.D. |
HNRNPC | Heterogeneous Nuclear Ribonucleoprotein C | P07910 | 306 | 65.0 | 0.71 |
TRIOBP | TRIO And F-Actin Binding Protein | Q9H2D6 | 2365 | 85.5 | 205.11 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Taniguchi, S.; Torii, T.; Goto, T.; Takeuchi, K.; Katsumi, R.; Sumida, M.; Lee, S.; Sugimoto, W.; Gessho, M.; Itoh, K.; et al. Bioinformatic Analysis of Actin-Binding Proteins in the Nucleolus During Heat Shock. Genes 2024, 15, 1580. https://doi.org/10.3390/genes15121580
Taniguchi S, Torii T, Goto T, Takeuchi K, Katsumi R, Sumida M, Lee S, Sugimoto W, Gessho M, Itoh K, et al. Bioinformatic Analysis of Actin-Binding Proteins in the Nucleolus During Heat Shock. Genes. 2024; 15(12):1580. https://doi.org/10.3390/genes15121580
Chicago/Turabian StyleTaniguchi, Shinya, Takeru Torii, Toshiyuki Goto, Kohei Takeuchi, Rine Katsumi, Mako Sumida, Sunmin Lee, Wataru Sugimoto, Masaya Gessho, Katsuhiko Itoh, and et al. 2024. "Bioinformatic Analysis of Actin-Binding Proteins in the Nucleolus During Heat Shock" Genes 15, no. 12: 1580. https://doi.org/10.3390/genes15121580
APA StyleTaniguchi, S., Torii, T., Goto, T., Takeuchi, K., Katsumi, R., Sumida, M., Lee, S., Sugimoto, W., Gessho, M., Itoh, K., Hirata, H., Kawakami, J., Miyoshi, D., & Kawauchi, K. (2024). Bioinformatic Analysis of Actin-Binding Proteins in the Nucleolus During Heat Shock. Genes, 15(12), 1580. https://doi.org/10.3390/genes15121580