HOXA7 Expression Is an Independent Prognostic Biomarker in Esophageal Squamous Cell Carcinoma
Abstract
:1. Introduction
2. Materials and Methods
2.1. Analysis of HOX Gene Expression Using Publicly Available Esophageal
2.2. Evaluation of Somatic Alterations in HOX Genes in the TCGA Data
2.3. Snap-Frozen Human Tissue Samples
2.4. Evaluation of Gene Expression by Quantitative PCR (qPCR)
2.5. Identification of HOX Targets and Gene-Set Enrichment Analyses
2.6. Statistical Analyses
3. Results
3.1. Mutational Profile of HOX Genes
3.2. HOX Genes’ Expression Profile
3.3. Targets of ESCC-Overexpressed HOX Genes Are Associated with Enriched Signaling Pathways and Cellular Processes
3.4. Association Analyses Between ESCC-Overexpressed HOX Genes and Clinicopathological Features
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lewis, E.B. Clusters of master control genes regulate the development of higher organisms. JAMA 1992, 267, 1524–1531. [Google Scholar] [CrossRef] [PubMed]
- Shah, N.; Sukumar, S. The HOX genes and their roles in oncogenesis. Nat. Rev. Cancer 2010, 10, 361–371. [Google Scholar] [CrossRef] [PubMed]
- Krumlauf, R. HOX genes in vertebrate development. Cell 1994, 78, 191–201. [Google Scholar] [CrossRef] [PubMed]
- Abate-Shen, C. Deregulated homeobox gene expression in cancer: Cause or consequence? Nat. Rev. Cancer 2002, 2, 777–785. [Google Scholar] [CrossRef] [PubMed]
- Jung, C.; Kim, R.S.; Zhang Lee, S.J.; Jeng, M.H. HOXB13 induces growth suppression of prostate cancer cells as a hormone-activated androgen receptor signaling repressor. Cancer Res. 2004, 64, 9185–9191. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Dahiya, S.; Provencher, H.; Muir, B.; Carney, E.; Coser, K.; Shioda, T.; Ma, X.J.; Sgroi, D.C. The prognostic biomarkers HOXB13, IL17BR, and CHDH are regulated by estrogen in breast cancer. Clin. Cancer Res. 2007, 13, 6327–6334. [Google Scholar] [CrossRef]
- Sun, Y.; Zhou, B.; Mao, F.; Xu, J.; Miao, H.; Zou, Z.; Jang, Y.; Cai, S.; Witkin, M.; Koche, R.; et al. HOXA9 reprograms the enhancer landscape to promote leukemogenesis. Cancer Cell 2018, 34, 643–658. [Google Scholar] [CrossRef]
- Bhatlekar, S.; Fields, J.Z.; Boman, B.M. HOX genes and their role in the development of human cancers. J. Mol. Med. 2014, 92, 811–823. [Google Scholar] [CrossRef]
- Ewing, C.M.; Ray, A.M.; Lange, E.M.; Zuhlke, K.A.; Robbins, C.M.; Tembe, W.D.; Wiley, K.E.; Isaacs, S.D.; Johng, D.; Wang, Y.; et al. Germline mutations in HOXB13 and prostate-cancer risk. N. Engl. J. Med. 2012, 366, 141–149. [Google Scholar] [CrossRef]
- Luo, Z.; Rhie, S.K.; Farnham, P.J. The enigmatic HOX genes: Can we crack their code? Cancers 2019, 11, 323. [Google Scholar] [CrossRef]
- Chen, K.N.; Gu, Z.D.; Ke, Y.; Li, J.Y.; Shi, X.T.; Xu, G.W. Expression of 11 HOX genes is deregulated in esophageal squamous cell carcinoma. Clin. Cancer Res. 2005, 11, 1044–1049. [Google Scholar] [CrossRef] [PubMed]
- Feng, A.; He, L.; Jiang, J.; Chu, Y.; Zhang, Z.; Fang, K.; Wang, Z.; Li, Z.; Sun, M.; Zhao, Z.; et al. Homeobox A7 promotes esophageal squamous cell carcinoma progression through C-C motif chemokine ligand 2-mediated tumor-associated macrophage recruitment. Cancer Sci. 2023, 114, 3270–3286. [Google Scholar] [CrossRef] [PubMed]
- Takahashi, O.; Hamada, J.I.; Abe, M.; Hata, S.; Asano, T.; Takahashi, Y.; Tada, M.; Miyamoto, M.; Kondo, S.; Moriuchi, T. Dysregulated expression of HOX and ParaHOX genes in human esophageal squamous cell carcinoma. Oncol. Rep. 2007, 17, 753–760. [Google Scholar] [CrossRef] [PubMed]
- Zhao, J.; Jia, X.; Li, Q.; Zhang, H.; Wang, J.; Huang, S.; Hu, Z.; Li, C. Genomic and transcriptional characterization of early esophageal squamous cell carcinoma. BMC Med. Genom. 2023, 16, 67. [Google Scholar] [CrossRef]
- Ferlay, J.; Ervik, M.; Lam, F.; Laversanne, M.; Colombet, M.; Mery, L.; Piñeros, M.; Znaor, A.; Soerjomataram, I.; Bray, F. Global Cancer Observatory: Cancer Today. Lyon, France: International Agency for Research on Cancer. 2024. Available online: https://gco.iarc.who.int/today (accessed on 30 August 2024).
- van Hagen, P.; Hulshof, M.C.C.M.; van Lanschot, J.J.B.; Steyerberg, E.W.; van Berge Henegouwen, M.I.; Wijnhoven, B.P.L.; Richel, D.J.; Nieuwenhuijzen, G.A.P.; Hospers, G.A.P.; Bonenkamp, J.J.; et al. Preoperative chemoradiotherapy for esophageal or junctional cancer. N. Engl. J. Med. 2012, 366, 2074–2084. [Google Scholar] [CrossRef]
- The Cancer Genome Atlas Research Network. Integrated genomic characterization of oesophageal carcinoma. Nature 2017, 541, 169–175. [Google Scholar] [CrossRef]
- Nicolau-Neto, P.; Da Costa, N.M.; de Souza Santos, P.T.; Gonzaga, I.M.; Ferreira, M.A.; Guaraldi, S.; Moreira, M.A.; Seuánez, H.N.; Brewer, L.; Bergmann, A.; et al. Esophageal squamous cell carcinoma transcriptome reveals the effect of FOXM1 on patient outcome through novel PIK3R3 mediated activation of PI3K signaling pathway. Oncotarget 2018, 9, 16634–16647. [Google Scholar] [CrossRef]
- Li, J.; Chen, Z.; Tian, L.; Zhou, C.; He, M.Y.; Gao, Y.; Wang, S.; Zhou, F.; Shi, S.; Feng, X.; et al. LncRNA profile study reveals a three-lncRNA signature associated with the survival of patients with oesophageal squamous cell carcinoma. Gut 2014, 63, 1700–1710. [Google Scholar] [CrossRef]
- Sean, D.; Meltzer, P.S. GEOquery: A bridge between the Gene Expression Omnibus (GEO) and BioConductor. Bioinformatics 2007, 23, 1846–1847. [Google Scholar]
- Wettenhall, J.M.; Smyth, G.K. limmaGUI: A graphical user interface for linear modeling of microarray data. Bioinformatics 2004, 20, 3705–3706. [Google Scholar] [CrossRef]
- Mermel, C.H.; Schumacher, S.E.; Hill, B.; Meyerson, M.L.; Beroukhim, R.; Getz, G. GISTIC2.0 facilitates sensitive and confident localization of the targets of focal somatic copy-number alteration in human cancers. Genome Biol. 2011, 12, R41. [Google Scholar] [CrossRef] [PubMed]
- Livak, K.J.; Schmittgen, T.D. Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method. Methods 2001, 25, 402–408. [Google Scholar] [CrossRef] [PubMed]
- Plaisier, C.L.; O’Brien, S.; Bernard, B.; Reynolds, S.; Simon, Z.; Toledo, C.M.; Ding, Y.; Reiss, D.J.; Paddison, P.J.; Baliga, N.S. Causal mechanistic regulatory network for glioblastoma deciphered using systems genetics network analysis. Cell Syst. 2016, 3, 172–186. [Google Scholar] [CrossRef] [PubMed]
- John MYuxing, L.; Zhiao, S.; Qian, Z.; Alexander, R.P.; Bing, Z. WebGestalt 2024: Faster gene set analysis and new support for metabolomics and multi-omics. Nucleic Acids Res. 2024, gkae456. [Google Scholar]
- Bradburn, M.J.; Clark, T.G.; Love, S.B.; Altman, D.G. Survival analysis part III: Multivariate data analysis—Choosing a model and assessing its adequacy and fit. Br. J. Cancer 2003, 89, 605–611. [Google Scholar] [CrossRef]
- Therneau, T.; Lumley, T. R Package, Version 2.38; Package Survival: A Package for Survival Analysis in R, 2015; Available online: https://cran.r-project.org/web/packages/survival/index.html (accessed on 1 October 2024).
- Lánczky, A.; Győrffy, B. Web-based survival analysis tool tailored for medical research (KMplot): Development and implementation. J. Med. Internet Res. 2021, 23, e27633. [Google Scholar] [CrossRef]
- Hammerman, P.S.; Lawrence, M.S.; Voet, D.; Jing, R.; Cibulskis, K.; Sivachenko, A.; Stojanov, P.; McKenna, A.; Lander, E.S.; Gabriel, S.; et al. Comprehensive genomic characterization of squamous cell lung cancers. Nature 2012, 489, 519–525. [Google Scholar]
- Hoadley, K.A.; Yau, C.; Wolf, D.M.; Cherniack, A.D.; Tamborero, D.; Ng, S.; Leiserson, M.D.; Niu, B.; McLellan, M.D.; Uzunangelov, V.; et al. Multiplatform analysis of 12 cancer types reveals molecular classification within and across tissues of origin. Cell 2014, 158, 929–944. [Google Scholar] [CrossRef]
- Oguma, J.; Ozawa, S.; Kazuno, A.; Nitta, M.; Ninomiya, Y.; Kajiwara, H. Wnt3a expression is associated with poor prognosis of esophageal squamous cell carcinoma. Oncol. Lett. 2018, 15, 3100–3108. [Google Scholar] [CrossRef]
- de Souza-Santos, P.T.; Lima, S.C.S.; Nicolau-Neto, P.; Boroni, M.; Costa, N.M.; Brewer, L.; Menezes, A.N.; Furtado, C.; Moreira, M.A.M.; Seuanez, H.N.; et al. Mutations, differential gene expression, and chimeric transcripts in esophageal squamous cell carcinoma show high heterogeneity. Transl. Oncol. 2018, 11, 1283–1291. [Google Scholar] [CrossRef]
- Soares-Lima, S.C.; Gonzaga, I.M.; Camuzi, D.; Nicolau-Neto, P.; Silva, R.V.D.; Guaraldi, S.; Ferreira, M.A.; Hernandez-Vargas, H.; Herceg, Z.; Ribeiro Pinto, L.F. IL6 and BCL3 expression are potential biomarkers in esophageal squamous cell carcinoma. Front. Oncol. 2021, 11, 610574. [Google Scholar] [CrossRef] [PubMed]
- Golub, T.R.; Slonim, D.K.; Tamayo, P.; Huard, C.; Gaasenbeek, M.; Mesirov, J.P.; Coller, H.; Loh, M.L.; Downing, J.R.; Caligiuri, M.A.; et al. Molecular classification of cancer: Class discovery and class prediction by gene expression monitoring. Science 1999, 286, 531–537. [Google Scholar] [CrossRef] [PubMed]
- Dang, Y.; Yu, J.; Zhao, S.; Cao, X.; Wang, Q. HOXA7 promotes the metastasis of KRAS mutant colorectal cancer by regulating myeloid-derived suppressor cells. Cancer Cell Int. 2022, 22, 89. [Google Scholar] [CrossRef] [PubMed]
- Padam, K.S.R.; Morgan, R.; Hunter, K.; Chakrabarty, S.; Kumar, N.A.N.; Radhakrishnan, R. Identification of HOX signatures contributing to oral cancer phenotype. Sci. Rep. 2022, 12, 2457. [Google Scholar] [CrossRef]
- Li, Y.; Yang, X.H.; Fang, S.J.; Qin, C.F.; Sun, R.L.; Liu, Z.Y.; Jiang, B.Y.; Wu, X.; Li, G. HOXA7 stimulates human hepatocellular carcinoma proliferation through cyclin E1/CDK2. Oncol. Rep. 2015, 33, 990–996. [Google Scholar] [CrossRef]
- Duan, X.; Chen, H.; Ma, H.; Song, Y. The expression and significance of the HOXA7 gene in oral squamous cell carcinoma. J. Oral Sci. 2017, 59, 329–335. [Google Scholar] [CrossRef]
- Zhang, Y.; Huang, Q.; Cheng, J.C.; Nishi, Y.; Yanase, T.; Huang, H.F.; Leung, P.C. Homeobox A7 increases cell proliferation by up-regulation of epidermal growth factor receptor expression in human granulosa cells. Reprod. Biol. Endocrinol. 2010, 8, 61. [Google Scholar] [CrossRef]
- Hu, X.; Wang, Y.; Zhang, X.; Li, C.; Zhang, X.; Yang, D.; Liu, Y.; Li, L. DNA methylation of HOX genes and its clinical implications in cancer. Exp. Mol. Pathol. 2023, 134, 104916. [Google Scholar] [CrossRef]
- Sun, M.; Song, C.X.; Huang, H.; Frankenberger, C.A.; Sankarasharma, D.; Gomes, S.; Chen, P.; Chen, J.; Chada, K.K.; He, C.; et al. HMGA2/TET1/HOXA9 signaling pathway regulates breast cancer growth and metastasis. Proc. Natl. Acad. Sci. USA 2013, 110, 9920–9925. [Google Scholar] [CrossRef]
Feature | Variable | Brazilian ESCC Patients |
---|---|---|
Age—Median (range) | 59 (39–77) | |
Gender | Female | 8 (19.51%) |
Male | 33 (80.49%) | |
Tobacco smoking | No | 4 (9.76%) |
Yes | 35 (85.36%) | |
NA | 2 (4.88%) | |
Alcohol drinking | No | 5 (12.20%) |
Yes | 35 (85.36%) | |
NA | 1 (2.44%) | |
Esophagel tumor subsite | Upper | 5 (12.20%) |
Middle | 11 (26.83%) | |
Lower | 3 (7.3%) | |
More than one subsite | 22 (53.66%) | |
Tumor grade | G2 | 34 (82.93%) |
G3 | 7 (17.07%) | |
Stage | I-II | 12 (29.27%) |
III-IV | 25 (60.97%) | |
NA | 4 (9.76%) | |
Lymph node metastasis | No | 8 (19.51%) |
Yes | 17 (41.46%) | |
NA | 16 (39.03%) | |
Distant metastasis | No | 11 (26.83%) |
Yes | 17 (41.46%) | |
NA | 13 (31.71%) |
Gene Symbol | GSE75241 | GSE53625 | ||||
---|---|---|---|---|---|---|
Probe ID | Fold Change (ESCC/NMSM) | p Value | Probe ID | Fold Change (ESCC/NMSM) | p Value | |
HOXA2 | 3042756 | −1.67 | <0.001 | CB_015587 | −1.58 | <0.001 |
HOXA7 | 3042881 | 1.50 | 0.002 | CB_015737 | 2.13 | <0.001 |
HOXB13 | 3761538 | 2.12 | <0.001 | CB_015218 | 2.87 | <0.001 |
HOXC9 | 3416344 | 1.57 | <0.001 | CB_015738 | 3.43 | <0.001 |
HOXC10 | 3416290 | 2.32 | <0.001 | CB_019037 | 10.56 | <0.001 |
HOXC13 | 3416256 | 1.66 | <0.001 | CB_019038 | 15.45 | <0.001 |
HOXD10 | 2516834 | 4.17 | <0.001 | CB_011132 | 4.44 | <0.001 |
Frequency | HOXA2 | HOXA7 | HOXB13 | HOXC9 | HOXC10 | HOXC13 | HOXD10 | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Feature | Variable | n | % | Median | p Value | Median | p Value | Median | p Value | Median | p Value | Median | p Value | Median | p Value | Median | p Value |
Age | <60 | 89 | 49.70% | 10.54 | 0.11 | 12.94 | 0.22 | 5.76 | 0.026 | 10.70 | 0.16 | 9.59 | 0.85 | 9.14 | 0.38 | 11.89 | 0.92 |
≥60 | 90 | 50.30% | 10.83 | 12.87 | 6.83 | 10.91 | 9.64 | 9.18 | 11.88 | ||||||||
Sex | Male | 146 | 81.60% | 10.78 | 0.24 | 12.95 | 0.12 | 6.53 | 0.78 | 10.83 | 0.50 | 10.14 | 0.88 | 9.13 | 0.67 | 11.97 | 0.009 |
Female | 33 | 18.40% | 10.61 | 12.73 | 6.15 | 10.7 | 9.95 | 9.24 | 11.50 | ||||||||
Alcohol Drinking | No | 73 | 40.80% | 10.77 | 0.65 | 12.74 | 0.09 | 6.24 | 0.73 | 10.65 | 0.09 | 9.94 | 0.66 | 8.98 | 0.06 | 11.80 | 0.01 |
Yes | 106 | 59.20% | 10.73 | 13.04 | 6.32 | 10.91 | 10.22 | 9.43 | 12.11 | ||||||||
Tobacco Smoking | No | 65 | 36.30% | 10.73 | 0.8 | 12.82 | 0.33 | 5.84 | 0.41 | 10.53 | 0.005 | 9.99 | 0.92 | 9.05 | 0.27 | 11.88 | 0.53 |
Yes | 114 | 63.70% | 10.76 | 12.97 | 6.82 | 10.97 | 10.16 | 9.27 | 12.00 | ||||||||
Esophageal Tumor Subsite | Upper | 20 | 11.20% | 10.96 | 0.81 | 13.34 | 0.09 | 6.87 | 0.62 | 11.23 | 0.36 | 9.88 | 0.70 | 8.88 | 0.3 | 11.76 | 0.48 |
Middle | 97 | 54.20% | 10.62 | 12.98 | 6.69 | 10.96 | 10.00 | 9.09 | 12.06 | ||||||||
Lower | 62 | 34.60% | 10.62 | 12.66 | 6.87 | 10.55 | 10.39 | 9.43 | 11.81 | ||||||||
Tumor Differentiation | Well | 32 | 17.90% | 10.59 | 0.68 | 13.11 | 0.74 | 5.66 | 0.0501 | 10.56 | 0.0067 * | 9.89 | 0.47 | 9.48 | 0.92 | 11.8 | 0.75 |
Moderate | 98 | 54.70% | 10.61 | 12.89 | 6.32 | 10.72 | 9.94 | 9.15 | 12.03 | ||||||||
Poorly | 49 | 27.40% | 10.79 | 13.03 | 7.36 | 11.27 | 10.72 | 9.08 | 12.05 | ||||||||
Lymph node metastasis | No | 83 | 46.40% | 10.68 | 0.55 | 12.83 | 0.74 | 6.87 | 0.31 | 10.80 | 0.89 | 10.00 | 0.72 | 9.06 | 0.30 | 11.95 | 0.95 |
Yes | 96 | 53.60% | 10.62 | 12.95 | 5.73 | 10.82 | 10.25 | 9.40 | 11.97 | ||||||||
T (TNM) | T1/T2 | 39 | 21.70% | 10.54 | 0.3 | 12.83 | 0.82 | 6.35 | 0.65 | 11.01 | 0.16 | 10.34 | 0.65 | 9.40 | 0.39 | 11.91 | 0.84 |
T3/T4 | 140 | 78.80% | 10.66 | 12.94 | 6.27 | 10.75 | 10.00 | 9.10 | 11.88 | ||||||||
Tumor Stage | Early (I/II) | 87 | 48.60% | 10.57 | 0.08 | 12.82 | 0.55 | 6.87 | 0.09 | 10.77 | 0.61 | 9.63 | 0.95 | 9.08 | 0.37 | 11.88 | 0.95 |
Late (III) | 92 | 51.40% | 10.68 | 13.01 | 5.65 | 10.84 | 9.61 | 9.27 | 12.05 |
Feature | Variable | GSE53625 | Brazilian Samples | ||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Univariate Survival Analysis | Multivariate Analysis | Univariate Survival Analysis | Multivariate Analysis | ||||||||||||||
95% CI | 95% CI | 95% CI | 95% CI | ||||||||||||||
HR | Low | High | p Value | HR | Low | High | p Value | HR | Low | High | p Value | HR | Low | High | p Value | ||
Age | ≥60 y vs. <60 y | 1.54 | 1.047 | 2.26 | 0.028 | 0.98 | 0.51 | 1.89 | 0.97 | ||||||||
Gender | Male vs. Female | 0.78 | 0.49 | 1.25 | 0.3 | 2.97 | 1.4 | 3.12 | 0.0002 | 0.64 | 0.27 | 1.51 | 0.31 | ||||
Stage | I vs. II vs. III | 2.15 | 1.44 | 3.2 | 0.00015 | 3.02 | 1.27 | 7.19 | 0.012 | 2.36 | 0.93 | 5.96 | 0.06 | ||||
Grade | G3/G2 vs. G1 | 1.35 | 1 | 1.82 | 0.048 | 0.57 | 0.28 | 1.17 | 0.12 | ||||||||
HOXA2 | High vs. Low | 1.58 | 1.041 | 2.408 | 0.0316 | ||||||||||||
HOXA7 | High vs. Low | 1.65 | 1.11 | 2.45 | 0.013 | 1.58 | 1.06 | 2.35 | 0.024 | 3.29 | 1.54 | 6.99 | 0.0019 | 2.41 | 1.04 | 5.56 | 0.039 |
HOXB13 | High vs. Low | 1.9 | 1.06 | 3.4 | 0.0302 | ||||||||||||
HOXC9 | High vs. Low | 1.52 | 0.96 | 2.42 | 0.073 | ||||||||||||
HOXC10 | High vs. Low | 0.28 | 0.14 | 1.04 | 0.061 | ||||||||||||
HOXC13 | High vs. Low | 1.28 | 0.87 | 1.88 | 0.13 | ||||||||||||
HOXD10 | High vs. Low | 1.3 | 0.87 | 1.9 | 0.018 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gomes, J.V.; Nicolau-Neto, P.; de Almeida, J.N.; Lisboa, L.B.; de Souza-Santos, P.T.; Ribeiro-Pinto, L.F.; Soares-Lima, S.C.; Simão, T.d.A. HOXA7 Expression Is an Independent Prognostic Biomarker in Esophageal Squamous Cell Carcinoma. Genes 2024, 15, 1430. https://doi.org/10.3390/genes15111430
Gomes JV, Nicolau-Neto P, de Almeida JN, Lisboa LB, de Souza-Santos PT, Ribeiro-Pinto LF, Soares-Lima SC, Simão TdA. HOXA7 Expression Is an Independent Prognostic Biomarker in Esophageal Squamous Cell Carcinoma. Genes. 2024; 15(11):1430. https://doi.org/10.3390/genes15111430
Chicago/Turabian StyleGomes, Jennifer Vieira, Pedro Nicolau-Neto, Júlia Nascimento de Almeida, Lilian Brewer Lisboa, Paulo Thiago de Souza-Santos, Luis Felipe Ribeiro-Pinto, Sheila Coelho Soares-Lima, and Tatiana de Almeida Simão. 2024. "HOXA7 Expression Is an Independent Prognostic Biomarker in Esophageal Squamous Cell Carcinoma" Genes 15, no. 11: 1430. https://doi.org/10.3390/genes15111430
APA StyleGomes, J. V., Nicolau-Neto, P., de Almeida, J. N., Lisboa, L. B., de Souza-Santos, P. T., Ribeiro-Pinto, L. F., Soares-Lima, S. C., & Simão, T. d. A. (2024). HOXA7 Expression Is an Independent Prognostic Biomarker in Esophageal Squamous Cell Carcinoma. Genes, 15(11), 1430. https://doi.org/10.3390/genes15111430